Search Results for: lin l

The effect of fertilization levels and genetic deployment on the isotopic signature, constituents, and chemistry of soil organic carbon in managed loblolly pine (Pinus taeda L.) forests

Soil organic carbon (SOC) mass and its constituents, chemistry, and isotopic signatures (Δ14C, δ13C) were examined for two different loblolly pine (Pinus taeda L.) research installations located in north-central Florida. Both studies were designed as split-plots with the whole plots as different levels of fertilization and herbicide application (cultural intensity), […]

When does no-till yield more? A global meta-analysis

No-till agriculture represents a relatively widely adopted management system that aims to reduce soil erosion, decrease input costs, and sustain long-term crop productivity. However, its impacts on crop yields are variable, and an improved understanding of the factors limiting productivity is needed to support evidence-based management decisions. We conducted a […]

Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant […]

Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions

Many northern forests are limited by nitrogen (N) availability, slight changes in which can have profound effects on ecosystem function and the activity of ectomycorrhizal (EcM) fungi. Increasing N and phosphorus (P) availability, an analog to accelerated soil organic matter decomposition in a warming climate, could decrease plant dependency on […]

Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models

The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate–carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery […]