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Abstract
Aim: Leaf	 litter	 decomposition	 in	 freshwater	 ecosystems	 is	 a	 vital	 process	 linking	
ecosystem	nutrient	cycling,	energy	transfer	and	trophic	interactions.	In	comparison	
to	terrestrial	ecosystems,	 in	which	researchers	find	that	 litter	traits	predominantly	
regulate	litter	decomposition	worldwide,	the	dominant	factors	controlling	its	decom‐
position	in	aquatic	ecosystems	are	still	debated,	with	global	patterns	not	well	docu‐
mented.	Here,	we	aimed	to	explore	general	patterns	and	key	drivers	(e.g.,	litter	traits,	
climate	and	water	characteristics)	of	leaf	litter	decomposition	in	streams	worldwide.
Location: Global.
Time period: 1977–2018.
Major taxa studied: Leaf	litter.
Methods: We	synthesized	1,707	records	of	litter	decomposition	in	streams	from	275	
studies.	We	 explored	 variations	 in	 decomposition	 rates	 among	 climate	 zones	 and	
tree	functional	types	and	between	mesh	size	groups.	Regressions	were	performed	
to	identify	the	factors	that	played	dominant	roles	in	litter	decomposition	globally.
Results: Litter	 decomposition	 rates	 did	 not	 differ	 among	 tropical,	 temperate	 and	
cold	climate	zones.	Decomposition	rates	of	litter	from	evergreen	conifer	trees	were	
much	 lower	 than	 those	of	deciduous	and	evergreen	broadleaf	 trees,	 attributed	 to	
the	 low	 quality	 of	 litter	 from	 evergreen	 conifers.	 No	 significant	 differences	were	
found	between	decomposition	rates	of	litter	from	deciduous	and	evergreen	broad‐
leaf	trees.	Additionally,	litter	decomposition	rates	were	much	higher	in	coarse‐	than	
in	fine‐mesh	bags,	which	controled	the	entrance	of	decomposers	of	different	body	
sizes.	Multiple	 regressions	showed	that	 litter	 traits	 (including	 lignin,	C:N	ratio)	and	
elevation	were	the	most	important	factors	in	regulating	leaf	litter	decomposition.
Main conclusions: Litter	 traits	 predominantly	 control	 leaf	 litter	 decomposition	 in	
streams	 worldwide.	 Although	 further	 analyses	 are	 necessary	 to	 explore	 whether	
commonalities	of	the	predominant	role	of	litter	traits	in	decomposition	exist	in	both	
aquatic	and	terrestrial	ecosystems,	our	findings	could	contribute	to	the	use	of	trait‐
based	approaches	 in	modelling	the	decomposition	of	 litter	 in	streams	globally	and	
exploring	mechanisms	of	land–water–atmosphere	carbon	fluxes.

K E Y W O R D S

C:N	ratio,	climate	zones,	leaf	litter	traits,	lignin	content,	litter	decomposition,	streams	and	
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1  | INTRODUC TION

Leaf	 litter	 is	 a	major	allochthonous	 input	 to	 streams	and	a	common	
source	of	energy	and	nutrients	for	heterotrophic	aquatic	communities	
(e.g.,	Graça,	Ferreira,	&	Coimbra,	2001).	Its	decomposition	in	streams	
and	rivers	(hereafter,	streams)	is	a	vital	process	linking	ecosystem	pro‐
cesses	such	as	nutrient	cycling,	energy	transfer	and	trophic	interactions	
(Ardón,	Stallcup,	&	Pringle,	2006;	Kominoski,	Marczak,	&	Richardson,	
2011;	 Leite‐Rossi,	 Saito,	 Cunha‐Santino,	 &	 Trivinho‐Strixino,	 2016;	
Lidman,	Jonsson,	Burrows,	Bundschuh,	&	Sponseller,	2017;	Powers	et	
al.,	2009;	Zhang,	 Luo,	Chen,	&	Ruan,	2018).	 Studies	on	 the	decom‐
position	of	leaf	litter	in	aquatic	ecosystems	have	attracted	extensive	
attention	worldwide	since	 the	1960s,	aiming	 to	explore	 the	mecha‐
nisms	 of	 land–water–atmosphere	 carbon	 (C)	 fluxes	 (Abelho,	 2001;	
Tank,	Rosi‐Marshall,	Griffiths,	Entrekin,	&	Stephen,	2010;	Webster	&	
Benfield,	 1986).	Massive	 amounts	 of	 organic	 carbon	 are	 processed	
in	 freshwater	 ecosystems,	 constituting	 an	 indispensable	 component	
of	the	global	C	cycle	(Boyero	et	al.,	2016).	Raymond	et	al.	(2013)	es‐
timated	that	the	global	CO2	 respired	from	streams	 is	1.8	Pg	C/year,	
accounting	for	86%	of	the	total	CO2	respired	from	inland	waters.	So	
far,	however,	global‐scale	studies	are	less	common,	and	we	still	do	not	
know	how	litter	decomposition	rates	in	streams	vary	at	a	global	scale	
or	which	factors	predominately	control	litter	decomposition	in	streams	
(Boyero	et	al.,	2016;	Kennedy	&	El‐Sabaawi,	2017).

Empirical	 studies	have	undoubtedly	 improved	our	understand‐
ing	of	leaf	litter	decomposition	in	streams	(e.g.,	Boyero,	Pearson,	&	
Camacho,	2006;	Boyero	et	al.,	2011;	Irons,	Oswood,	Stout,	&	Pringle,	
1994;	Kominoski	et	al.,	2011;	Schlesinger	&	Hasey,	1981).	Generally,	
the	decomposition	of	leaf	litter	in	streams	is	mainly	driven	by	both	
extrinsic	 (e.g.,	 environmental	 factors	 and	 water	 characteristics	 of	
streams;	Rosemond	et	al.,	2015;	Woodward	et	al.,	2012)	and	intrin‐
sic	factors	(e.g.,	 litter	traits;	Gonçalves	et	al.,	2017;	Jinggut	&	Yule,	
2015;	Lecerf	&	Chauvet,	2008;	Leite‐Rossi	et	al.,	2016).	Of	the	doz‐
ens	 of	 extrinsic	 factors	 that	 can	 influence	 litter	 decomposition	 in	
streams,	such	as	temperature,	dissolved	nutrients,	pH	and	dissolved	
oxygen (O2),	 temperature	has	undoubtedly	captured	more	than	 its	
fair	share	of	attention	(Ferreira	&	Canhoto,	2015;	Ferreira,	Chauvet,	
&	 Canhoto,	 2015;	 Follstad	 Shah	 et	 al.,	 2017).	 For	 example,	 many	
studies	have	found	a	positive	temperature–decomposition	relation‐
ship,	with	faster	decomposition	in	tropical	compared	with	temperate	
streams,	mainly	attributable	to	higher	water	temperatures	favouring	
increased	 biological	 activity	 (e.g.,	 Ardón,	 Pringle,	 &	 Eggert,	 2009;	
Ferreira	&	Canhoto,	 2015;	 Ferreira	&	Chauvet,	 2011).	Conversely,	
other	studies	have	found	higher	 litter	decomposition	rates	 in	tem‐
perate	compared	with	tropical	streams	(Ferreira,	Encalada,	&	Graça,	
2012;	Gonçalves,	Graça,	&	Callisto,	2006,	2007),	largely	attributable	
to	favourable	conditions,	such	as	cool,	well‐aerated,	flowing	water	
preferred	by	aquatic	hyphomycetes.	Despite	much	 research,	how‐
ever,	no	consistent	patterns	have	emerged	regarding	 litter	decom‐
position	in	streams	among	different	temperature	zones	(i.e.,	tropical,	
temperate	and	cold)	at	a	global	scale.

Besides	 being	 affected	 by	 extrinsic	 factors,	 litter	 decomposition	
rates	 also	 depend	 greatly	 on	 the	 nature	 of	 leaf	 litter,	 such	 as	 the	

carbon	:	nitrogen	(C:N)	ratio	and	lignin	content	 (Gessner	&	Chauvet,	
1994;	Ostrofsky,	1997;	Wang,	Ruan,	&	Wang,	2009).	Previous	stud‐
ies	show	that	leaf	litter	with	low	C:N	ratio	are	preferentially	colonized	
and	degraded	by	aquatic	hyphomycetes	and	invertebrate	detritivores	
(Ferreira	 et	 al.,	 2012;	 Richardson,	 Shaughnessy,	 &	 Harrison,	 2004;	
Shieh,	Wang,	Hsu,	&	Yang,	2008;	Swan	&	Palmer,	2004).	Lignin	content,	
on	 the	 contrary,	 is	 generally	 found	 to	 regulate	 litter	 decomposition	
negatively,	because	specialized	enzymes	are	required	to	process	this	
recalcitrant	form	of	C	(Alvim,	Medeiros,	Rezende,	&	Gonçalves,	2015;	
Ardón	et	al.,	2009;	König,	Hepp,	&	Santos,	2014;	Li,	Ng,	&	Dudgeon,	
2009).	A	good	example	 is	the	decomposition	patterns	among	differ‐
ent	tree	functional	types.	Litter	derived	from	deciduous	plant	species	
generally	decomposes	more	rapidly	than	that	from	evergreen	species	
(López,	Pardo,	&	Felpeto,	2001;	Pozo	et	al.,	1998).	Broadleaf	litter	is	
usually	broken	down	much	more	easily	than	conifer	needles	(Albariño	
&	Balseiro,	 2002;	 Ferreira,	 Faustino,	 Raposeiro,	&	Gonçalves,	 2017;	
Hisabae,	 Sone,	 &	 Inoue,	 2011;	 Imbert	 &	 Pozo,	 1989;	 Kominoski	 et	
al.,	 2011;	Whiles	&	Wallace,	 1997).	These	 differences	 among	 func‐
tional	 types	 are	 principally	 on	 account	 of	 intrinsic	 factors,	 the	 nu‐
tritional	qualities	of	 leaf	 litter,	which	are	widely	 recognized	as	 “litter	
quality”,	such	as	nutrient	contents	[e.g.,	N	and	phosphorus	(P)],	 litter	
stoichiometry	 (e.g.,	 C:N	 and	 C:P	 ratios),	 structural	 compounds	 (e.g.,	
lignin	and	cellulose),	secondary	compounds	(e.g.,	tannins	and	polyphe‐
nols)	 (Ferreira	et	al.,	2012;	García‐Palacios,	Mckie,	Handa,	Frainer,	&	
Hättenschwiler,	2016;	Lecerf	&	Chauvet,	2008;	Ostrofsky,	1997).	This	
biochemical	composition	of	leaf	litter	affects	its	availability	for	inverte‐
brate	feeding	and	microbial	growth	(Enriquez,	Duarte,	&	Sand‐Jensen,	
1993).	 In	comparison	to	terrestrial	ecosystems,	 in	which	researchers	
find	that	litter	traits	predominantly	regulate	its	decomposition	globally	
(e.g.,	Cornwell	 et	 al.,	2008;	Zhang,	Hui,	 Luo,	&	Zhou,	2008),	debate	
is	ongoing	over	the	dominant	factors	controlling	litter	decomposition	
across	the	global	aquatic	ecosystems	(Boyero	et	al.,	2016).

Understanding	 the	 relative	 contribution	 of	 these	 extrinsic	 and	
intrinsic	 factors,	and	their	 interactions,	at	both	 the	site	 level	and	the	
global	scale,	will	undoubtedly	contribute	to	elucidating	the	main	factors	
affecting	litter	decomposition	in	aquatic	ecosystems	(LeRoy	&	Marks,	
2006).	These	factors	regulate	leaf	litter	decomposition	simultaneously;	
therefore,	 it	 is	 challenging	 but	 essential	 to	 identify	 the	 predominant	
controlling	factors	worldwide	to	aid	our	understanding	of	nutrient	cy‐
cling,	energy	transfer	and	trophic	interactions	in	streams.	In	this	system‐
atic	review,	our	aims	were	as	follows:	(a)	to	explore	the	global	patterns	
of	 leaf	 litter	decomposition	 in	streams	among	climate	zones	and	tree	
functional	types	and	between	coarse‐	and	fine‐mesh	size	groups;	and	
(b)	 to	 identify	 the	key	drivers	of	 litter	decomposition	worldwide.	We	
hypothesize	 that	 litter	 traits,	 such	as	 lignin	and	C:N	ratio,	might	play	
dominant	roles	in	litter	decomposition	at	the	global	scale.

2  | METHODS

2.1 | Datasets

In	 this	 study,	 we	 compiled	 1,707	 independent	 data	 points	 based	
on	275	published	studies	 (Figure	1,	Supporting	 Information	Figure	
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S1).	A	list	of	the	data	sources	can	be	found	in	Appendix	1.	Datasets	
were	extracted	by	conducting	a	 systematic	 literature	search	using	
ISI	Web	of	Science,	Google	Scholar	and	China	National	Knowledge	
Infrastructure	(CNKI,	for	papers	published	in	Chinese).	We	used	the	
following	keywords	in	our	literature	review:	(litter	OR	leaf	OR	leaves)	
AND	(decomposition	OR	breakdown	OR	processing	OR	decay)	AND	
(stream	OR	 river	OR	watercourse).	 Studies	 that	met	 the	 following	
criteria	were	included	in	this	analysis:	(a)	the	decomposition	of	leaf	
litter	 (not	wood,	bark	or	artificial	substrates,	such	as	cotton	strips)	
was	measured	in	natural	freshwater	ecosystems	(i.e.,	streams	or	riv‐
ers)	 rather	 than	 in	 experimental	 or	manipulative	 stream	 channels;	
(b)	the	streams	or	rivers	where	decomposition	studies	were	carried	
out	were	not	affected	by	pollution	or	artificial	nutrient	enrichment	
experiments;	(c)	the	leaf	litter	substrate	used	in	the	study	was	com‐
posed	of	a	single	species	(i.e.,	not	litter	mixtures)	collected	from	the	
dominant	riparian	trees	of	the	study	site;	and	(d)	either	the	decom‐
position	rates	or	litter	mass	loss	over	a	known	decomposition	period	
was	reported.

We	extracted	four	categories	of	factors	that	might	have	an	im‐
pact	on	 leaf	 litter	decomposition:	environmental	 factors	 (including	
latitude	and	elevation);	water	characteristics	(including	pH,	tempera‐
ture,	dissolved	O2,	alkalinity,	conductivity,	PO4‐P,	NO3‐N,	NH4 +	N,	
width,	depth,	discharge,	velocity,	NO2‐N,	NO3‐N	+	NO2‐N,	O2,	Ca

2+,	
total	P,	dissolved	inorganic	N,	Cl−,	total	N,	dissolved	organic	C,	SO4

2−,	
turbidity,	Mg,	 Al,	 Fe,	 Na,	 acid‐neutralizing	 capacity,	 hardness,	 Zn,	
Cd,	Cu,	Pb,	Mn,	salinity	and	As);	litter	traits	(including	initial	N,	ini‐
tial	P,	N:P,	C:N,	initial	lignin,	lignin:N,	C:P,	tannins,	leaf	polyphenols,	
toughness,	 cellulose,	 hemicellulose,	 specific	 leaf	 area,	 fibre:N	 and	
total	fibre);	and	experimental	factors	(including	mesh	size,	duration	
of	 litter	decomposition	and	 initial	 litter	mass	per	bag).	When	data	

were	reported	in	graphs,	they	were	extracted	using	GetData	Graph	
Digitizer	v.2.24	(http://getda	ta‐graph‐digit	izer.com/).

We	 either	 collected	 the	 decomposition	 coefficients	 directly	
when	 they	 were	 reported	 or	 estimated	 the	 coefficient	 indirectly	
based	on	the	mass	of	 leaf	 litter	remaining	after	the	decomposition	
period.	Negative	 exponential	models	were	 used	 in	 our	 coefficient	
estimation	(Follstad	Shah	et	al.,	2017;	Olson,	1963):

where	mt	is	the	remaining	mass	of	leaf	litter	at	time	t	in	days,	m0	is	
the	initial	litter	mass	at	the	beginning	of	the	experiment,	and	k	is	the	
decomposition	coefficient	(k,	per	day).	When	temperature‐adjusted	
decomposition	 coefficients	 (kdd,	 per	degree	day)	were	 reported	 to	
represent	 the	breakdown	rates	 (Bastias	et	al.,	2018;	Boyero	et	al.,	
2015;	Ferreira,	Larrañaga,	et	al.,	2015;	Monroy	et	al.,	2016;	Pereira	
et	al.,	2017),	we	estimated	k	(per	day)	by	multiplying	the	kdd	by	the	
mean	water	temperature	of	the	decomposition	study	(Follstad	Shah	
et	al.,	2017).

Study	sites	were	divided	into	three	climate	zones	based	on	latitude	
(0°	<	Tropical	≤	23°26′,	23°26′	<	Temperate	≤	60°	and	Cold	>	60°;	
Ferreira,	Castagneyrol,	et	al.,	2015).	Information	on	leaf	litter	identity	
(tree	 functional	 type)	was	 retrieved,	 and	 tree	 functional	 types	were	
categorized	into	deciduous	broadleaf,	evergreen	broadleaf	and	ever‐
green	conifer	trees.	We	focused	solely	on	trees	in	this	study	owing	to	
the	limited	number	of	records	found	for	the	other	plant	growth	forms	
(Supporting	Information	Figure	S2).	Additionally,	the	data	were	divided	
into	two	groups	based	on	litter	bag	mesh	sizes	(fine	mesh	≤	1	mm	ver‐
sus	coarse	mesh＞1	mm;	Follstad	Shah	et	al.,	2017).

(1)
mt

m0

= e
−kt

F I G U R E  1  The	global	distribution	of	leaf	litter	decomposition	records	in	streams/rivers	(n	=	1,591).	There	were	1,707	cases	in	total,	with	
116	cases	having	no	latitude	reported	

http://getdata-graph-digitizer.com/
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2.2 | Statistical analysis

Linear	modelling	was	used	to	analyse	the	impacts	of	climate	zones,	tree	
functional	types,	mesh	size	of	the	litter	bags,	and	their	interactions,	on	
leaf	 litter	 decomposition	 in	 streams	worldwide.	We	used	 linear	 and	
stepwise	multiple	regression	analyses	to	explore	the	relationships	of	
leaf	litter	decomposition	rates	in	streams	with	the	four	categories	of	
influencing	factors	mentioned	above.	Only	factors	that	were	correla‐
tee	significantly	with	k	 (for	details,	see	Supporting	Information	Table	
S1)	and	with	a	number	of	observations	>170	are	included	in	the	multi‐
regression	analysis.	The	regression	analysis	had	two	steps:	(a)	the	fac‐
tors	 of	 each	 category	with	>170	observations	were	 included	 in	 the	
analysis	 (model	A);	and	 (b)	we	ran	 the	analysis	with	all	 the	variables	
entering	model	A	 (model	B).	All	 statistical	 analyses	were	 conducted	
using	SPSS	v.22.0	for	Windows	(SPSS	Inc.,	Chicago,	IL,	USA).

3  | RESULTS

The	rates	of	 leaf	 litter	decomposition	did	not	differ	among	climate	
zones	(p	>	.05;	Table	1;	Figure	2;	Supporting	Information	Figure	S3).	
In	 terms	 of	 tree	 functional	 types,	 the	 decomposition	 rates	 of	 leaf	
litter	from	evergreen	conifer	trees	were	much	lower	than	those	of	
leaf	 litter	from	deciduous	broadleaf	and	evergreen	broadleaf	trees	
(p	 <	 .05;	Table	1;	Figure	3).	No	 significant	differences	were	 found	
in	 the	 leaf	 litter	 decomposition	 rates	 between	 deciduous	 and	 ev‐
ergreen	broadleaf	trees	(p	>	.05;	Figure	3).	Although	climate	zones	
and	tree	functional	types	affected	the	decomposition	interactively	
(p	 <	 .05;	 Table	 1),	 the	 statistical	 difference	might	 result	 from	 the	
missing	values	of	evergreen	broadleaf	trees	in	the	cold	climate	zone	
(Supporting	Information	Figure	S4).	The	mesh	size	of	the	litter	bags,	
which	controls	the	entrance	of	decomposers	of	different	body	sizes,	
had	 a	 positive	 impact	 on	 decomposition	 rates	 (p < .001; Table 1; 
Figure	4).	We	found	no	interactive	impacts	of	mesh	size	with	climate	
zones	 or	 tree	 functional	 types	 on	 the	 decomposition	 (all	 p	 >	 .05;	
Table	1;	Supporting	Information	Figures	S5	and	S6).

Leaf	 litter	 decomposition	 in	 streams	 was	 influenced	 by	 all	 four	
categories	 of	 factors:	 environmental	 factors,	water	 characteristics	 of	
streams	 or	 rivers,	 litter	 traits	 and	 experimental	 factors	 (Supporting	

Information	Table	S1).	Multiple	regressions	within	each	factor	category	
showed	that	decomposition	of	leaf	litter	in	streams	was	negatively	af‐
fected	by	elevation,	initial	lignin	content,	C:P	ratio	and	decomposition	
duration	and	positively	affected	by	water	dissolved	O2	and	tempera‐
ture,	C:N	ratio	and	mesh	size	(all	p	<	.001;	Table	2).	However,	further	
multiple	regression	analyses	indicated	that	litter	traits	(including	lignin	
and	C:N	ratio)	and	elevation	were	the	most	important	factors	in	regulat‐
ing	litter	decomposition	in	streams	(all	p	<	.01;	Table	2).	Litter	traits	and	
elevation	explained	58	and	9%	of	the	variation,	respectively	(Table	2).

4  | DISCUSSION

4.1 | The pattern of leaf litter decomposition among 
climate zones

Our	results	suggest	that	extrinsic	factors	(e.g.,	latitude	and	water	
temperature)	are	not	necessarily	the	dominant	factors	in	regulating	

TA B L E  1  Results	of	linear	models	for	responses	of	litter	
decomposition	rate	in	streams	(k,	per	day)	to	climate	zone,	tree	
functional	type,	mesh	size	group	and	their	interactions

 d.f. F, p

Climate	zones	(Climate) 2 3.03

Tree	functional	types	(TFY) 2 11.09*** 

Mesh	size	groups	(Mesh) 1 39.15*** 

Climate	×	TFY 3 6.06*** 

Climate	×	Mesh 2 0.49

TFY	×	Mesh 2 0.04

Climate	×	TFY	×	Mesh 1 4.58

***p < .001. 

F I G U R E  2  Comparison	of	leaf	litter	decomposition	rate	in	streams	
(k,	per	day)	among	different	climate	zones.	Sample	size	is	indicated	
by	the	number	inside	of	each	column.	Different	lowercase	letters	on	
error	bars	indicate	significant	differences	at	p < .05

F I G U R E  3  Comparison	of	leaf	litter	decomposition	rate	in	streams	
(k,	per	day)	among	different	tree	functional	types.	DB	=	deciduous	
broadleaf;	EB	=	evergreen	broadleaf;	EC	=	evergreen	conifer.	Sample	
size	is	indicated	by	the	number	inside	of	each	column.	Different	
lowercase	letters	on	error	bars	indicate	significant	differences	at	p < .05
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litter	decomposition	 in	streams	at	the	global	scale.	We	found	no	
significant	differences	 in	 litter	decomposition	rates	among	tropi‐
cal,	temperate	and	cold	climates,	although	both	temperature	and	
the	 inherent	capacity	of	ecosystems	 to	decompose	organic	mat‐
ter	 decrease	with	 latitude	 (Tiegs	 et	 al.,	 2019).	No	 differences	 in	
decomposition	 rates	 across	 climate	 zones	might	 result	 from	 the	
following	reasons.	First,	the	positive	impacts	of	high	stream	water	
temperature	 are	 counteracted	by	 low	water	dissolved	O2	 at	 low	
latitudes	(Iñiguez‐Armijos	et	al.,	2016;	Lopes,	Martins,	Silveira,	&	
Alves,	2015).	High	temperature	usually	stimulates	litter	decompo‐
sition	(Ferreira	&	Canhoto,	2015;	Ferreira,	Chauvet,	et	al.,	2015).	
However,	 water	 dissolved	 O2	 in	 streams	 usually	 decreases	 sig‐
nificantly	 with	 increasing	 water	 temperatures	 (Gonçalves	 et	 al.,	
2006;	 Iñiguez‐Armijos	 et	 al.,	 2016;	 Pettit	 et	 al.,	 2012).	 Low	 dis‐
solved	O2	could	lead	to	anaerobic	conditions	and	significantly	de‐
crease	decomposition	by	 inhibiting	decomposer	activities	 (Lopes	
et	al.,	2015;	Medeiros,	Pascoal,	&	Graça,	2009;	Pérez,	Menéndez,	
Larrañaga,	&	Pozo,	2011;	Pettit	et	al.,	2012;	Schlief	&	Mutz,	2009;	
Webster	&	Benfield,	1986).	Second,	high	microbial	activities	at	low	
latitudes	are	counteracted	by	low	invertebrate	activities	(Haapala,	
Muotka,	&	Markkola,	2001;	Walpola,	Leichtfried,	Amarasinghe,	&	
Füreder,	 2011).	 Irons	 et	 al.	 (1994)	 explored	 litter	 decomposition	
processes	 in	streams	across	a	 latitudinal	gradient	and	concluded	
that	the	contribution	of	the	invertebrates	to	litter	decomposition	
increases	with	latitude,	whereas	the	proportion	attributable	to	mi‐
crobes	concomitantly	decreases	with	increasing	latitude	(Haapala	
et	al.,	2001;	Leite‐Rossi	et	al.,	2016;	Mathuriau	&	Chauvet,	2002;	
Tonin,	Hepp,	Restello,	&	Gonçalves,	2014;	Walpola	et	 al.,	 2011).	
Consistent	with	our	results,	for	example,	Boyero	et	al.	 (2011)	re‐
ported	unchanged	decomposition	 rates	driven	by	both	microbes	
and	invertebrates	in	an	experiment	across	22	sites	along	a	latitudi‐
nal	gradient	(0.37–47.8°).	Third,	although	high	temperature	could	
accelerate	decomposition,	 leaf	 litter	originating	 from	 the	 tropics	

might	be	resistant	and	tenacious	to	stream	decomposers	and	thus	
inhibit	litter	decomposition	(Chara,	Baird,	Telfer,	&	Giraldo,	2007;	
Makkonen	et	al.,	2012).	This	might	result	from	the	low	quality	of	
tropical	 litter	 (high	 structural	 and	 recalcitrant	 compounds,	 sec‐
ondary	metabolites	and	N:P	ratio)	associated	with	the	high	pres‐
sure	from	terrestrial	herbivores	(Boyero	et	al.,	2017;	Gonçalves	et	
al.,	 2017;	 Jinggut	&	Yule,	2015).	Reich	and	Oleksyn	 (2004)	 sum‐
marized	the	global	patterns	of	leaf	N	and	P	and	concluded	that	the	
closer	 to	 the	 tropics,	 the	higher	 the	 temperature	and	 the	 longer	
the	 growing	 season	 length	become,	 hence	 leaf	N	 and	P	decline.	
These	 elements	 show	 remarkable	 afterlife	 effects	 of	 green	 leaf	
traits	(Pietsch	et	al.,	2014),	strongly	associated	with	leaf	litter	de‐
composability	and	litter	decomposition	rates	(Ardón	et	al.,	2009;	
Fernández	 et	 al.,	 2016;	 Ferreira	 et	 al.,	 2012;	 Lecerf	 &	 Chauvet,	
2008;	Richardson	et	al.,	2004;	Shaftel,	King,	&	Back,	2012).

4.2 | Variation of the decomposition rates among 
tree functional types

Overall,	our	results	indicate	that	litter	traits,	such	as	nutrient	contents	
and	structural	compounds,	could	play	an	important	role	in	the	varia‐
tion	of	the	decomposition	rates	among	different	tree	functional	types.	
We	 found	 that	 the	 decomposition	 of	 litter	 from	 evergreen	 conifer	
trees	was	much	 slower	 than	 that	of	 litter	 from	deciduous	broadleaf	
and	evergreen	broadleaf	trees.	Our	results	were	in	line	with	previous	
findings	that	decomposition	rates	of	broadleaf	species	are	significantly	
higher	than	those	of	conifer	species	(e.g.,	Albariño	&	Balseiro,	2002;	
Hisabae	et	al.,	2011;	Lidman	et	al.,	2017;	Richardson	et	al.,	2004).	This	
difference	is	mostly	a	result	of	the	intrinsic	physicochemical	variables	
of	substrate	quality	 from	different	 tree	functional	 types	 (Albariño	&	
Balseiro,	2002;	Ferreira	et	al.,	2017;	Richardson	et	al.,	2004).	Conifer	
needles	generally	decompose	slowly	because	they	have	lower	nutrient	
contents	(e.g.,	N	and	P)	and	higher	structural	(e.g.,	lignin	and	cellulose)	
and	refractory	compounds	(e.g.,	tannins	and	polyphenols)	than	broad‐
leaf	litter	(Ardón	et	al.,	2009;	Lidman	et	al.,	2017).	These	characteristics	
of	coniferous	litter	would	delay	microbial	colonization	and	macroinver‐
tebrate	feeding	activities	(Albariño	&	Balseiro,	2002),	leading	to	slow	
decomposition	processes	(Collen,	Keay,	&	Brs,	2004).

4.3 | The predominant roles of litter traits in 
decomposition

Our	results	showed	that	litter	traits	(C:N	and	lignin)	played	dominant	
roles	 in	 leaf	 litter	 decomposition	 in	 streams.	This	 is	 consistent	with	
small‐scale	findings	that	litter	decomposition	rates	are	negatively	cor‐
related	with	 the	C:N	 ratio	 (König	et	 al.,	 2014;	Menéndez,	Martinez,	
Hernández,	&	Comín,	2001;	Richardson	et	al.,	2004;	Roberts,	Strauch,	
Wiegner,	&	Mackenzie,	2016;	Shieh	et	al.,	2008).	High	N	content	and	
corresponding	 low	C:N	ratio	 increase	the	palatability	and	attractive‐
ness	of	 litter	 to	microbes,	 resulting	 in	greater	microbial	 colonization	
that	leads	to	higher	decomposition	rates	(Gonçalves,	Rezende,	Martins,	
&	Gregório,	2012;	Hamid	&	Che,	2017;	Rier,	Tuchman,	Wetzel,	&	Teeri,	
2002;	Roberts	et	al.,	2016;	Swan	&	Palmer,	2006).	The	N	facilitates	

F I G U R E  4  Comparison	of	the	litter	decomposition	rate	in	
streams	(k,	per	day)	between	coarse‐	and	fine‐mesh	size	litter	bags.	
Sample	size	is	indicated	by	the	number	inside	of	each	column.	
Different	lowercase	letters	on	error	bars	indicate	significant	
differences	at	p < .05
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microbial	 colonization	by	means	of	 encouraging	penetration	of	 fun‐
gal	hyphae	and	bacterial	enzymes,	and	lack	of	structural	 integrity	to	
resist	hostile	environment	 (Jones	&	Swan,	2016;	Pettit	et	al.,	2012).	
Stimulated	 microbial	 colonization	 and	 activity	 further	 render	 litter	
more	accessible	to	invertebrates	in	the	late	stages	of	the	decomposi‐
tion	processes	(Jinggut	&	Yule,	2015;	Stallcup,	Ardón,	&	Pringle,	2006).	
On	the	contrary,	lignin	content	had	a	negative	impact	on	litter	decom‐
position	rates,	in	line	with	many	researchers	who	have	reported	that	
a	high	content	of	this	recalcitrant	substrate	inhibits	decomposition	in	
both	stream	(König	et	al.,	2014;	Marano	et	al.,	2013;	Tonin	et	al.,	2014)	
and	terrestrial	ecosystems	(Cornelissen	et	al.,	1999).	The	presence	of	
this	structural	defensive	compound,	which	confers	toughness	on	leaf	
litter,	protects	the	litter	from	microbial	degradation	and	invertebrate	
consumption	 and	 constitutes	waterproofing	 properties	 of	 plant	 cell	
walls,	slowing	down	physical	abrasion	(Gonçalves	et	al.,	2007;	Tonin	
et	al.,	2014).	The	 lignin	content	of	 leaf	 litter	governs	decomposition	
by	kinetically	controlling	C	sources	for	saprotrophic	fungi	(Gessner	&	

Chauvet,	1994).	Only	specialized	biota,	mainly	fungi,	could	be	capable	
of	synthesizing	specialized	extracellular	enzymes,	making	lignin	break	
down	metabolically	into	biologically	usable	forms	for	microbes	(Austin	
&	Ballare,	2010).

Interestingly,	elevation	played	a	negative	role	in	regulating	stream	
litter	decomposition.	This	might	result	from	the	finding	that	low	tem‐
peratures	at	high	elevations	retard	 litter	decomposition	 indirectly	by	
inhibiting	microbial	metabolic	activity	(Couteaux,	Sarmiento,	Bottner,	
Acevedo,	 &	Thiery,	 2002;	 Salinas	 et	 al.,	 2011;	 Schindlbacher	 et	 al.,	
2011;	Schlesinger	&	Hasey,	1981;	Zhou,	Clark,	Su,	&	Xiao,	2015).	In	ad‐
dition	to	temperature,	the	nature	of	leaf	litter	may	also	have	a	substan‐
tial	influence	on	decomposition	(Salinas	et	al.,	2011;	Zhou	et	al.,	2015).	
With	 increasing	elevation,	 leaves	sacrifice	growth	efficiency	and	be‐
come	low	in	quality,	with	low	nutrient	contents	(e.g.,	N),	thick	waxy	cu‐
ticles	and	high	contents	of	structural	and	refractory	compounds	(e.g.,	
lignin	and	 toughness)	 (e.g.,	Alvim	et	al.,	2015;	Jinggut	&	Yule,	2015;	
Tanner,	Vitousek,	&	Cuevas,	1998).	As	a	result,	the	decomposition	of	

TA B L E  2  Results	of	multi‐regression	analyses	of	litter	decomposition	rate	in	streams	(k,	per	day)	with	environmental	factors,	water	
characteristics	of	streams,	litter	traits	and	experimental	factors

Factors Model Variables Regression n r2
Excluded 
variables

Environmental	factors A elevation k	=	−2.95	×	10−6	elevation	+	0.02 1,218 0.01***  n/a

Water	characteristics A dissolO2,	temp k	=	0.005	dissolO2	+	0.002	temp	
−	0.04

193 0.20***  discharge,	pH

Litter	traits A lignin,	C:N,	C:P k	=	−0.001	lignin	−	1.10	×	10−5 
C:P	+	0.001	C:N	+	0.05

120 0.19***  N,	lignin:N

Others A mesh	size,	
duration

k	=	0.001	mesh	size	−	5.93	×	10−5 
duration	+	0.02

1,257 0.10***  initial	litter	mass

All B‐1 lignin k	=	−0.001	lignin	+	0.05 17 0.42**  elevation,	dis‐
solO2,	temp,	C:P,	
C:N,	mesh	size,	
duration

 B‐2 lignin,	C:N k	=	−0.003	lignin	−	0.001	C:N	+	0.13 17 0.58***  elevation,	dis‐
solO2,	temp,	
C:P,	mesh	size,	
duration

 B‐3 lignin,	C:N,	
elevation

k	=	−0.003	lignin	−	0.001	
C:N	−	2.81	×	10−5	elevation	+	0.15

17 0.67***  dissolO2,	temp,	
C:P,	mesh	size,	
duration

Note: There	were	four	categories	of	factors,	and	the	number	of	observations	collected	for	each	specific	factor	is	indicated	in	parentheses.	The	total	
number	of	data	points	was	1,707.	The	factors	are	as	follows.	Environmental	factors:	latitude	(1,590)	and	elevation	(1,219).	Water	characteristics:	pH	
(1,270),	temperature	(temp,	in	degrees	Celsius;	1,384),	dissolved	O2	(dissolO2	in	milligrams	per	litre;	543),	alkalinity	(in	milligrams	CaCO3	per	litre;	
457),	conductivity	(in	microsiemens	per	centimetre;	1,123),	PO4‐P	(in	micrograms	per	litre;	708),	NO3‐N	(in	micrograms	per	litre;	754),	NH4	+	N	(in	
micrograms	per	litre;	432),	width	(in	metres;	820),	depth	(in	centimetres;	499),	discharge	(in	cubic	metres	per	second;	555),	velocity	(in	metres	per	
second;	401),	NO2‐N	(in	micrograms	per	litre;	212),	NO3‐N	+	NO2‐N	(in	micrograms	per	litre;	321),	water	O2	(as	a	percentage;	170),	Ca

2+	(in	milligrams	
per	litre;	150),	total	P	(TP,	in	micrograms	per	litre;	103),	dissolved	inorganic	N	(in	micrograms	per	litre;	82),	Cl−	(in	milligrams	per	litre;	70),	total	N	(TN,	
in	micrograms	per	litre;	85),	dissolved	organic	carbon	(C,	in	micrograms	per	litre;	75),	SO4

2−	(in	milligrams	per	litre;	83),	turbidity	(in	nephelometric	
turbidity	units;	62),	Mg	(in	milligrams	per	litre;	73),	Al	(in	milligrams	per	litre;	57),	Fe	(in	milligrams	per	litre;	32),	Na	(in	milligrams	per	litre;	30),	acid‐
neutralizing	capacity	(ANC,	in	microequivalents	per	litre;	28),	hardness	(in	milligrams	per	litre;	19),	Zn	(in	milligrams	per	litre;	18),	Cd	(in	milligrams	
per	litre;	16),	Cu	(in	milligrams	per	litre;	16),	Pb	(in	milligrams	per	litre;	16),	Mn	(in	milligrams	per	litre;	14),	salinity	(in	milligrams	per	litre;	6),	and	As	(in	
micrograms	per	litre;	4).	Litter	traits:	initial	nitrogen	(N,	as	a	percentage;	605),	initial	phosphorus	(P,	as	a	percentage;	421),	N:P	(422),	C:N	(416),	initial	
lignin	(as	a	percentage;	239),	lignin:N	(231),	C:P	(229),	tannins	(156),	leaf	polyphenols	(as	a	percentage;	143),	toughness	(in	grams;	148),	cellulose	(as	a	
percentage;	82),	hemi‐cellulose	(as	a	percentage;	50),	specific	leaf	area	(SLA,	in	square	millimetres	per	milligram;	18),	fibre:N	(19)	and	total	fibre	(15).	
Experimental	factors:	mesh	size	(1,560),	duration	of	litter	decomposition	(1,326),	and	initial	litter	mass	per	bag	(initial	litter	mass;	1,578).
**p < 0.01;  ***p < .001. 
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leaf	 litter	originating	 from	high	elevation	could	be	 inhibited	 through	
trait	 “afterlife”	effects	 (Alvim	et	al.,	2015;	Fujii,	Cornelissen,	Berg,	&	
Mori,	2018;	Jinggut	&	Yule,	2015;	Sundqvist,	Giesler,	&	Wardle,	2011).	
The	 limitation	of	this	synthesis	 is	 that	we	 lack	sufficient	data	points	
to	 perform	 the	multiple	 regression	 analyses	 (n	 =	 17).	However,	 the	
results	of	multiple	 regressions	within	each	 factor	category	 indicated	
the	prominent	roles	of	litter	traits	played	in	decomposition	in	streams.	
Moreover,	the	patterns	of	leaf	litter	decomposition	along	the	latitudi‐
nal	gradient	and	among	tree	functional	types	confirmed	the	dominant	
impacts	of	litter	traits	on	decomposition	at	the	global	scale.	It	is	likely	
that	litter	quality	had	more	impacts	than	extrinsic	factors	(e.g.,	eleva‐
tion)	on	deomposition	and	dominated	the	decomposition	processes.

4.4 | The impact of decomposer community type on 
decomposition

It	 is	widely	reported	that	litter	decomposition	is	much	faster	in	litter	
bags	with	a	coarse	rather	than	a	fine‐mesh	size	(e.g.,	Gantes,	Marano,	
&	 Rigacci,	 2011;	 Ferreira,	 Chauvet,	 et	 al.,	 2015;	 Lecerf	 &	 Chauvet,	
2008).	 This	 methodological	 aspect	 (mesh	 size)	 affects	 decomposi‐
tion	by	means	of	 interfering	with	decomposition	processes,	 such	as	
physical	 abrasion	 and	 decomposer	 activity,	 especially	 the	 feeding	
and	 maceration	 by	 leaf‐shredding	 invertebrates	 and	 microbial	 me‐
tabolism	 (Iñiguez‐Armijos	 et	 al.,	 2016;	 Langhans	 &	 Tockner,	 2006;	
Stewart	&	Davies,	1989).	Litter	bags	with	coarse	meshes	allow	large	
leaf‐consuming	 invertebrates	 to	 contact	 the	 litter,	 whereas	 those	
with	 fine	 meshes	 exclude	 a	 large	 portion	 of	 invertebrates	 without	
limiting	microbial	 colonization	 (Lecerf	&	Chauvet,	 2008).	 Fine	mesh	
usually	eliminates	shredding	by	invertebrates	and	protects	litter	from	
heavy	 leaching	and	physical	 fragmentation,	and	 litter	decomposition	
is	thus	generally	faster	in	the	presence	of	macroinvertebrates	than	in	
their	absence	(e.g.,	Langhans	&	Tockner,	2006;	Iñiguez‐Armijos	et	al.,	
2016;	Roberts	 et	 al.,	 2016).	Moreover,	 fungal	 growth	 and	microbial	
colonization	 could	 be	 restricted	by	 the	 protected	 environment	 (fine	
mesh),	where	exchanges	of	dissolved	O2	 and	nutrients	are	 reduced,	
which	consequently	retards	the	decomposition	(Fleituch,	2001;	LeRoy,	
Whitham,	Keim,	&	Marks,	2006).	A	few	studies	have	found	no	effect	of	
mesh	size	on	decomposition	rates,	and	the	authors	attributed	this	to	
the	extremely	low	litter	quality	and	its	associated	macroinvertebrates,	
particularly	 shredders	 (Ágoston‐Szabó,	 Schöll,	 Kiss,	 &	 Dinka,	 2016;	
Benfield,	Paul,	&	Webster,	1979).	Shredders	prefer	high‐quality	litter,	
and	their	survivorship	is	low	when	fed	with	low‐quality	litter	(Canhoto	
&	Graça,	1995).	Together	with	the	duration	of	decomposition,	decom‐
posers	constitute	significant	 factors	 influencing	 litter	decomposition	
in	streams.	As	the	duration	increases,	for	instance,	this	would	contrib‐
ute	to	the	building	of	microbial	assemblage	composition,	especially	in	
the	 process	 of	 decomposition	 of	 conifer	 needles	with	 thick	 cuticles	
(Newman,	 Liles,	 &	 Feminella,	 2015).	Many	 experiments	 choose	 the	
sampling	time	to	match	c.	50%	litter	mass	 loss,	a	time	at	which	 leaf	
litter	reaches	the	peak	ergosterol	concentration	(Ferreira,	Chauvet,	et	
al.,	2015;	Haapala	et	al.,	2001).	At	the	50%	breakdown	point,	leaf	lit‐
ter	 is	most	palatable	to	shredders,	and	shredder	feeding	is	expected	
to	be	maximal	(Cummins,	Wilzbach,	Gates,	Perry,	&	Taliaferro,	1989;	

Richardson	et	al.,	2004).	Given	the	differences	in	the	contents	of	nu‐
trient	elements	and	recalcitrant	compounds	of	specific	litter	species,	
serious	consideration	should	be	given	when	choosing	a	suitable	mesh	
size	for	litter	bags	and	designing	a	rational	sampling	time.

In	 conclusion,	 our	 results	 showed	 that	 leaf	 litter	 traits	 predomi‐
nantly	controlled	litter	decomposition	in	streams	worldwide,	parallel‐
ing	the	findings	for	terrestrial	ecosystems	(Cornwell	et	al.,	2008;	Zhang	
et	al.,	2008).	Our	findings	could	contribute	to	the	use	of	trait‐based	
approaches	in	modelling	the	decomposition	of	leaf	litter	in	streams	at	
the	global	scale	and	exploring	mechanisms	of	land–water–atmosphere	
C	fluxes.	Further	comprehensive	analysis	is	required,	however,	to	un‐
cover	whether	commonalities	of	the	predominant	role	of	 litter	traits	
in	decomposition	exist	in	aquatic	and	terrestrial	ecosystems,	aimed	at	
promoting	the	development	of	common	global	models.
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