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Abstract
1.	 Ecologists	increasingly	use	hierarchical	Bayesian	(HB)	models	to	estimate	group-
level	parameters	that	vary	by,	for	example,	species,	treatment	level,	habitat	type	
or	other	factors.	Group-level	parameters	may	be	compared	to	 infer	differences	
among	levels.	We	would	conclude	a	non-zero	pairwise	difference,	separately,	for	
each	pair	in	the	group,	when	the	respective	95%	credible	interval	excludes	zero.	
Classical	procedures	suggest	that	the	rejection	procedure	should	be	adjusted	to	
control	the	family-wise	error	rate	(FWER)	for	a	family	of	differences.	Adjustments	
for	FWER	have	been	considered	unnecessary	in	HB	models	due	to	partial	pooling	
whereby	increased	pooling	strength	–	group-level	parameters	become	more	alike	
–	could	lead	to	decreased	rejection	rates	(Type	I	error,	FWER,	or	Power)	and	in-
creased	false	acceptance	rates	(Type	2	error	and	its	family-wise	analogue).

2.	 To	 address	 this,	we	 conducted	 a	 simulation	experiment	with	 factors	of	 sample	
size,	 group	 size,	 balance	 (missingness),	 overall	mean	and	 ratio	of	within-	 to	be-
tween-group	variances,	resulting	 in	2016	factor-level	combinations	 (‘scenarios’),	
replicated	100	times,	producing	201,600	pseudo	datasets	analysed	in	a	Bayesian	
framework.	We	evaluated	the	results	in	the	context	of	a	new	partial	pooling	index	
(PPI),	which	we	show	is	also	applicable	to	more	complex	model	structures	based	
on	four	real-data	examples.

3.	 Simulation	results	confirm	intuition	that	rejection	rates	(false	and	true)	decrease	
and	false	acceptance	rates	increase	with	increasing	PPI	or	pooling	strength	(sce-
nario-level R2	=	0.81–0.97).	The	relationship	with	PPI	differed	greatly	for	balanced	
versus	unbalanced	designs	and	was	affected	by	group	size,	especially	for	family-
wise	errors.	Critically,	an	HB	model	does	not	guarantee	that	the	FWER	will	follow	
a	set	significance	level	(α);	for	example,	even	minor	imbalance	can	lead	to	FWER	>	α 
for	weak	to	moderate	pooling.	These	results	are	confirmed	by	the	real-data	exam-
ples,	suggesting	that	ecologists	need	to	consider	FWER	when	applying	HB	mod-
els,	especially	for	large	group	sizes	or	incomplete	datasets.

4.	 Contrary	to	current	thought,	HB	models	are	not	immune	to	issues	of	multiplicity,	
and	our	proposed	PPI	offers	a	method	for	evaluating	if	a	particular	HB	analysis	is	
likely	to	produce	FWER	≤	α	(no	adjustment	or	alternative	solution	required).
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1  | INTRODUC TION

Application	of	hierarchical	Bayesian	(HB)	models	to	ecological	data	
has	been	 rapidly	 increasing	over	 the	past	 few	decades	 (Hooten	&	
Hobbs,	 2015;	Ogle	&	Barber,	 2008).	 The	 flexibility	 of	 the	HB	 ap-
proach	has	 facilitated	 research	 involving	 increasingly	complex	sta-
tistical	models,	applied	to	increasingly	diverse	and	complex	datasets	
(Clark,	2005;	Clark	&	Gelfand,	2006),	often	involving	many	different	
factors	or	 groups	 (e.g.	Clark	et	al.,	 2010;	McMahon	&	Diez,	2007;	
Peltier,	Fell,	&	Ogle,	2016).	Here,	we	are	concerned	with	issues	as-
sociated	with	estimating	group-	level	parameters	or	effects	and	con-
ducting	posterior	tests	to	infer	differences	among	–	potentially	many	
–	 group	 levels.	While	multiple	 comparison	 adjustment	 procedures	
are	common	in	applied	statistics	textbooks	focusing	on	frequentist	
methods	(e.g.	Kutner,	Nachtsheim,	Neter,	&	Li,	2005),	they	are	gen-
erally	neglected	in	applied	Bayesian	textbooks.	Does	this	mean	that	
issues	of	multiplicity	are	not	important	for	HB	analyses?

One	might	use	an	HB	model	to	estimate	group-	level	parameters	
that	could	represent,	for	example,	simple	additive	treatment	effects	
(akin	 to	 ANOVA),	 covariate	 effects	 (e.g.	 treatment-		 or	 individual-	
level	coefficients	in	a	regression	model),	or	parameters	in	a	theory-	
inspired	process	model	(e.g.	growth	rate,	maximum	photosynthetic	
rate,	 tissue	 life	span,	 reproductive	potential).	These	parameters	or	
effects	may	vary	by	factors	such	as	species,	experimental	treatment	
level,	habitat	type,	site	and	so	forth,	and	one	may	be	interested	in	
determining	if	there	are	differences	among	the	group-	level	param-
eters.	Within	the	HB	framework,	this	is	accomplished	by	computing	
pairwise	differences	between	levels	j and k	(Dj,k),	and	one	would	typ-
ically	reject	Ho: Dj,k	=	0	at	the	‘5%	level’	if	the	95%	posterior	credible	
interval	 (CI)	 for	Dj,k	excludes	zero.	Should	 this	 rejection	criteria	be	
adjusted	if	the	family	of	pairwise	comparisons	is	‘large’?

For	a	group	size	of,	say,	10,	there	are	‘10	choose	2’	=	45	unique	
pairwise	 comparisons.	 In	 a	 frequentist	 analysis	 or	 fixed	 effects	
formulation,	one	would	be	concerned	about	conducting	 this	many	
comparisons.	For	example,	if	the	significance	level	(or	Type	1	error	
rate)	for	an	individual	test	is	set	at	α,	then	the	significance	level	for	
a family of Ƒ	tests	is	only	1	–	(1	–	α)Ƒ	(Kutner	et	al.,	2005);	assuming	
that	the	tests	are	independent,	which	can	be	much	greater	than	the	
desired	α	value.	For	example,	for	Ƒ = 45 and α	=	0.05,	there	is	a	high	
probability	(c.	90%)	that	at	least	one	test	in	the	family	leads	to	false	
rejection	of	Ho: Dj,k	=	0	(i.e.	there	is	a	very	good	chance	of	commit-
ting	a	 family-	wise	error).	To	address	 this	multiplicity	problem,	one	
could	 employ,	 for	 example,	 the	Tukey,	 Scheffé	 or	Bonferroni	mul-
tiple	 comparison	 procedures	 to	 achieve	 a	 family-	wise	 significance	
level	that	is	less	than	or	equal	to	the	individual	rate,	α	(Kutner	et	al.,	
2005).	Each	of	these	procedures	effectively	inflates	the	confidence	
interval	and/or	reduces	the	p-	value	threshold	for	each	individual	test	

(Kutner	et	al.,	2005;	Westfall,	Johnson,	&	Utts,	1997).	The	choice	of	
the	specific	procedure	often	depends	on	how	many	tests	are	to	be	
conducted	(size	of	Ƒ),	the	type	of	test	to	be	performed	(e.g.	pairwise	
differences	or	contrasts	involving	multiple	effects),	whether	the	de-
sign	is	balanced	or	not,	and/or	which	procedure	yields	the	narrowest	
confidence	 intervals	 or	 larger	 adjusted	 p-	value	 threshold	 (Kutner	
et	al.,	2005).

Within	the	HB	framework,	we	lack	a	clear	procedure	to	address	
multiplicity.	Recent	work,	however,	suggests	that	multiplicity	and	
inflated	family-	wise	error	rates	may	be	of	little	concern	in	HB	mod-
els,	 due	 to	 the	 effects	 of	 partial	 pooling	 (Gelman,	Hill,	&	Yajima,	
2012).	For	example,	for	an	effect	or	parameter	that	varies	by	group	
level k,	 an	HB	model	would	 assume	 that	 the	 group-	level	 param-
eters,	θk,	 come	from	a	parent	distribution	defined	by	population-	
level	parameters	 (e.g.	a	global	mean	and	a	variance	 that	describe	
variability	among	levels	within	a	group).	The	pooling	property	es-
sentially	 ‘pulls’	 each	θk	 towards	 the	global	mean,	 reducing	differ-
ences	 among	 the	 levels	 (Gelman	&	Hill,	 2007;	Gelman,	Hwang	&	
Vehtari	2014).	Others,	however,	suggest	modifications	to	HB	mod-
els	to	account	for	multiplicity	(e.g.,	Li	&	Shang,	2015;	Nashimoto	&	
Wright,	2008;	Shang,	Cavanaugh,	&	Wright,	2008;	Westfall	et	al.,	
1997),	but	the	approaches	can	greatly	 increase	the	complexity	of	
the	model,	require	specification	of	informative	priors	that	may	not	
be	supported	by	existing	information	or	require	an	a	priori	ranking	
of	 the	group-	level	means,	which	may	be	difficult	 to	determine	 in	
practice.	Thus,	 the	suggestion	 that	partial	pooling	diminishes	 the	
need	to	adjust	for	multiplicity	is	attractive	but	has	not	be	rigorously	
tested	against	 the	 types	of	 ‘messy’	data	 that	ecologists	 routinely	
work	with.

Our	 intuition	 tells	 us	 that	 rejection	 rates	 (e.g.,	 Type	 I	 error,	
family-	wise	error	rate	and	Power)	and	the	potential	need	for	a	mul-
tiplicity	adjustment	should	 increase	as	the	partial	pooling	strength	
decreases	 (see	also,	Gelman	et	al.,	2012).	To	explore	 this	 intuition,	
we	conducted	a	simulation	experiment	with	factors	of	sample	size,	
group	 size,	 global	 mean,	 ratio	 of	 within-		 to	 between-	group	 vari-
ances,	degree	of	 imbalance	 (or	missingness	 that	 results	 in	unequal	
sample	sizes	among	group	 levels),	and	the	distribution	 from	which	
group-	level	means	 arise.	 The	experiment	 resulted	 in	2,016	 factor-	
level	combinations	(‘scenarios’),	replicated	100	times	(‘replicates’)	to	
produce	201,600	pseudo	datasets	 that	we	analysed	 in	a	Bayesian	
framework.	For	each	scenario,	we	used	the	100	replicates	to	evalu-
ate	rejection	rates	and	false	acceptance	rates,	allowing	us	to	address	
the	questions:	(a)	How	can	we	quantify	the	degree	of	partial	pool-
ing?	(b)	How	are	rejection	and	false	acceptance	rates	–	of	individual	
comparisons	and	families	of	comparisons	–	affected	by	the	degree	
of	partial	pooling?	(c)	In	the	context	of	such	rejection	rates	and	error	
rates,	is	an	HB	model	advantageous	over	a	non-	hierarchical	model?	
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Finally,	 (d)	 are	HB	models	 immune	 to	multiple	 comparison	 issues,	
such	as	inflated	family-	wise	significance	levels?

Additionally,	we	evaluated	if	the	results	from	the	simulation	ex-
periment	are	supported	by	analyses	that	are	more	representative	of	
the	 types	of	complex	data	and	models	encountered	by	ecologists.	
We	 tested	 this	 by	 drawing	 upon	 four	 diverse,	 real-	data	 examples	
that	were	analysed	in	an	HB	framework.	For	each	example,	we	com-
puted	the	partial	pooling	index	(PPI)	based	on	the	original	data,	and	
we	 simulated	 pseudo	 data	 to	 evaluate	 error	 rates,	 allowing	 us	 to	
evaluate	the	applicability	of	the	aforementioned	simulation	results	
to	more	complex	models.

2  | MATERIAL S AND METHODS

2.1 | Simulation experiment

To	address	our	research	questions,	we	simulated	pseudo	data	given	
known	(‘true’)	parameter	values.	Data	were	simulated	from	a	normal	
distribution	such	that	for	group	level	k = 1,	2,…,	K	and	observation	
i = 1,	2,	…,	N: 

k(i)	denotes	group	level	k	associated	with	observation	i,	and	σ2	is	the	
residual	error	variance	or,	here,	the	within-	group	variance.

Data	 were	 generated	 under	 different	 combinations	 of	 factors	
(see	 Figure	 S1,	 Supporting	 Information).	 We	 refer	 to	 a	 particu-
lar	 combination	of	 factor	 levels	 as	 a	 ‘scenario’.	We	explored	 three	
factor	levels	of	group	size	(K = 5,	10,	or	20;	Figure	S1B,	Supporting	
Information),	resulting	in	10,	45	or	190	pairwise	comparisons	respec-
tively.	Let	nk	denote	 the	sample	size	associated	with	group	 level	k 
such	that	the	total	sample	size	for	a	particular	scenario	is	N=

∑K

k=1
nk.  

We	varied	the	maximum	group-	level	sample	size,	max(nk),	from	3	to	
1,000,	with	 a	 total	 of	 seven	 factor	 levels	 (Figure	 S1A,	 Supporting	
Information).	Under	a	completely	balanced	design	 (nk	=	max(nk)	 for	
all k),	N	varied	from	15	(3	observations	×	5	group	levels)	to	20,000	
(1,000	observations	×	20	group	levels).	We	also	explored	three	lev-
els	 for	 the	global	mean	 (m = 0,	10,	100)	and	between-	group	varia-
tion	 (standard	 deviation	=	s)	 relative	 to	 within-	group	 variation	 (σ,	
Equation	(1);	Figure	S1C,	Supporting	 Information);	we	set	σ = 1 for 
all	scenarios	and	adjusted	s	to	vary	within	one	order	of	magnitude	of	
σ	(s = 0.1,	1	or	10).

Group-	level	 means	 were	 drawn	 from	 a	 normal	 distribution:	
μk	~	Normal(m,	s

2).	For	m = 0,	we	also	 simulated	μk from a uniform 
distribution,	μk	~	Uniform(−3s,	 3s),	 that	 covered	 approximately	 the	
same	range	of	potential	values	while	allowing	for	greater	representa-
tion	of	more	‘extreme’	group-	level	means	relative	to	the	normal	dis-
tribution.	We	intentionally	set	some	of	the	group-	level	means	equal	
to	other	group-	level	means,	allowing	us	to	evaluate	rejection	and/or	
error	rates.	That	is,	for	K = 5,	10	and	20,	we	drew	3,	6	and	12	unique	
μk	 values,	 respectively,	 from	 the	corresponding	normal	or	uniform	
distributions;	the	remaining	2,	4	and	8	μk	values,	respectively,	were	
set	equal	to	one	of	the	simulated	μk	values.	This	was	done	randomly,	

without	replacement,	such	that	for	K = 5,	10	and	20,	there	were	2,	4	
and	8	pairs,	of	10,	45	and	90	pairs,	respectively,	with	corresponding	
true	Di,j = 0.

The	above	factors	–	sample	size,	group	size,	overall	mean,	among	
group	variance	and	distribution	–	were	combined	with	eight	 levels	
of	imbalance	(Figure	S1E,F,	Supporting	Information).	One	level	rep-
resented	a	 completely	balanced	design	 (same	nk for all k),	 and	 the	
others	represented	different	levels	of	imbalance,	ranging	from	about	
10%	to	60%	 ‘missing	data’.	For	 the	scenarios	defined	by	some	de-
gree	of	imbalance,	we	randomly	selected	a	subset	of	group	levels	to	
receive	a	‘small’	sample	size	of	nk	=	min(nk),	and	the	remaining	group	
levels	were	assigned	the	maximum	sample	size	of	nk	=	max(nk).	The	
number	of	groups	with	nk	=	min(nk)	was	varied	to	achieve	different	
levels	of	missingness	(Figure	S1F,	Supporting	Information).

For	normally	distributed	μk,	the	total	number	of	scenarios	that	we	
simulated	was	1512;	 the	number	of	scenarios	associated	with	uni-
formly	distributed	μk	was	504	(i.e.	1,512/3	since	there	was	only	one	
level for m).	This	resulted	in	a	total	of	2,016	scenarios.	Furthermore,	
we	 simulated	100	 independent	 (random)	datasets	 (‘replicates’)	 per	
scenario,	resulting	in	201,600	pseudo	datasets	and	over	2.9	million	
pseudo	observations	of	y.

2.2 | Bayesian analysis of the pseudo data

We	 analysed	 the	 pseudo	 datasets	 in	 an	 HB	 framework	 (see	
Figure	1a)	to	obtain	posterior	estimates	of	the	group-	level	means	
(μk),	variance	components	(σ and s)	and	global	mean	(m).	For	each	
scenario	d	 and	 replicate	 r,	we	 computed	 all	 pairwise	differences	
such	that	for	levels	 j and k	(1	≤	j < k ≤	Kd),	Dj,k,d,r = μj,d,r – μk,d,r.	The	
null	hypothesis	(Ho: Dj,k,d,r	=	0)	was	rejected	if	the	central	95%	pos-
terior	credible	interval	(CI)	for	Dj,k,d,r	did	not	contain	zero,	suggest-
ing	that	group	levels	j and k	differed.	We	simultaneously	analysed	
all	 pseudo	 observations,	 since	 no	 parameters	 are	 shared	 across	
datasets;	the	analysis	is	equivalent	to	implementing	separate	mod-
els	for	each	dataset	since	there	is	no	pooling	across	the	different	
levels	of	d and r.

2.3 | Partial pooling index

Our	 definition	 of	 a	 PPI	 (Equation	2)	 requires	 that	 we	 implement	
the	 above	HB	model	 (Figure	1a)	 and	 two	 additional	models,	 simi-
lar	 to	Gelman,	Carlin,	 et	al.	 (2014).	One	 version	 assumes	 no	 pool-
ing	(Figure	1b);	the	other	imposes	complete	pooling	(Figure	1c).	The	
three	model	variants	are	fit	to	the	pseudo	data,	and	their	posterior	
results	are	used	to	compute	the	PPI	of	the	focal	HB	model:	

 where pnh,	ph and pcp	 represent	 the	effective	number	of	parame-
ters	in	the	non-	hierarchical,	hierarchical	(HB)	and	complete	pooling	
models	respectively.	In	theory,	0	≤	PPI	≤	1,	where	PPI	=	0	if	there	is	
no	pooling	among	the	group	levels,	and	PPI	=	1	if	there	is	complete	
pooling	among	the	group	levels.	Note	that	pnh,	ph and pcp,	and	thus	

(1)yi∼Normal
(

μk(i),σ
2
)

,

(2)PPI=
pnh−ph

pnh−pcp
,
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PPI,	are	computed	for	each	r and d;	we	avoid	subscripting	by	r and d 
in	Equation	(2)	for	clarity.	We	also	computed	the	scenario-	level	PPI	
(PPId)	by	averaging	the	replicate-	level	PPI	(PPId,r,	Equation	2)	across	
all r for each d.

There	are	multiple	ways	the	p	terms	(pnh,	ph and pcp)	can	be	com-
puted,	 and	 we	 used	 the	 formula	 associated	 with	 the	Watanabe–
Akaike	Information	Criterion	 (WAIC)	 (Gelman,	Hwang,	et	al.,	2014;	
Gelman,	 Carlin,	 et	al.	 2014).	 We	 explored	 using	 the	 Deviance	
Information	 Criterion	 (DIC,	 Spiegelhalter,	 Best,	 Carlin,	 &	 van	 der	
Linde,	2002;	Gelman,	Carlin,	et	al.,	2014)	 formulas,	but	 found	that	
WAIC	gave	notably	more	 realistic	values	of	p	 and	PPI	 (Supporting	
Information,	 section	 S1	 and	 Figure	 S2,	 Supporting	 Information).	
Gelman,	Carlin,	et	al.	(2014)	and	the	Supporting	Information	(section	
S1)	give	the	WAIC	expression	for	p.

2.4 | Rejection rates and error rates

We	evaluated	 individual	 and	 family-	wise	 rejection	 (false	 and	 true)	
and	 false	 acceptance	 rates.	 For	 individual	 comparisons,	 the	 Type	
1	error	and	Power	 (1	–	Type	2	error)	were	evaluated	with	 respect	
to	rejection	of	the	null	hypothesis,	Ho: Dj,k,d,r	=	0.	A	Type	1	error	 is	
the	probability	of	rejecting	Ho	given	that	Ho	is	true	(false	rejection),	
a	Type	2	error	is	the	probability	of	accepting	Ho	given	that	Ho	is	false 
(false	acceptance),	and	Power	is	the	probability	of	rejecting	Ho	given	
that	Ho	is	false	(correct	rejection)	(e.g.	Kutner	et	al.,	2005).

We	grouped	 the	 pairwise	 differences	 into	 those	 having	 a	 true	
difference	of	 zero	 (Dj,k,d =	0);	 a	 total	 of	n0,d	 pairs	 fall	 in	 this	 group.	
The	 remaining	nD,d	 pairs	have	non-	zero	 true	differences	 (Dj,k,d ≠	0).	
Note	 that	 n0,d + nD,d = Kd	 (Kd	−	1)/2,	 the	 total	 number	 of	 pairwise	
comparisons.	Subsetting	by	the	first	group	(true	Dj,k,d	=	0),	for	each	
replicate,	we	determined	the	number	of	pairwise	differences	(nR,d,r)	
out	 of	 the	n0,d	 pairs	whose	 95%	CI	 excluded	 zero	 (reject	Ho);	 the	
ratio	 nR,d,r/n0,d	 provides	 a	 replicate-	level	 estimate	 of	 the	 Type	 1	
error	 rate.	 Subsetting	by	 the	 second	group	 (true	Dj,k,d ≠	0),	we	de-
termined	the	number	of	pairwise	differences	 (nA,d,r)	out	of	the	nD,d 

pairs	whose	95%	CI	contained	zero	(accept	Ho);	the	ratios	nA,d,r/nD,d 
and	(nD,d – nA,d,r)/nD,d	provide	replicate-	level	estimates	of	the	Type	2	
error	rate	and	Power,	respectively.	We	averaged	these	ratios	across	
replicates	to	obtain	scenario-	level	error	rates	and	Power	for	visual-
ization	of	the	results.

We	 also	 considered	 family-	wise	 error	 rates.	 The	 family-	wise	
error	rate	(FWER)	has	typically	been	used	in	the	context	of	Type	1	
errors,	and	thus,	we	define	FWER	as	the	probability	of	falsely	reject-
ing	at	least	one	individual	comparison	(e.g.	a	single	Ho)	among	a	fam-
ily	of	comparisons	(e.g.,	Li	&	Shang,	2015).	Less	commonly,	we	may	
be	 interested	 in	 evaluating	 a	 family-	wise	Type	2	 error	 rate,	which	
we	denote,	FWER2.	By	analogy,	FWER2	is	the	probability	of	falsely	
accepting	at	 least	one	 individual	comparison.	For	each	d and r,	we	
commit	a	Type	1	family-	wise	error	if	nR,d,r	>	0,	and	we	commit	a	Type	
2	 family-	wise	error	 if	nA,d,r	>	0.	Thus,	we	define	 IR,d,r = 1 if nR,d,r	>	0	
(IR,d,r = 0 if nR,d,r	=	0)	 and	 IA,d,r = 1 if nA,d,r	>	0	 (IA,d,r = 0 if nA,d,r	=	0).	
Averaging	IR,d,r and IA,d,r	across	all	r for each d	provides	estimates	of	
the	scenario-	level	FWER	and	FWER2,	respectively.

2.5 | Implementation of models and processing of 
posterior results

Pseudo	 data	were	 generated	 in	 R	 (R	 Core	 Team,	 2017)	 and	 the	
Bayesian	 models	 (Figure	1)	 were	 implemented	 in	 JAGS	 4.0.0	
(Plummer,	 2003,	 2015)	 via	 R	 using	 the	 rjags	 package	 (Plummer,	
2013)	 (code	for	 implementing	the	three	Bayesian	model	variants	
and	for	computing	PPI	is	provided	in	Supporting	Information	sec-
tion	 S2,	 along	 with	 example	 pseudo	 datasets).	 For	 each	 model,	
three	parallel	MCMC	chains	were	 run	 for	a	burn-	in	period;	after	
convergence,	each	model	was	updated	to	obtain	3,000	relatively	
independent	samples,	which	were	subsequently	used	to	compute	
posterior	 summary	 statistics.	 Convergence	 was	 verified	 using	
the	 Brooks–Gelman–Rubin	 diagnostic	 (Brooks	 &	 Gelman,	 1998;	
Gelman	&	Rubin,	1992)	via	 the	gelman.diag	 function	 in	 the	coda	
package	 (‘rjags’)	 (Plummer,	 Best,	 Cowles,	 &	 Vines,	 2006).	 Data	

F IGURE  1 Directed	acyclic	graphs	(DAGs)	summarizing	the	three	Bayesian	models	fit	to	each	dataset	(for	yi,d,r,	i = 1,	2,	…,	Nd 
observations),	associated	with	each	scenario	(d)	and	replicate	(r)	(d and r	subscripts	not	shown	in	DAGs	for	simplicity).	(a)	The	HB	
model	assumes	a	normal	likelihood,	yi,d,r ~ Normal(μk,d,r,	σ

2
d,r),	with	group-	level	means	modelled	hierarchically	around	a	global	mean	(m),	

μk,d,r ~ Normal(md,r,	sd,r
2),	for	k = 1,	2,…,	Kd	levels.	(b)	The	non-	hierarchical	model	assumes	the	same	likelihood,	but	specifies	independent,	

vague	priors	for	the	group-	level	means,	μk,d,r ~ Normal(0,	10,000).	(c)	The	complete	pooling	model	does	not	estimate	separate	means	for	each	
group	such	that	yi,d,r ~ Normal(md,r,	σ

2
d,r).	In	(a)	and	(c),	m	is	assigned	a	vague	prior,	md,r ~ Normal(0,	10,000).	In	(a)	and	(b),	σ2	is	the	within-	

group	variance,	whereas	in	(c),	it	captures	the	combined	within-		and	among-	group	variance.	In	(a),	s2	is	the	among-	group	variance;	σ and s are 
assigned	vague	priors,	σd,r,	sd,r ~ Uniform(0,	100)
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simulation,	Bayesian	models,	storage	and	processing	of	posterior	
samples	 (coda)	and	error	calculations	were	performed	 in	R	using	
supercomputing	 resources	 at	 Northern	 Arizona	 University	 (nau.
edu/hpc).

2.6 | Analysis of error rates and partial 
pooling strength

First,	we	evaluated	the	factors	causing	variation	in	the	scenario-	level	
PPI	(PPId)	and	the	variance	in	PPI	across	replicates	within	each	sce-
nario	(VPPId).	We	conducted	linear	models	using	the	‘lm’	function	in	
R,	with	response	variables	logit(PPId)	and	log(√VPPId).	For	logit(PPId),	
we	conducted	a	weighted	regression,	with	weights	=	1/VPPId.	We	ex-
plored	a	suite	of	models	and	used	partial	R2	to	select	the	final,	most	
parsimonious	model.	The	final	models	for	both	response	variables	in-
cluded	the	 log-	transformed,	scenario-	level	covariates	of	group	size,	
sample	size	and	the	ratio	of	among-		to	within-	group	variation	–	log(Kd),	
log(Nd)	and	log(sd/σ),	respectively	–	and	the	categorical	(binary)	covar-
iates	indicating	the	distribution	from	which	group-	level	means	were	
drawn	(normal	or	uniform)	and	whether	the	dataset	is	balanced	or	not	
(Md).	We	focus	on	the	final	models,	which	included	the	main	effects	
and	 all	 relevant	 two-	way	 interactions	 among	 the	 aforementioned	
covariates.	 (Quadratic	 effects	were	 consistently	 non-	significant,	 as	
were	 the	covariates	 representing	 the	global	mean,	md,	 and	percent	
missing,	PMd.)	We	 excluded	 scenarios	 (<0.5%)	with	PPId < 0; all re-
cords	were	retained	for	VPPId.	To	identify	the	factors	explaining	the	
greatest	amount	of	variation	in	PPId and VPPId,	we	computed	partial	
R2	values,	which	were	obtained	by	comparing	a	reduced	model	–	ex-
cluding	a	particular	factor	(main	effect	and	all	interactions	involving	
that	factor)	–	to	the	full	 (final)	model	that	included	all	factors	(main	
effects	and	interactions)	of	interest.	Partial	R2	=	(SSEreduced	–	SSEfull)/
SSEreduced	(Kutner	et	al.,	2005),	where	SSE	is	the	sum	of	squared	er-
rors,	obtained	for	both	the	reduced	and	full	models.

Next,	we	explored	how	the	error	rates	–	Type	1,	Type	2,	FWER	
and	FWER2	–	varied	with	PPI.	To	evaluate	Type	1	errors,	we	con-
ducted	binomial	(logistic)	regressions	using	the	‘glm’	or	‘glm2’	func-
tions	in	R,	with	the	replicate-	level	counts	that	tabulate	the	number	
of	comparisons	incorrectly	rejected	(nR,d,r)	(number	of	‘successful	tri-
als’)	and	correctly	accepted	(n0,d – nR,d,r)	(number	of	‘failures’)	(i.e.	n0,d 
represents	the	‘total	number	of	trials’).	Likewise,	to	evaluate	Type	2	
errors,	binomial	regressions	were	conducted	with	the	replicate-	level	
number	 of	 comparisons	 incorrectly	 accepted	 (nA,d,r)	 (‘successes’)	
and	correctly	rejected	(nD,d – nA,d,r)	 (‘failures’).	Binomial	regressions	
were	 also	 implemented	 to	 evaluate	 FWER	 and	 FWER2,	 using	 the	
replicate-	level	binary	 indicators	 that	denote	 if	 at	 least	one	Type	1	
error	(IR,d,r)	or	at	least	one	Type	2	error	(IA,d,r)	was	committed.

In	all	binomial	regressions,	we	used	a	logit	link	function	for	the	
probability	 (qd,r)	 of	 committing	 an	 error.	 Visual	 inspection	 of	 the	
scenario-	level	 error	 rates	 (e.g.	 Figure	3)	 suggested	 models	 of	 the	
form	 logit(qd,r)	=	ad + bd	 PPId,r,	 given	 replicate-	level	 PPI	 (PPId,r).	We	
explored	a	suite	of	models	to	identify	the	final,	most	parsimonious	
model.	We	 specified	 linear	models	 for	 the	ad and bd	 terms,	which	
included	the	scenario-	level	continuous	covariates	of	log(Kd),	log(Nd),	

PMd	and	log(sd/σ),	and	the	binary	indicator	of	Md.	All	models	included	
the	main	effects	of	these	covariates,	and	some	included	all	two-	way	
interactions	 among	 the	 covariates	 and/or	 quadratic	 effects	 of	 the	
continuous	covariates.	We	selected	the	final	model	based	on	differ-
ences	 in	AIC	and	 the	proportion	of	 the	deviance	explained	by	 the	
model	(R2).	The	final	models	for	ad and bd	included	the	main	effects	
of	log(Kd),	log(Nd),	PMd and Md	and	all	two-	way	interactions.

Similar	to	the	PPI	analysis,	to	identify	the	factors	explaining	the	
greatest	amount	of	variation	 in	 the	error	 rates,	we	computed	par-
tial	R2	 values	by	comparing	 the	 residual	deviance	obtained	 from	a	
reduced	model,	which	excluded	a	particular	factor,	to	the	full	(final)	
model	that	 included	all	 factors	of	 interest.	Here,	partial	R2	=	(devi-
ancereduced – deviancefull)/deviancereduced,	where	‘deviance’	is	the	re-
sidual	deviance	from	the	full	or	reduced	model.	We	also	evaluated	
the	importance	of	PPI	via	two	approaches.	One	approach	eliminated	
PPId,r	from	the	model	and	retained	the	other	simulation	factors	(co-
variates)	to	obtain	the	partial	R2	associated	with	PPId,r.	The	other	ap-
proach	included	PPId,r	as	the	only	explanatory	variable	(all	simulation	
factors	were	excluded),	such	that	a and b	are	scalar	coefficients,	and	
we	computed	the	proportion	of	the	deviance	explained	by	PPId,r	as	
R2	=	(null	deviance	–	residual	deviance)/(null	deviance).

Using	 the	 final	 binomial	 regression	 results,	 we	 obtained	 pre-
dicted	FWER	as	 a	 function	of	PPI	 for	 different	 levels	 of	N,	K,	PM 
and M.	We	also	computed	 the	critical	PPI	 (PPIcrit)	 that	 is	expected	
to	 yield	 FWER	=	α	 (for	 illustration,	 we	 set	 α	=	0.05).	 In	 particular,	
PPIcrit = (logit(α)	–	a)/b,	 and	 we	 obtained	 predictions	 for	 PPIcrit for 
different	 levels	of	N,	K,	PM and M	 given	 the	coefficient	estimates	
associated	with	the	a and b	models	for	FWER.

2.7 | Real-data examples

Our	simulation	experiment	does	not	capture	the	complexity	of	most	
ecological	data	and	associated	HB	models.	Thus,	we	drew-	upon	four	
real-	data	 examples	 to	 evaluate	 if	more	 complex	model	 structures	
align	with	the	simulation	experiment	results.	We	summarize	the	four	
examples	in	Table	1	and	provide	additional	details	in	the	Supporting	
Information	(section	S3).	The	examples	represent	diverse	Bayesian	
applications,	 including:	 (a)	 a	multivariate	 regression	 that	 evaluates	
allometric	 scaling	 relationships	 among	 plant	 mass,	 length	 and	 di-
ameter,	 and	 that	 compares	 parameter	 estimates	 among	 49	 plant	
species	(Price,	Ogle,	White,	&	Weitz,	2009),	(b)	a	mixed	effects	re-
gression	that	evaluates	drivers	of	plant	water	stress,	from	which	we	
compute	 contrasts	 involving	 eight	 subjects	 (shrubs)	 to	 determine	
if	 model	 parameters	 differ	 among	 two	 treatment	 groups	 (Guo	 &	
Ogle,	2018),	(c)	a	nonlinear	mixed	effects	regression	for	orange	tree	
growth	 over	 time,	with	 a	 hierarchical	model	 for	 tree-	level	 growth	
parameters,	 and	 (d)	 a	 generalized	 linear	model	 involving	 Bernoulli	
data	 and	 a	 nontraditional	 link	 function	 to	 determine	 if	 dogs	 learn	
from	repeated	stimuli.	The	latter	two	are	taken	from	the	OpenBUGS	
(Lunn,	Spiegelhalter,	Thomas,	&	Best,	2009)	examples	volumes,	and	
we	evaluate	differences	 in	parameters	among	 individuals	 (trees	or	
dogs).	We	note	that	the	comparisons	that	we	conducted	were	not	
the	focus	of	the	original	four	studies.
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For	each	example,	the	focal	HB	model	was	modified	to	give	the	
complete	pooling	and	non-	hierarchical	versions.	The	three	versions	
were	fit	 to	each	dataset,	allowing	us	to	compute	PPI,	Equation	(2),	
for	 each	 example.	 To	 evaluate	 potential	 error	 rates,	we	 simulated	
100	representative	psuedo	datasets	per	example.	To	do	this,	we	ob-
tained	the	posterior	means	for	the	model	parameters	and	pairwise	
differences	or	contrasts	for	each	example's	HB	model	as	applied	to	
the	real	data.	We	treated	these	posterior	means	as	the	‘true’	param-
eter	values	and	simulated	data	given	these	true	values	and	the	orig-
inal	 covariate	 data.	 If	 the	 95%	CI	 for	 a	 pairwise	 difference,	 based	
on	the	real	data,	indicated	that	a	particular	parameter	did	not	differ	
between	 the	 two	 group	 levels	 being	 compared,	 then	we	 set	 their	
‘true’	values	equal	to	each	other	(i.e.	the	average	of	the	two	posterior	
means).	We	then	fit	the	HB,	complete	pooling	and	non-	hierarchical	
model	variants	to	each	of	the	pseudo	datasets	and	computed	error	
rates	 and	PPI.	The	 real	 data	 and	 code	 for	 implementing	 the	 three	
model	variants	and	computing	PPI	for	each	example	are	provided	the	
Supporting	Information	(section	S4).

3  | RESULTS

3.1 | Variation in the PPI

We	developed	PPI,	Equation	(2),	 to	quantify	the	pooling	strength	
of	the	focal,	HB	model	(Figure	1a).	Most	PPI	values	were	between	
0	(no	pooling)	and	1	(complete	pooling);	only	<0.5%	of	the	scenar-
ios	produced	 scenario-	level	PPI	<	0	 (Figure	2).	We	also	 identified	
the	factors	explaining	variation	 in	PPI.	The	final	model	explained	
c.	74%	 (adjusted	R2	=	0.744)	of	 the	variation	 in	 logit(PPId);	 log(N),	
log(s/σ)	 and	 the	group-	level	 sampling	distribution	were	 the	most	
important	 predictors	 of	 logit(PPId)	 (partial	 R

2	=	0.852,	 0.827	 and	
0.625,	 respectively),	 followed	 by	 the	 binary	 indicator	 for	 bal-
ance,	M	(partial	R2	=	0.276).	The	final	model	for	the	scenario-	level	

variation	 in	 PPI	 explained	 75%	 of	 the	 variation	 in	 log(√VPPId),	
and	 log(N)	 and	 log(s/σ)	 were	 the	most	 important	 factors	 (partial	
R2	=	0.601	 and	 0.479,	 respectively),	 followed	 by	 the	 group-	level	
sampling	distribution	(partial	R2	=	0.270).	In	general,	smaller	N and 
smaller	s/σ	lead	to	higher	and	more	precise	PPI	values	or	stronger	
pooling	(Figure	2b).

3.2 | Error rates versus PPI

The	 family-	wise	 Type	 1	 error	 rate	 (FWER)	 produced	 by	 the	HB	
model	was	 never	 greater	 –	 and	 in	many	 cases,	 notably	 lower	 –	
than	 the	FWER	produced	by	 the	non-	hierarchical	model	 (Figure	
S3C,	 Supporting	 Information).	 With	 respect	 to	 individual	
comparisons,	the	Type	1	error	rate,	Power	and	Type	2	error	rate	
were	 slightly	 affected	 by	 an	 HB	 specification	 (Figure	 S3A,B);	
in	 particular,	 rejection	 rates	 (false	 and	 true)	were	 slightly	 lower	
for	 the	 HB	 model.	 However,	 the	 family-	wise	 Type	 2	 error	 rate	
(FWER2)	was	nearly	identical	among	the	HB	and	non-	hierarchical	
models	(Figure	S3D).

Focusing	on	the	error	rates	produced	by	the	HB	model,	we	eval-
uated	how	they	varied	with	PPI	 (Figure	3).	Greater	pooling	 (higher	
PPI)	is	associated	with	lower	rejection	rates	(Type	1,	Power,	FWER;	
Figure	3a–c)	and	higher	false	acceptance	rates	(Type	2	and	FWER2;	
Figure	3b,d).	 Here,	 we	 are	 most	 interested	 in	 understanding	 how	
variation	 in	 PPI	 affects	 the	 Type	 1	 error	 rate	 and	 especially	 the	
FWER.	 The	 final	 binomial	 regressions	 explained	 69.1%	 (or	 92.0%)	
and	 62.0%	 (or	 95.7%)	 of	 the	 variation	 in	 the	 replicate-	level	 (or	
scenario-	level)	Type	1	error	 rate	and	FWER	 respectively	 (Table	2).	
Based	 on	 partial	 R2	 values	 (Table	2),	 PPI	 was	 the	most	 important	
predictor	of	both	Type	1	error	rates	and	FWER,	followed	by	the	bi-
nary	indicator	for	balance,	M.	While	log(K),	log(N)	and	PM had com-
paratively	little	influence	on	the	Type	1	error	rate,	and	similarly	for	
the	influence	of	log(N)	and	PM	on	FWER	(Table	2),	they	were	often	

TABLE  1 Summary	of	the	four	real-	data	examples

Allometric scaling Plant water stress Orange trees Dog learning

Source Price	et	al.	(2009) Guo	and	Ogle	(2018) OpenBUGS 
Example	Vol	II

OpenBUGS	Example	Vol	I

Overview of model 
(all	Bayesian)

Multivariate,	linear	
regression	with	a	hierarchi-
cal	model	for	species-	level	
parameters	and	a	
stochastic	covariate	model.

Nonlinear	mixed	effects	
regression	model	with	
a hierarchical model for 
shrub-	level	
parameters.

Nonlinear	regression	model	
with	a	hierarchical	model	
for	tree-	level	growth	
parameters.

Hierarchical,	generalized	
linear	model	(GLM)	with	
binary	(Bernoulli)	data	and	
a	non-	standard	link	
function.

Comparisons	
conducted

4,704	(1,176	species	
pairs	×	4	parameters)

7	([watered	vs.	control]	
×	7	parameters)a

30	(10	tree	pairs	×	3	
parameters)

870	(435	dog	pairs	×	2	
parameters)

N	(sample	size) 1,162	plants,	3	variables	
each

112	measurements 35	measurements 750	binary	records

K	(group	size) 49	species 8	shrubs,	2	treatment	
levels

5	trees 30	dogs

Balanced? No No Yes Yes

aContrasts	conducted	for	watered	versus	control	treatment	levels;	treatment-	level	means	were	computed	across	four	shrubs	each	(shrub-	level	param-
eters	were	modelled	hierarchically	around	global	parameters	that	do	not	vary	by	treatment	level).	
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F IGURE  2 Scenario-	level	partial	pooling	index	(PPId)	versus	log(Nd),	where	N =	sample	size,	for	group	means	(μk)	that	were	simulated	from	
a	(a)	uniform	versus	(b)	normal	distribution.	Symbol	shading	reflects	group	size	(K)	and	symbol	shape	reflects	the	among-	group	standard	
deviation	(s);	σ	=	1	(within	group	standard	deviation).	In	both	panels,	each	point	represents	the	mean	PPI	value	of	100	replicates,	for	each	of	
(a)	504	and	(b)	1,512	scenarios.	The	horizontal	grey	lines	indicate	the	expected	lower	bound	on	PPI.	The	large	red	diamonds	in	(b)	correspond	
to	the	PPI	based	on	the	four	real-	data	examples;	the	small	red	diamonds	and	95%	uncertainty	intervals	are	based	on	each	example's	100	
pseudo	datasets	that	were	simulated	given	the	posterior	results	for	the	real	data.	Examples	are	denoted	by	letters	inside	the	symbols:	(a)	
allometric	scaling,	(b)	plant	water	stress,	(c)	orange	trees	and	(d)	dog	learning	(Table	1)

F IGURE  3 Scenario-	level	error	rates	
derived	from	100	replicates	for	each	of	
2016	scenarios	versus	scenario-	level	partial	
pooling	index	(PPId).	Error	rates	often	
differ	depending	on	whether	a	scenario	
produced	a	balanced	(open	triangles,	
M = 0)	or	unbalanced	(black	circles,	M = 1)	
dataset.	(a)	Type	1	error	rate	for	individual	
comparisons,	(b)	Type	2	error	rate	for	
individual	comparisons,	overlaid	with	Power	
(1	–	Type	2	error	rate;	grey	symbols),	(c)	
family-	wise	Type	1	error	rate	(FWER)	and	
(d)	family-	wise	Type	2	error	rate	(FWER2).	
Red	horizontal	lines	in	(a)	and	(c)	denote	
the	nominal	comparison-	wise	error	rate	
(α	=	0.05).	The	large	and	small	red	diamonds	
correspond	to	the	results	for	the	four	real-	
data	examples	(see	Figure	2b);	uncertainty	
intervals	are	not	relevant	to	FWER	and	
FWER2,	and	Power	is	not	shown	for	the	
real-data	examples
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significant	predictors	of	a and/or b	(Supporting	Information,	section	
S5	and	Table	S1),	which	describe	the	relationship	between	the	error	
rates	and	PPI.

How	do	the	factors	of	balance	(PM and M),	N and K	affect	the	re-
lationship	between	FWER	(or	Type	1	error	rate)	and	PPI?	In	the	final	
models	(Table	S1,	Supporting	Information),	the	PPI-	intercept	(a)	gives	
the	predicted	error	rate	at	PPI	=	0	(no	pooling),	and	the	PPI-	slope	(b)	
describes	how	‘quickly’	these	error	rates	change	(here,	decline)	with	
increasing	PPI.	An	unbalanced	dataset	(M = 1)	increases	the	intercept	
and	 steepens	 the	 slope	 (Table	 S1,	 Supporting	 Information,	a4	>	0	
and b4	<	0;	 Figure	3a,c,	 and	 Figure	 S4,	 Supporting	 Information).	 
A	larger	group	size	(K)	increases	the	intercept,	but	K	has	a	minimal	 
effect	 on	 the	 slope	 (a1	>	0	 and	 b1 ≅	0,	 Table	2;	 Figure	 S4B,	
Supporting	 Information).	While	PM and N	 significantly	 affect	 the	
slope	 and/or	 intercept	 either	 as	 main	 effects	 or	 via	 interactions	
with	other	factors	(Table	S1,	Supporting	Information),	their	overall	
effect	on	FWER	is	minimal	(Figure	S4A,C,	Supporting	Information).	
In	 general,	 FWER	 is	 primarily	 elevated	 by	 unbalanced	 designs,	
regardless	of	 the	degree	of	 imbalance,	and	 larger	K,	which	deter-
mines	the	number	of	pairwise	comparisons	(Figure	S4,	Supporting	
Information).

Given	 the	 predictable	 relationship	 between	 FWER	 and	 PPI	
(Table	 S1,	 Supporting	 Information),	we	 solved	 for	 the	 critical	 PPI	
(PPIcrit)	 leading	 to	 FWER	=	α	=	0.05.	 PPIcrit	 provides	 an	 indication	
of	 when	 one	 might	 be	 concerned	 about	 adjusting	 for	 multiple	
comparisons;	 if	 the	 HB	 analysis	 produces	 PPI	>	PPIcrit,	 then	 the	
partial	pooling	effect	would	negate	the	need	for	multiplicity	adjust-
ments.	Based	on	the	coefficient	estimates	in	Table	S1,	Supporting	
Information,	we	computed	PPIcrit	for	combinations	of	K,	N,	PM and 
M	used	to	simulate	the	pseudo	data	(Figure	4).	For	balanced	data-
sets,	 PPIcrit	 spanned	 0.499	 (K = 5,	 N = 10,000)	 to	 0.639	 (K = 20,	
N = 10,000);	 for	 unbalanced	 datasets	 (3%–64%	 missing),	 PPIcrit 
spanned	0.568	 (3%	missing,	K = 5,	N = 100)	to	0.653	 (3%	missing,	
K = 20,	N = 10,000).	 In	 general,	 unbalanced	designs,	 larger	N and 
larger	K	lead	to	higher	PPIcrit	values	(Figure	4).

While	 the	 Type	 2	 error	 rate	 and	 FWER2	 were	 generally	
the	 same	 for	 the	HB	 and	 non-	hierarchical	models	 (Figure	 S3,	
Supporting	 Information),	 they	 do	 vary	 with	 PPI	 (Figure	3b,d).	

The	 final	 binomial	 regressions	 for	 these	 error	 rates	 follow	
the	 same	 form	 as	 those	 for	 the	 Type	 1	 error	 rate	 and	 FWER	
(see	Supporting	 Information	 section	S5).	 The	 final	models	 ex-
plained	 93.5%	 (or	 97.1%)	 and	 45.3%	 (or	 80.5%)	 of	 the	 varia-
tion	 in	 replicate-	level	 (or	 scenario-	level)	 Type	 2	 error	 rates	
and	 FWER2,	 respectively	 (Table	2).	 PPI	 was	 the	 best	 predic-
tor	 of	 the	 Type	 2	 error	 rate	 (partial	 R2	=	90.5%),	 followed	 by	
M	 (partial	 R2	=	31.3%);	 conversely,	 log(K )	 was	 the	 best	 pre-
dictor	of	FWER2	 (partial	R2	=	25.6%),	 followed	by	PPI	 (partial	
R2	=	17.8%)	(Table	2).

TABLE  2 Summary	of	the	binomial	regression	fits	for	each	error	type	based	on	the	final	models	(see	Supporting	Information	section	S5	
for	details),	and	the	relative	importance	of	each	covariate	or	simulation	factor

Error type aScenario- level R2 bRep.- level R2

cR2 for partial 
pooling index 
(PPI) only dΔR2

ePartial R2 for each covariate

PPI log(K) log(N) PM M

Type	1 0.920 0.691 0.479 0.212 0.547 0.023 0.081 0.008 0.313

Type	2 0.971 0.935 0.893 0.042 0.905 0.016 0.326 0.037 0.058

FWER 0.957 0.620 0.382 0.238 0.507 0.161 0.055 0.006 0.208

FWER2 0.805 0.453 0.189 0.264 0.178 0.256 0.067 0.001 0.090

aThe	binomial	regressions	were	used	to	predict	scenario-	level	error	rates	(qd),	and	empirical	scenario-	level	mean	error	rates	were	regressed	on	predicted	
qd	to	evaluate	scenario-	level	model	fit	(R

2).	b,cReplicate-	level	R2	was	computed	for	each	binomial	regression	as	R2	=	(null	deviance	–	residual	deviance)/
(null	deviance).	cR2	based	on	a	simple	model	that	only	included	PPId,r	in	the	model	for	qd,r. 

dΔR2	=	(Rep.-	level	R2)	–	(R2	for	PPI	only).	eEach	covariate	was	
individually	 eliminated,	 producing	 a	 ‘reduced’	model,	 to	 compute	 its	 relative	 importance	 as	partial	R2	=	(deviancereduced – deviancefull)/deviancereduced,	
where	‘deviance’	is	the	residual	deviance.

F IGURE   4 Predicted	partial	pooling	index	(PPI)	leading	
to	a	family-	wise	error	rate	(FWER)	of	α	=	0.05	(PPIcrit).	The	
coefficient	estimates	in	Table	S1	were	used	to	compute	
PPIcrit	=	(logit(α)	–	a)/b	for	different	sample	sizes	(N),	group	sizes	
(K)	and	degree	of	imbalance	(%	missing)	that	reflect	values	used	
in	the	simulation	experiment	(Figure	S1).	The	binary	balance	
indicator	(M)	was	a	significant	predictor	of	FWER,	leading	to	a	
discontinuous	(step	function)	relationship	between	PPIcrit	and	the	
degree	of	imbalance
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3.3 | Application to real-data examples

The	PPI	and	error	rates	computed	for	the	four	real-	data	examples	
generally	align	with	the	patterns	produced	by	the	simulation	ex-
periment	(Figures	2	and	3).	The	real-	data	PPI	values	ranged	from	
0.11	(orange	trees)	to	0.61	(dogs	learning),	and	all	four	examples	
yielded	 low	 Type	 1	 error	 rates	 (<0.05;	 Figure	3a).	 The	 orange	
trees	and	dog	learning	examples	represent	balanced	designs	and	
their	Type	1	and	FWER	values	fall	within	the	range	of	values	esti-
mated	for	the	balanced	simulation	experiments	(Figure	3a,c).	The	
allometric	 scaling	 example	 yielded	 a	 comparatively	 high	 FWER	
given	 its	 associated	 PPI	 (Figure	3c),	 but	 this	 is	 expected	 given	
its	 large	 number	 of	 comparisons	 (4,704,	 Table	1).	 Conversely,	
the	plant	water	stress	example	produced	Type	1	error	rates	and	
FWER	exactly	equal	to	zero	(Figures	3a	and	4c),	but	this	example	
was	also	associated	with	a	small	number	of	comparisons	(7).	The	
Type	2	 error	 rate	 versus	PPI	 predictions	 for	 each	 example	 also	
follow	the	simulation	experiment	results	(Figure	3b).	All	four	ex-
amples	produced	FWER2	values	exactly	equal	to	one	(Figure	3d),	
which	is	not	surprising	for	the	three	examples	that	yielded	large	
numbers	of	comparisons.

4  | DISCUSSION

4.1 | Quantifying the degree of partial pooling

While	 the	 terms	 ‘partial	 pooling’	 and	 ‘borrowing	 of	 strength’	 are	
often	 used	 when	 referring	 to	 HB	 models	 (Carlin	 &	 Louis,	 2008;	
Gelman,	Carlin,	et	al.,	2014;	Qian,	Cuffney,	Alameddine,	McMahon,	
&	 Reckhow,	 2010),	 quantitative	 methods	 for	 defining	 these	
attributes	are	generally	lacking.	We	offer	the	PPI	as	a	quantitative	
measure	 of	 the	 pooling	 strength.	 The	 ratio	 of	within-		 to	 among-	
group	 variation	 (e.g.	 s/σ)	 has	 been	 informally	 used	 an	 index	 of	
potential	pooling	strength	(e.g.	Gelman	&	Hill,	2007),	where	higher	
s/σ	(comparatively	little	variability	among	group	levels)	is	expected	
to	lead	to	stronger	pooling.	Higher	s/σ	was	in	fact	associated	with	
higher	PPI	(stronger	pooling)	(Figure	2).	However,	PPI	is	not	solely	
determined	by	s/σ;	sample	size	(N)	and	the	distribution	from	which	
the	 group-	level	 means	 arise	 (e.g.	 normal,	 uniform)	 also	 notably	
affected	 PPI.	 The	 combined	 effects	 of	 s/σ and N	 on	 the	 degree	
of	 partial	 pooling	 are	 qualitatively	 discussed	 in	 Gelman	 and	 Hill	
(2007).	That	 is,	 larger	N	 is	expected	to	result	 in	more	 information	
to	inform	each	group-	level	effect,	which	should	reflect	the	group-	
level	sample	means.	However,	if	N	 is	relatively	small,	then	pooling	
strength	is	primarily	governed	by	s/σ.

The	effective	number	of	parameters	(p)	used	to	compute	model	
comparison	 indices	 –	 such	 as	 DIC	 (Spiegelhalter	 et	al.,	 2002)	 or	
WAIC	 (Gelman,	 Carlin,	 et	al.,	 2014	Gelman,	Hwang,	 et	al.,	 2014)	
–	has	also	been	used	in	informal	assessments	of	pooling	strength	
(e.g.	Gelman,	Hwang,	et	al.,	2014;	Plummer,	2008).	Motivated	by	
this,	we	use	p	based	on	WAIC	to	compute	PPI	(Equation	2).	In	prac-
tice,	computing	PPI	requires	implementing	three	Bayesian	models:	
(1)	 the	 focal	HB	model	 (Figure	1a),	 (2)	 a	non-	hierarchical	 version	

(Figure	1b)	 and	 (3)	 a	 complete	 pooling	 version	 (Figure	1c).	While	
we	successfully	implemented	all	three	models	with	our	simulated	
data,	 issues	 may	 be	 encountered	 in	 real-	data	 applications	 (see	
below).	 However,	 if	 all	 three	 can	 be	 successfully	 implemented,	
then	 the	 calculation	of	PPI	 should	be	possible.	 Inferences	about	
effects,	 parameters	 and	 pairwise	 differences,	 however,	 would	
likely	be	limited	to	the	HB	model.

4.2 | Rejection/error rates and the degree of 
partial pooling

Based	on	our	intuition	and	Gelman	et	al.	(2012),	we	would	expect	
rejection	rates	–	Type	1	error	rate,	FWER	and	Power	–	to	generally	
be	 lower	under	an	HB	versus	non-	hierarchical	model,	due	 to	 the	
effect	 of	 partial	 pooling.	 This	 was	 supported	 by	 our	 simulation	
experiment,	 especially	 for	 FWER	 (Figure	 S3C,	 Supporting	
Information).	 However,	 specification	 of	 an	 HB	 model	 does	 not	
imply	that	the	Type	1	error	rate	or	FWER	will	be	less	than	or	equal	
to	a	set	significance	level	(α).	In	fact,	the	scenario-	level	Type	1	error	
rate	and	FWER	were	greater	than	α = 0.05 in c.	60%	and	c.	73%,	
respectively,	of	the	2,016	scenarios.	Thus,	 in	general,	HB	models	
are	 not	 immune	 to	 inflated	 rejection	 error	 rates	 associated	with	
multiple	comparisons.

However,	both	the	Type	1	error	rate	and	FWER	are	strongly	
related	 to	 PPI	 (Figure	3	 and	 Table	2):	 as	 pooling	 strength	 (PPI)	
increases,	both	error	rates	quickly	drop	 (Figures	3	and	S4).	The	
maximum	 error	 rates	 and	 the	 greatest	 variation	 in	 the	 error	
rates	occurred	 at	PPI	=	0	 (no	pooling),	 and	 this	 variation	 is	 pri-
marily	 controlled	by	measures	of	 imbalance	 (M)	 and	 group	 size	
(K )	(Table	2;	Figures	3a,c,	and	4).	In	the	context	of	multiple	com-
parisons,	we	are	most	interested	in	ensuring	that	FWER	≤	α,	and	
there	appears	to	be	a	critical	PPI	(PPIcrit)	at	which	this	is	achieved.	
Based	on	our	simulation	experiment,	PPIcrit	spanned	a	relatively	
narrow	 range,	 from	 c.	 0.5	 to	 0.64	 (Figure	4).	Under	 a	 balanced	
design	with	 small	K	 (comparatively	 few	 pairwise	 comparisons),	
PPIcrit	 is	 relatively	 low	 (PPIcrit	<	0.53,	 Figure	4),	 indicating	 that	
even	weak	pooling	can	achieve	FWER	≤	α.	Moreover,	PPIcrit	was	
constrained	between	c.	0.57	and	0.65	(Figure	4)	for	unbalanced	
designs,	regardless	of	the	degree	of	imbalance	(or	percent	miss-
ing	data).	This	narrow	range	provides	a	useful	diagnostic	for	de-
termining	 if	 the	 partial	 pooling	 of	 an	 HB	 model	 is	 sufficiently	
strong	(PPI	greater	than,	say,	0.65)	to	render	multiplicity	adjust-
ments	unnecessary.

One	may	also	be	interested	in	the	Type	2	error	rate	and	its	family-	
wise	analogue	(FWER2);	both	varied	predictably	(increased)	with	PPI	
(Figure	3	 and	Table	2).	 The	 relationship	between	 these	 error	 rates	
and	PPI	was	primarily	governed	by	K and N,	and	measures	of	imbal-
ance	(M and PM)	exerted	comparatively	little	influence	(Table	2).	We	
expected	these	false	acceptance	rates	to	increase	with	PPI,	indicat-
ing	that	with	greater	pooling	strength,	we	tend	to	accept	Ho: Dj,k	=	0,	
even	when	Ho	 is	false.	That	 is,	the	(estimated)	difference	becomes	
indistinguishable	from	zero	as	the	(estimated)	group-	level	means,	μj 
and μi,	are	pulled	more	towards	each	other.



562  |    Methods in Ecology and Evolu
on OGLE Et aL.

4.3 | Advantages of a hierarchical model

Implementing	 an	 HB	 model	 is	 advantageous	 for	 reducing	 false	
rejection	 rates	 (Figures	 S3A	 and	 S3C,	 Supporting	 Information),	
especially	as	PPI	increases	(Figure	3).	In	fact,	FWER	is	notably	re-
duced	under	an	HB	compared	to	a	non-	hierarchical	model,	across	
the	entire	 range	of	potential	PPI	values	 (Figure	S3C),	 supporting	
the	expectation	that	the	partial	pooling	effect	of	an	HB	model	re-
duces	FWER.	If	one	is	concerned	about	reducing	the	false	accept-
ance	rate,	an	HB	model	provides	a	slight	disadvantage	by	yielding	
slightly	higher	Type	2	error	rates	and	lower	Power	(for	individual	
comparisons)	compared	to	a	non-	hierarchical	model	(Figure	S3B).	
However,	 these	 differences	 disappear	 when	 considering	 the	
family-	wise	version	 (FWER2,	Figure	S3D).	Collectively,	 these	 re-
sults	suggest	that	an	HB	model	 is	generally	advantageous	over	a	
non-	hierarchical	Bayesian	model,	and	presumably	over	a	frequen-
tist	 analysis	 (e.g.,	 Gelman	 et	al.,	 2012),	 because	 of	 its	 effect	 on	
false	rejection	rates.

4.4 | Hierarchical Bayesian models and multiple 
comparisons

Our	 simulation	 results	 indicate	 that	HB	models	 are	 not	 necessarily	
immune	 to	problems	of	 inflated	 family-	wise	error	 rates.	The	partial	
pooling	 property	 of	 an	 HB	 model	 can	 lead	 to	 FWER	 values	 that	
satisfy	a	set	α	 level,	but	the	pooling	strength	required	to	do	so	can	
vary	among	datasets	(Figure	4).	However,	 in	general,	 it	appears	that	
HB	 models	 yielding	 PPI	≥	0.65	 are	 likely	 to	 achieve	 FWER	<	0.05,	
assuming	 the	group	size	 is	generally	K ≤ 20,	 the	maximum	explored	
in	our	simulations.	While	we	cannot	provide	a	specific,	quantitative	
rule	that	is	applicable	to	all	analyses,	one	could	use	our	predictions	of	
PPIcrit	 (Figure	4)	as	a	general	guide	for	determining	if	inflated	FWER	
could	be	a	problem.

4.5 | Application to real-data examples

The	application	of	our	proposed	PPI	to	four	real-	life	examples	pro-
vides	 further	 support	 for	 the	utility	of	PPI.	These	examples	differ	
greatly	in	their	data	and	model	structures	relative	to	each	other	and	
to	 the	simulation	experiment	 (Table	1),	yet	 their	error	 rates	versus	
PPI	 relationships	 were	 consistent	 with	 the	 simulation	 experiment	
results	 (Figure	3).	 Moreover,	 all	 four	 examples	 yielded	 PPI	 values	
(based	on	the	real	data)	that	were	generally	less	than	the	predicted	
PPIcrit	(Figure	4),	which	aligns	with	FWER	values	that	were	generally	
less	than	α	=	0.05	(Figure	3c).

Differences	between	balanced	(dog	learning	and	orange	trees)	
versus	unbalanced	(allometric	scaling	and	plant	water	stress)	data-
sets	were	preserved	(Figure	3),	as	was	the	effect	of	group	size.	In	par-
ticular,	the	allometric	scaling	and	dog	learning	examples	supported	
large	group	sizes	that	yielded	4,704	and	870	pairwise	comparisons,	
respectively,	many	more	than	the	maximum	(190)	considered	in	the	
simulation	experiment.	The	allometric	scaling	example's	large	group	
size	clearly	impacted	the	FWER	(Figure	3c),	and	the	high	FWER	is	

consistent	with	the	predictions	generated	by	the	simulation	exper-
iment	for	large	K	(Figure	S4B,	Supporting	Information).	In	practice,	
however,	 it	 is	 probably	unlikely	 that	one	would	 compare	multiple	
parameters	among	all	49	plant	species	–	this	was	not	a	goal	of	the	
original	study	(Price,	Enquist,	&	Savage,	2007;	Price	et	al.,	2009)	–	
but	this	example	is	valuable	for	demonstrating	the	generality	of	the	
simulation	results.

We	 explored	 the	 application	 of	 the	 PPI	 to	 two	 other	 real- 
data	 examples,	 but	 they	 proved	 problematic	 because	 the	 non-	
hierarchical	 models	 did	 not	 converge.	 Our	 experience	 suggests	
that	 such	 mixing	 and	 convergence	 issues	 are	 especially	 likely	 to	
occur	 if	some	group	 levels	are	associated	with	small	sample	sizes	
(small	nk),	combined	with	a	large	within-	group	variance	(σ

2).	These	
issues	tend	to	disappear	when	the	group-	level	effects	are	modelled	
hierarchically.	Thus,	computation	of	PPI	for	real-	data	applications	
will	depend	on	whether	or	not	the	non-	hierarchical	version	can	be	
successfully	implemented.

4.6 | Other considerations

It	is	likely	that	our	approach	of	using	posterior	coverage	probabilities	–	
that	is,	evaluate	if	the	95%	CI	for	a	difference	contains	zero	–	to	evaluate	
different	 hypotheses	 may	 correspond	 to	 an	 equivalent	 selection	
procedure	using	a	 loss	 function	within	a	Bayesian	decision	 theoretic	
framework	(Berger,	1985).	While	it	may	be	useful	to	introduce	a	more	
formal	 procedure,	 our	 approach	 is	 commonly	 and	 easily	 employed	
by	ecologists.	Likewise,	some	may	consider	alternative	methods	that	
offer	an	explicit	accounting	of	model	(hypotheses)	uncertainty,	such	as	
Bayesian	model	averaging	(Hoeting,	Madigan,	Raftery,	&	Volinsky,	1999;	
Raftery,	Madigan,	&	Hoeting,	1997)	or	transdimensional	methods	that	
accommodate	 changing	 parameter	 dimension	 across	models	 (Sisson,	
2005).	However,	 these	procedures	obscure	parameter	 interpretation	
(Banner	&	Higgs,	2017;	Cade,	2015),	which	we	are	generally	interested	
in	maintaining.	The	potential	utility	of	using	formal	decision	theoretic	
or	model	selection	approaches	in	place	of	a	more	traditional	multiple	
comparisons	procedure	is	just	one	of	several	potential	solutions.	Other	
solutions	have	been	suggested	in	the	context	of	Bayesian	models	(e.g.,	
Li	 &	 Shang,	 2015;	 Nashimoto	 &	 Wright,	 2008;	 Shang	 et	al.,	 2008;	
Westfall	et	al.,	1997),	but	as	noted	previously,	they	introduce	additional	
concerns.	We	emphasize	that	our	goal	is	to	lend	insight	into	whether	
or	not	HB	models	are	 immune	to	multiplicity	 issues	–	they	are	not	–	
and	 to	offer	PPI	 as	 a	 tool	 for	 evaluating	when	alternative	modelling	 
approaches	or	adjustment	procedures	should	be	explored.
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