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A B S T R A C T

Monitoring drought in real-time using minimal field data is a challenge for ecosystem management and con-
servation. Most methods require extensive data collection and in-situ calibration and accuracy is difficult to
evaluate. Here, we demonstrated how the space-borne canopy “thermal stress”, defined as surface-air tempera-
ture difference, provides a reliable surrogate for drought-induced water stress in vegetation. Using physics-based
relationships that accommodate uncertainties, we showed how changes in canopy water flux from ground-based
measurements relate to both the surface energy balance and remotely-sensed thermal stress. Field measurements
of evapotranspiration in the southeastern and northwestern US verify this approach based on sensitivity of
evapotranspiration to thermal stress in a large range of atmospheric and climate conditions. We found that a 1 °C
change in the thermal stress is comparable to 1–1.2 mm day−1 of evapotranspiration, depending on site and
climate conditions. We quantified temporal and spatial sensitivity of evapotranspiration to the thermal stress and
showed that it has the strongest relationship with evapotranspiration during warm and dry seasons, when
monitoring drought is essential. Using only air and surface temperatures, we predicted the inter-annual anomaly
in thermal stress across the contiguous United States over the course of 15 years and compared it with con-
ventional drought indices. Among drought metrics that were considered in this study, the thermal stress had the
highest correlation values. Our sensitivity results demonstrated that the thermal stress is a particularly strong
indicator of water-use in warm seasons and regions. This simple metric can be used at varying time-scales to
monitor surface evapotranspiration and drought in large spatial extents in near real-time.

1. Introduction

Increasing frequency, magnitude, and duration of droughts high-
light the need for rapid assessment and monitoring (Clark et al., 2016;
Tang et al., 2014; Vose et al., 2016). Increases in tree mortality (Allen
et al., 2010), declines in forest health (Guarín and Taylor, 2005) and
changes in species composition (Klos et al., 2009), are expected with
increasing droughts (Novick et al., 2015; Schwantes et al., 2017). De-
terministic energy balance methods for estimating land surface water-
budget have been continuously improved over the past decades
(AghaKouchak et al., 2015; Bastiaanssen et al., 1998a, b; Mu et al.,
2011; Wang and Dickinson, 2012). However, the spatiotemporal sen-
sitivities of these approaches and their stochasticity are yet to be
quantified (Bastiaanssen et al., 2005; Yang et al., 2013).

Challenges associated with direct measurement of evapotranspira-
tion have motivated the development of techniques to simplify calcu-
lations and/or minimize the number of measurements needed to eval-
uate evapotranspiration. The current indices used to monitor
evapotranspiration require extensive calibration (Courault et al., 2005)
and are typically available only after the fact (Allen et al., 2011;
Anderson et al., 2008; Beguería, 2017; Teixeira et al., 2009). Para-
metrization methods can be categorized into three approaches: climate-
based, vegetation-based, and energy-based. Climate-based methods rely
on atmospheric demand (e.g. vapor-pressure deficit) and do not con-
sider the cumulative withdrawal of soil moisture by plants (Saha et al.,
1986) (as imbedded in several drought severity indices such as PDSI,
SPI, and SPEI). Vegetation-based methods estimate surface evapo-
transpiration from canopy spectral reflectance and vegetation indices,
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such as the normalized difference vegetation index (NDVI) (Nagler
et al., 2003) (e.g., MODIS DSI). These methods suffer from errors that
result from disturbance (Wardlow et al., 2016), such as forest harvest,
pathogen and insect attack, or damage due to extreme climate events
that are not associated with drought. Vegetation-based methods do not
detect rapid changes in evapotranspiration, due to the delay between
the onset of drought and plant response (Chiesi et al., 2013) (e.g., DSI
and MODIS ET). Energy-based techniques conserve energy flux to and
from the earth surface (Yang et al., 2013). In other words, surface en-
ergy indicators can be used as reliable surrogates to monitor the rate of
evapotranspiration (Kustas et al., 2011) and identify drought induced
water stressed areas (Anderson et al., 2008; Kustas and Anderson,
2009), at large spatial extents (Norman et al., 2016). Although, de-
terministic energy-based methods have been used in monitoring eva-
potranspiration at different scales (Anderson et al., 2007; Norman et al.,
1995) and for different vegetation densities (French et al., 2005; Li
et al., 2005), stochastic approaches can improve the accuracy of these
models for varying conditions (Timmermans et al., 2007). However, our
understanding of the accuracy of these methods under different con-
ditions and ecoregions remains limited (Liou and Kar, 2014;
Abbaszadeh et al., 2018).

Surface energy balance can be described by the equality

= + − −λ ET R LI LO Hs t s t s t s t s t, , , , ,

where R, LI, and LO are net absorbed solar (shortwave) and incoming
and outgoing thermal (longwave) radiation, respectively. H is the sen-
sible heat flux, related to changes in the surface temperature, λ is the
specific latent heat of vaporization, and ET is the rate of evapo-
transpiration for location s and at time t (here taken in days). Ground
heat flux is accommodated as a loss in the R term (Choudhury et al.,
1987).

ET can be obtained from the energy balance equation when all other
energy components are known, but this is generally not the case (Price,
1980). R, LI, LO and H depend on other physical parameters of the
surface and atmosphere. In this section, we explain each energy com-
ponent and how they are related to the surface and atmospheric
properties. R depends on the surface albedo, canopy transmissivity, and
heat loss to the ground. R follows the relationship =R α SIs t s s t, , , where
αs is the canopy absorption factor at site s, and SI is the incoming solar
radiation. LI and LO are related to sky and surface emissivity and sur-
face (TS) and air (TA) temperatures by the Stefan-Boltzmann law
(Seyednasrollah and Kumar, 2013). Emissivity is the dimensionless
measure of ability to emit thermal energy. For simplicity, we assumed
broadband emissivity across wavelengths. Sky emissivity (εsky) ranges
from 0.6 for clear sky to above 0.9 for overcast (Flerchinger et al., 2009;
Prata, 1996; Seyednasrollah et al., 2013). While land surface emissivity
can vary largely depending on land use and conditions (Badenas, 1998;
Caselles et al., 1997; Jacob et al., 2004; Sobrino et al., 2008), surface
emissivity of forest canopy (εsur), however, is generally above 0.9
(Hewison, 2001; Male and Granger, 1981; Seyednasrollah and Kumar,
2013; Wilber et al., 1999). H depends on the air convective coefficient
and surface-air temperature difference, = −ΔT TS TA (i.e. ∝H ΔT ). SI
can be directly measured, but LI, LO and H are more difficult to obtain
at large scales and are often underestimated (Leuning and Foster, 1990;
Nagler et al., 2003). In most studies, H is estimated using the Bowen
ratio (e.g. Kalthoff et al. (2006)) or empirical canopy resistance (Lagos
et al., 2013). Net thermal flux (i.e. LI - LO) is often approximated solely
on the basis of air temperature, resulting in significant errors (Leuning
and Foster, 1990; Nagler et al., 2003). Penman (1948) and Monteith
(1964) were the first to use the energy balance approach to fully
parametrize evapotranspiration from a vegetated surface. However,
their model requires extensive meteorological data and calibration. The
Penman-Monteith model was later simplified by Priestley and Taylor
(1972) and Stone and Horton (1974), who neglected either H or R. This
simplification decreases model accuracy when H or R are of the same
order of magnitude (Ham et al., 1990; Jarvis and McNaughton, 1986;

Lagos et al., 2013).
Accounting for evaporative cooling can improve estimates of H and

hence canopy water use. For a given net radiation, the heat loss from
increasing ET is balanced by declining H and, thus, in thermal stress,
known as the “cooling effect”. Although the cooling effect of evapo-
transpiration has been studied in recent years (Ding et al., 2013;
Mildrexler et al., 2011a, b; Yang et al., 2013), the effect has not yet
been fully quantified at large regional scales and with seasonal varia-
tions. A qualitative comparison of the ΔT map with the seasonally
averaged NDVI (see Fig. S1 of the Supporting information) suggests how
vegetation distribution affects energy balance at the surface. Seasonally
averaged ΔT declines with increasing vegetation indices for all land
cover types. High vegetation cover and high evapotranspiration coin-
cides with the lowest ΔT, resulting in sharp changes in ΔT at changes in
vegetation cover. Although, surface albedo and thermal emissivity may
vary across regions, these strong patterns of ΔT are mainly related to
changes in the evaporative heat loss. In areas with negligible evapo-
transpiration due to the lack of water, plants, or both, the incoming
energy received as solar radiation is accumulated at the surface
(Mildrexler et al., 2011a), causing ΔT to increase. Similarly, water-use
results in the cooling effect. The magnitude is mainly determined by a)
varying convective heat transfer through variation in wind speed
(Gates, 1966), relative humidity (Gates, 1968), stomatal control of leaf-
water loss (Drake et al., 1970; Jones, 2013), leaf orientation (Clum,
1926), and leaf size (Geller and Smith, 1982); and b) variation in sen-
sible heat with varying insolation and air temperature (Pallas and
Harris, 1964).

Quantifying the variability of ΔT with evapotranspiration under
different conditions is needed to determine whether or not thermal
stress can be used for monitoring drought across climates and regions
(Anderson et al., 2007; Norman et al., 1995; Seguin and Itier, 1983).
Previous remote sensing efforts have used canopy temperature
(Norman et al., 2016), or cumulative degree days as indirect water-
stress indices (Jackson et al., 1977), requiring extensive site-specific
(Maeda et al., 2011) and climate-specific (Kalma et al., 2008) calibra-
tion efforts. We hypothesized that direct use of ΔT in the surface energy
balance (Bausch et al., 2011; Bright et al., 2017) might bring more
information on soil water status and stomatal conductance than is
available from conventional indices (Faver et al., 1989). If so, then
surface energy balance that predicts eddy-flux evapotranspiration data
from satellite data should improve drought-stress predictions, and a
spatiotemporal sensitivity analysis is critical.

This study presents a simple stochastic method based on surface
energy balance to predict evapotranspiration from remote sensing over
a wide range of atmospheric-demand and soil-moisture conditions. Our
model allows us to predict the spatial and temporal variability of eva-
potranspiration with remotely sensed surface-air temperature differ-
ence. We combine a physical model with remotely sensed data and a
Bayesian hierarchical model to estimate daily evapotranspiration at the
scale of a forest stand to the subcontinent. Our approach is unique in
accommodating uncertainties and requiring minimal satellite observa-
tion data to rapidly quantify surface water balance. Using space-borne
surface temperature, we demonstrate how forest thermal stress - de-
fined as surface-air temperature difference - allows us to monitor
drought at the continental scale, using the example of the contiguous
United States over the past 15 years. We use field data of evapo-
transpiration from sites across the southeastern and northwestern
United States to validate the model.

2. Material and methods

If space-based estimates are to provide estimates of drought stress,
they must predict synchronized evapotranspiration estimates from the
ground-based eddy flux data spanning a range of forest types. We
combine a physical model with remotely sensed data and a Bayesian
hierarchical model to estimate daily evapotranspiration in forest stands
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as basis for subcontinent-scale analysis. Our model is physically con-
sistent, probabilistically coherent, and can be implemented at large
spatial extents (Wardlow et al., 2016). The study consists of two parts,
a) Inference: modeling evapotranspiration from field and satellite ob-
servations at the stand scale, and b) Comparison: synthesizing thermal
stress anomalies and its sensitivity for drought monitoring at the con-
tinental scale and its comparison with conventional drought indices.

The primary analysis is based on in-situ measurements of climate
variables, evapotranspiration, and remotely sensed surface temperature
at five contrasting forest sites in the USA (see Table 1). The sites include
a wide range of climate and physiographic conditions with varying
species compositions. See Fig. S2 for the boundaries of physiographic
provinces. Climate data, including solar radiation, air temperature, and
wind speed, were obtained from in-situ measurements and the Ameri-
Flux dataset (https://fluxnet.ornl.gov). In the second part, we mapped
thermal stress anomalies across the USA for fifteen years and compare it
with conventional drought indices.

2.1. Data

Data for the model and the inter-comparison sections are presented
in Tables S1 and S2, respectively. Site selection was based on three
criteria: 1) availability of evapotranspiration and meteorological data
including air temperature, solar radiation, thermal radiation, and wind
speed, 2) continuous forest canopy coverage for at least an area larger
than the size of 3× 3 MODIS pixels to justify the usage of surface
temperature as canopy temperature, and 3) excluding young stands and
low-density forests. Study sites are distributed in the northwestern and
southeastern USA (Table 1). Evapotranspiration and meteorological
data used to fit the model were collected from flux towers using the
eddy-covariance technique. Canopy temperature data were obtained
from land surface temperature (MOD11A1, daily, 1 km resolution) from
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)
(DAAC, 2015). Satellite measurements of surface temperature were
synchronized with the hourly evapotranspiration and air temperature
data. For this integration with satellite data, mid-day measurements of
evapotranspiration were used to summarize variation of daily average
evapotranspiration (Gupta and Saxena, 1976) and to coincide with the
timing of satellite imagery (approximately between 11:30 to 13:30,
everyday).

Data used in the continental synthesis of drought stress were ob-
tained from publicly available datasets, with full coverage of the con-
tinental USA. Surface temperature data from MODIS MOD11C1 (global,
0.05° resolution) are available since the year 2000. Temporal and
normal air temperature data were obtained from PRISM Climate Data at
800-m resolution (PRISM, 2004). Radiation values were calculated
from cloud cover data as explained in Appendix A. Cloud cover data
from the Global Cloud Cover dataset (http://www.earthenv.org/cloud)
incorporate 15 years of twice-daily cloud cover observations at 1000m
resolution (Wilson and Jetz, 2016). Land cover data were obtained from
the National Land Cover Database 2011 (Homer et al., 2015) from
Multi-Resolution Land Characteristics Consortium (MRLC). Monthly
NDVI data were acquired from MODIS product MOD13 C3. Drought
indices are obtained from multiple sources listed in Table S2.

Drought indices to compare against thermal stress anomalies were
obtained from publicly available datasets. The terrestrial evapo-
transpiration index (ET) was collected from the MODIS Global
Evapotranspiration Project. Soil moisture (SM) data were collected
from the Climate Prediction Center of NOAA. The Global Terrestrial
Drought Severity Index (DSI) was collected from Numerical
Terradynamic Simulation Group. The Standardized Precipitation Index
(SPI) was obtained from the National Center for Atmospheric Research
(NCAR). The Standardized Precipitation-Evapotranspiration Index
(SPEI) was obtained from the Spanish National Research Council
(CSIC). The Palmer Drought Severity Index (PDSI) was obtained from
the University Corporation for Atmospheric Research (UCAR). All dataTa
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were obtained for the summer season (July to September) across the
US. Sources of data are shown in Table S2.

2.2. Evapotranspiration model

A process-based model was developed to infer and predict evapo-
transpiration from the energy-balance. The data obtained from five
study sites across the continental USA were used in the model. All data
were used in a consolidated model where the model parameters are site-
specific. The average model was fitted with parameters that were not
site specific. Predicted evapotranspiration data for each site were ob-
tained by leave-one-out cross-validation method. We repeated this
procedure for all the study sites to avoid site-specific biases. Based on
the energy conservation law, evapotranspiration depends on solar ra-
diation, thermal radiation, and sensible heat. The ground heat flux is
assumed to be proportional to solar radiation (Choudhury et al., 1987).
ET (mm/day) data from eddy flux sites can be described by a Bayesian
model, censored at zero, and a Gaussian error (τ2), having likelihood

∼

= + − −

ET N μ τ

μ

( , )s t s t s

s t
R LI LO H

λ

, ,
2

,
s t s t s t s t, , , ,

where N(μ,τ2) is the normal distribution with mean (μ) and standard
deviation (τ) values. s and t are site and time indices. λ is the latent heat
of vaporization and relates to air temperature (TA) as

= −λ TA2502 2.308 in J. g−1. Energy fluxes can be obtained from:

=R α SIs t s s t, ,

=LI σ εsur TAs t s s t, ,
4

=LO σ εsky TSs t s s t, ,
4

=H h ΔTs t s t s t, , ,

=h c Ws t s s t
a

, ,
s

= −ΔT TS TAs t s t s t, , ,

where αs is the solar absorption coefficient for site s. σ is the Stefan-
Boltzmann constant and = × − − −σ Wm K5.67 10 8 2 4. εskys and εsurs are
emissivity coefficients for sky and surface at site s, respectively. TS and
TA are surface and air temperatures, respectively. W is wind speed (m/
s). h is the convective heat transfer coefficient (Wm−2 K-1). a and c
terms are constants for the convective heat transfer. The prior dis-
tributions of the parameters are assumed to be uniform within the
physically valid ranges:

σ IG˜ (0.1, 0.1)s
2

∈α [0, 1]s

∈εsky [0.60, 0.85]s

∈εsur [0.90, 0.99]s

∈ ∞c [0, )s

∈a [0.5, 0.8]s

where IG denotes the inverse gamma distribution. Gibbs sampling
(Markov chain Monte Carlo) was implemented for posterior distribu-
tions of all the parameters. Sensitivity time-series and maps were gen-
erated for the derivative of the fitted model with respect to ΔT and TS.
Assuming = −∂

∂ 1TA
ΔT , = +∂

∂ 1TS
ΔT , and ≈∂

∂ 0λ
TA

(1 / ) , the sensitivity values of
evapotranspiration to ΔT , and TS are obtained from:

⎛
⎝

∂
∂

⎞
⎠

= − + +ET
ΔT λ

σ εsky TA σ εsur TS h1 . (4. . . 4. . . )
s t

s s t s s t s t
,

,
3

,
3

,

Fig. 1. Comparison of predicted vs. observed evapotranspiration flux per site for out-of-sample data. Evapotranspiration at each site is predicted based on a fitted
model on all the other sites. For each graph, the gray dots are measured mid-day evapotranspiration data. The boxes and whiskers indicate 50% and 95% of the
predictive interval. The red solid line indicates the 1:1 relationship. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).
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and

⎛
⎝

∂
∂

⎞
⎠

= − +ET
TS λ

σ εsur TS h1 . (4. . . )
s t

s s t s t
,

,
3

,

For the second part of the study, inter-annual anomalies in ΔT were
compared with inter-annual anomalies in soil moisture and evapo-
transpiration from climate and weather prediction models. These
anomalies values were obtained as the difference between temporal
data and historical monthly averages.

3. Results

Cross validations of the model at the study sites showed predicted
evapotranspiration (ET) data are reliable across a broad range of soil
and climate conditions (Fig. 1). The posterior distribution shows dif-
ferences and similarities across sites (Fig. 2). Low solar absorption (α)
at the Mary’s River Fir site is explained by a partial clear-cut that in-
creased surface albedo. Duke Hardwoods, Duke Loblolly, and Chestnut
Ridge showed slightly higher α than the Loblolly Plantation site, where
canopy coverage is sparse. We did not expect sky and surface emissivity
coefficients (εsky and εsur) to agree between sites, due to differences in
cloud cover (controlling εsky) and species composition (controlling
εsur) across sites. Low εsky estimates for Duke Hardwood, Duke

Loblolly, and Chestnut Ridge sites were expected due to lower cloud
cover compared to Mary’s River Fir and Loblolly Plantation sites (Fig. 2-
b). Variation in εsur spans the expected range of 0.9–1 across sites. The
values of εsur were somewhat above the average for Duke Hardwood
and Chestnut Ridge sites, which are dominated by deciduous species
(Fig. 2-c). Mary’s River Fir and Loblolly Plantation sites showed slightly
lower εsur where evergreens are abundant (almost pure evergreen).
Although the Duke Loblolly is also mainly evergreen (˜75%), the
MODIS pixel used to extract surface temperature data partially overlaps
with an adjacent mixed deciduous forest, explaining the intermediate
εsur value.

All four energy components (i.e. solar, incoming and outgoing
thermal radiations and sensible heat) make considerable contributions
to variation in evapotranspiration, indicating the importance of each
term for estimating ET (Fig. S3). Although, sensible heat is lower than
the other three fluxes, it still makes a significant contribution to the
energy balance.

The total effect of ΔT varies seasonally with wind speed and surface
and air temperatures. ET increases with decreasing ΔT or TS and with
increasing TA. A sensitivity analysis of ΔT and surface temperature
effects over a typical year (with historical average seasonal variations)
at five studied sites (Fig. 3) showed that the ΔT effect is weakest (least
negative) during the cold season (approximately days 1–20 and
340–365). With increasing temperature in spring, a 1 °C change in the
ΔT can potentially relate to 1–1.25mm day−1 changes in evapo-
transpiration (variation of sensitivity in Fig. 3). During late spring and
early summer (after day 170), the ΔT and surface temperature controls
continue to increase, as solar radiation decreases, but temperature
continues to rise. This trend persists until the onset of cooling in au-
tumn (after day 210), and then gradually becomes less negative until
the end of the year. Despite difference between sites’ climates and
ecosystems, the sensitivity trends were similar across sites.

Thermal stress sensitivity varies with climate and between ecor-
egions. Based on the historical average of air and surface temperature,
we quantified variability of summer (July, August and September) ET
with ΔT and surface temperature (TS) across the USA conditional on a
continuous forest cover (Fig. 4). Spatiotemporal variation of ET with ΔT
is driven by variation in air and surface temperature (Fig. 4-a). ΔT
sensitivity is highest (most negative) in northern plateaus and across
the southern regions, and lowest in cool areas of the north and moun-
tainous regions. The overall spatial thermal stress sensitivity varies
from 1.1 to 1.2mm/day/°C. Sensitivity of ET to TS is everywhere ne-
gative, but also varies regionally (Fig. 4-b).

To identify regions with severe drought, satellite observation of
surface temperature and assimilated air temperature data were used to
quantify thermal stress anomalies over the last 15 years (ΔT in Fig. 5).
For example, the results for 2007 show considerable thermal stress
anomalies not only in much of the western US, but also in northern
areas of northeastern US and parts of the southeastern Coastal Plain.

Anomaly values of ΔT were compared with anomalies of several
indices and metrics including the terrestrial evapotranspiration (ET,
MODIS), soil moisture (SM, NOAA), drought severity index (DSI,
MODSI), the Standardized Precipitation Index (SPI, NCAR), the
Standardized Precipitation-Evapotranspiration Index (SPEI, CSIC), and
the Palmer Drought Severity Index (PDSI, UCAR). Since all of these
quantities are commonly used for drought monitoring, they should
agree on the general patterns of severe water shortage across the re-
gions. However, site-to-site correlations with one another never rise to
the level of 0.5 (except for the correlation between similar indices SPI
and SPEI; see Fig. 6). By contrast, all correlations with ΔT exceed 0.5.
Finally, ΔT is more highly correlated with evapotranspiration from
MODIS (ET) and soil moisture from NOAA (SM) than are any metrics
currently in use for drought monitoring (Fig. 6).

Fig. 2. Posterior distributions of the model parameters when fitted to each site
independently and for all sites in combination.
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4. Discussion

Remotely sensed surface-air temperature difference (ΔT) allowed us
to identify water stressed regions from energy balance relationships and
with more accuracy than conventional drought indices such as soil
moisture anomalies, DSI, or PDSI. This was evident by comparing the
sum of one-to-one correlation values between all of the studied metrics.
The ΔT anomaly is a strong indicator of drought, particularly in warm
and dry seasons and regions, i.e., the times and places drought mon-
itoring is needed most. In addition, unlike many remotely sensed ap-
proaches that use near infra-red and thermal infra-red bands (Kustas
and Anderson, 2009), vegetation indices or gross primary productivity
to estimate evapotranspiration (Hilker et al., 2013; Price, 1982; Yang
et al., 2013), this method is physically consistent and can be im-
plemented at large spatial extents. Our ground-based analysis of eva-
potranspiration validated the thermal stress and showed how energy
fluxes compare in terms of their contributions to evapotranspiration
and allowed for extensive sensitivity analyses.

As we expected, results showed that all energy flux terms, including
net solar and thermal radiation and sensible heat, contributed to surface
energy balance with comparable magnitudes (Fig. S3). The effects of
energy components vary across regional climate gradients and site
physical properties, including α, εsur and εsky. Slightly stronger ab-
sorption of solar radiation at deciduous sites Duke Hardwood and
Chestnut Ridge than mainly evergreen sites Loblolly Plantation and
Mary’s River Fir are explained by differences in surface albedo (Chapin
et al., 2011; Hollinger et al., 2010), vegetation density and ground heat
flux across sites (Fig. 2-a).

Sky cloudiness, surface emissivity, and surface and air temperatures
are the most important influences on net thermal radiation. The net
effects of thermal radiation on evapotranspiration may depend on
several factors. Thermal radiation consists of two main components, the
incoming thermal energy from the surrounding atmosphere (LI) and the
emitting thermal energy from canopy surface (LO). The incoming
thermal energy (LI) is proportional to TA4 and sky emissivity coefficient
(εsky). The emitting thermal energy (LO) varies with TS4 and the

surface emissivity coefficient (εsur). While εsky may vary with atmo-
spheric conditions and cloud cover, εsur does not. With increasing cloud
cover, εsky increases. Therefore, regions with fewer days of clear sky
conditions may experience a large effect of thermal radiation on eva-
potranspiration and surface energy balance. If so, then the coastal sites
may experience a larger εsky and LI effect on evapotranspiration than
do sites in the Piedmont and the Valley and Ridge (Fig. 2-b). Slight
differences in εsur across sites may be related to surface emissivity of
evergreen and deciduous species. LOmay play a stronger role in surface
energy balance on sites that are dominated by species with high thermal
emissivity.

We demonstrated that evapotranspiration decreases with thermal
stress and surface temperature through sensible heat and the emitting
thermal radiation (Fig. 3). By quantifying uncertainty in the Bayesian
model, we showed that the magnitude of the ΔT effect is comparable to
the effects of solar radiation and air temperature. The ΔT effect results
as sensible heat (H), the convective energy transfer from the leaf sur-
face. H depends on the surface-air temperature difference, wind speed,
thermal conductivity, and heat capacity of the surrounding air. The ΔT
effect is amplified in windy days as convective heat transfer increases.
As wind speed increases, air flow becomes turbulent, increasing sen-
sible heat (Maes and Steppe, 2012) and, thus, the ΔT effect on windy
days and in regions where windy weather is common. An amplifying
effect of ΔT with increasing air temperature and decreasing solar ra-
diation is understood from the contribution of sensible heat to surface
energy balance relative to that of solar radiation. The ΔT effect varies
seasonally, as it interacts with changing air and surface temperatures
(Fig. 3). The highest sensitivity of surface energy balance to ΔT occurs
in late summer, when it is most needed to monitor droughts.

Variability of evapotranspiration with ΔT varies regionally (Fig. 4),
mainly caused by differences in climate and surface temperature. Low
temperatures in the north and at high elevations result in low ΔT sen-
sitivity. High cloud cover and northern latitudes receive low net solar
radiation, thus amplifying the relative ΔT effect. Our results indicated
that thermal stress may account for evapotranspiration variation in the
range from 1.0 to 1.25mm/day/°C (Figs. 3 and 4). In other words,

Fig. 3. Seasonal variation of sensitivity of evapotranspiration with respect to thermal stress (ΔT) and surface temperature (TS) at the five study sites. Shaded areas are
95% predictive intervals. The ΔT effect remains strong throughout summer when monitoring drought is most important. Note the inverted y axis.
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1mm/day of evapotranspiration may contribute a “cooling effect” of 0.8
to 1 °C. This is lower than the estimates for croplands (Pallas and Harris,
1964; Tew, 1962) and forests (Ballinas and Barradas, 2016; Rahman
et al., 2017) in previous studies. The effect is largest near coastlines and
in the south where temperature is high.

Remotely sensed thermal stress showed the strongest correlation
with conventional drought indices (Figs. 5 and 6). The fact that thermal
stress was able to identify regions of drought severity across the entire
United States demonstrated how integrating ΔT anomalies, calibrated
with measured evapotranspiration data from multiple locations, can
improve monitoring. ΔT anomalies and evapotranspiration anomalies
need not be equal, but rather, proportional to each other in the energy-
balance model at the times when evapotranspiration is occurring
(Fig. 6). An extended mathematical description of the ΔT-ET relation-
ship is detailed in Appendix B. Given this proportionality, ΔT alone is
sufficient as a near-real-time drought monitor, whereas the model is
needed to translate ΔT to evapotranspiration anomalies. The high cor-
relation values ΔT anomalies with conventional drought metrics
showed that ΔT anomaly can be used as a single indicator of drought
when solar radiation data are lacking. This effect becomes even more
important in regions with stable year-to-year solar radiation (negligible
radiation anomalies) and warming climates (high surface and air tem-
perature anomalies).

ΔT anomalies can be used for instantaneous and long-term mon-
itoring of drought at coarse spatial scales (Inoue et al., 1994). We have

implemented a live interface that visualizes monthly thermal stress as
well as its monthly anomalies and normal variables for the contiguous
United States in near real-time. The interface can be access online via
https://bnasr.github.io/droughteye/. The interface will be auto-
matically updated as new satellite data become available on a monthly
basis. The data are also publicly available for download through the
same interface. The code is available from Seyednasrollah (2018).

5. Conclusions

We demonstrated how remotely sensed thermal stress anomaly can
be used as a simple but reliable metric for near real-time monitoring of
drought at large spatial extents. Our sensitivity results showed that
thermal stress has the strongest relationship with evapotranspiration in
warm regions and seasons, where and when monitoring drought is most
critical. We presented a live implementation of thermal stress across the
contiguous United States that enables drought monitoring in near real-
time.

While thermal stress anomalies can be used as a single metric for
water stress, the accuracy in predicting forest water use may improve
with remotely sensed vegetation density estimates and surface physical
properties such as albedo and emissivity, and with increased spatial
resolution. Current global satellite–based surface temperature data that
include up to 1.4 °C measurement error (Sanchez et al., 2007) can be
improved with high resolution surface temperature data (Nagler et al.,

Fig. 4. Geographic sensitivity of evapotranspiration to (a) ΔT, and (b) TS in the United States. The ΔT effect is highest in warmer regions, southern sites, coastal areas,
and low- to mid-latitude plateaus. Solid black lines indicate the boundaries of physiographic provinces (see Figure S2 for the boundaries of physiographic provinces).
The yellow color indicates high (more negative) ΔT or TS sensitivity. Areas with no tree coverage are shown in the white color. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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2005). The results from this study in forest areas could modify para-
metrization techniques that estimate terrestrial energy balance of ve-
getation cover (Alkama and Cescatti, 2016), surface albedo, and eva-
potranspiration (Zhu and Zeng, 2015).

Acknowledgments

The project was funded by the Macrosystems Biology and Coweeta

LTER programs of the National Science Foundation (NSF-EF-1137364,
NSF-EF-1550911). This research was also supported by a grant from the
Duke Provost's Collaboratories initiative, and from the National Science
Foundation (NSF-IOS-1754893). The evapotranspiration data were
provided courtesy of the AmeriFlux sites: US-ChR, US-Dk2, US-Dk3, US-
MRf, and US-NC2. The authors thank Chase Nunez and Bradley
Tomasek for their constructive comments on the manuscript.

Fig. 5. The anomalies in remotely sensed ΔT compared with anomalies in conventional drought indices and state-of-the-art model outputs from 2001-2008. ΔT
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Appendix A. Calculation of solar radiation

Incoming solar radiation is calculated as:

= −I G C cos ψ. (1 0.75 . ). ( )s t s t s t,
3

,

where the subscripts s and t indicate site and time, respectively. I is the incoming solar radiation, G is top of the atmosphere solar radiation, C is the
cloud coverage, and ψ is the solar zenith angle (Seyednasrollah and Kumar, 2014; Seyednasrollah et al., 2013). G for the N’th day of year is evaluated
from (Kalogirou, 2009):

= ⎡
⎣

+ ⎛
⎝

⎞
⎠

⎤
⎦

G K cos D. 1 0.033 . 360
365t

where =K W m1366.1 / 2 is solar constant and D is the day of year. ψ is approximated by solving:

= + ° −cos ψ sin L sin δ cos L cos δ cos AST( ) ( ). ( ) ( ). ( ). (15 . ( 12))s t s t s t,

where L is the site latitude, δt is solar declination angle (in degree), = ° +( )δ sin D23.45 (284 )t
360
365 , and AST is the apparent solar time (in hours).

Appendix B. Near-unity correlation between ET anomalies and ΔT anomalies

The daily anomalies can be written as

= + − −λ δET δR δLI δLO δH. (1)

where anomaly δ indicates the inter-annual deviation from the historical mean on a given day. Upon substituting for LI, LO and H terms (see main
text), we obtain:

= + − −λ δET δR σ εsky δ TA σ εsur δ TS h δ T. ( ) ( ) (Δ )4 4

Assuming solar radiation anomalies are negligible, ≈δR 0 and TA = TS – ΔT, we have

= − − −λ δET σ εsky δ TS T σ εsur δ TS h δ T. ( ( Δ ) ) ( ) (Δ )4 4

which expands to:

= − + − + − −λ δET σ εsky δ TS TS T TS T TS T T σ εsur δ TS h δ T. ( 4 . . Δ 6. . Δ 4. . Δ Δ ) ( ) . (Δ )4 3 2 2 3 4 4 (2)

Replacing

≈δ TS TS δTS( ) 4. ¯ .4 3

Fig. 6. Correlation values between thermal stress anomalies and conventional
drought indices and predicted evapotranspiration (ET). Average correlation
values are shown for each index. ΔT shows the highest average correlation with
all other metrics. Acronyms for the drought indices are SM= soil moisture
anomaly, DSI=Drought Severity Index, SPI= Standardized Precipitation
Index, SPEI= Standardized Precipitation-Evapotranspiration Index, and
PDSI= The Palmer Drought Severity Index.
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≈ +δ TS T TS δ T TS T δTS(4. . Δ ) 4. ¯ . (Δ ) 12. ¯ . Δ̄ .3 3 2

≈ +δ TS T TS T δ T TS T δTS( 6. . Δ ) 12. ¯ . Δ̄ . (Δ ) 12. ¯ . Δ̄ .2 2 2 2

≈ +δ TS T TS T δ T T δTS(4. . Δ ) 12. ¯ . Δ̄ . (Δ ) 4. Δ̄ .3 2 3

≈δ T T δ T(Δ ) 4. Δ̄ . (Δ )4 3

where bar indicates annual average values, we rewrite Eq. (2) as:

≈ − + − − + − + − + −δTS δ Tλ δET σ εsky TS TS T TS T T εsur TS σ εsky TS TS T TS T T h. 4. . ( . [ ¯ 3. ¯ . Δ̄ 3. ¯ . Δ̄ Δ̄ ] . ¯ ). (4. . . [ ¯ 3. ¯ . Δ̄ 3. ¯ . Δ̄ Δ̄ ] ). (Δ )3 2 2 3 3 3 2 2 3

Because ≫TS TΔ and, thus, ≫ ≫ ≫TS TS T TS T T. Δ .Δ Δ3 2 2 3, low-order terms in the TS term disappear,

≈ − − +δET δTS δ Tλ σ εsky εsur TS σ εsky TS h. 4. . ( ). ¯ . (4. . . ¯ ). (Δ )3 3 (3)

with the following comments on parameters and variables:

• σ is the Stefan-Boltzmann constant and equals × − − −Wm K5.67 10 8 2 4.

• Typical summer values for S may range from 300 K to 330 K and hence ≈ ×TS̄ 3 103 7.

• εsur is between 0.9 to 0.98.

• εsky is between 0.6 to 0.9.

• h ranges from 5 to 30W.m2. K−1

The above typical ranges show the δ T(Δ ) term in Eq. (3) is substantially larger than the δTS term, and proportional to ET, thus explaining the
expected correlation between ET anomalies and TΔ anomalies.

Appendix C. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.agrformet.2019.02.016.
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