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Abstract

While we often assume tree growth–climate relationships are time‐invariant, impacts of

climate phenomena such as the El Niño Southern Oscillation (ENSO) and the North

American Monsoon (NAM) may challenge this assumption. To test this assumption, we

grouped ring widths (1900‐present) in three southwestern US conifers into La Niña peri-

ods (LNP) and other years (OY). The 4 years following each La Niña year are included in

LNP, and despite 1–2 year growth declines, compensatory adjustments in tree growth

responses result in essentially equal mean growth in LNP and OY, as average growth

exceeds OY means 2–4 years after La Niña events. We found this arises because growth

responses in the two periods are not interchangeable: Due to differences in growth–cli-
mate sensitivities and climatic memory, parameters representing LNP growth fail to pre-

dict OY growth and vice versa (decreases in R2 up to 0.63; lowest R2 = 0.06). Temporal

relationships between growth and antecedent climate (memory) show warmer springs

and longer growing seasons negatively impact growth following dry La Niña winters, but

that NAM moisture can rescue trees after these events. Increased importance of mon-

soonal precipitation during LNP is key, as the largest La Niña‐related precipitation defi-

cits and monsoonal precipitation contributions both occur in the southern part of the

region. Decreases in first order autocorrelation during LNP were largest in the heart of

the monsoon region, reflecting both the greatest initial growth declines and the largest

recovery. Understanding the unique climatic controls on growth in Southwest conifers

requires consideration of both the influences and interactions of drought, ENSO, and

NAM, each of which is likely to change with continued warming. While plasticity of

growth sensitivity and memory has allowed relatively quick recovery in the tree‐ring
record, recent widespread mortality events suggest conditions may soon exceed the

capacity for adjustment in current populations.
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1 | INTRODUCTION

Large‐scale climate phenomena such as the El Niño Southern Oscilla-

tion (ENSO) and the North American Monsoon (NAM) affect ecosys-

tem function, including forest and woodland dynamics and tree

growth across the western United States (US), primarily via associ-

ated drought impacts (Cole, Overpeck, & Cook, 2002; Kitzberger,

Swetnam, & Veblen, 2001). ENSO, an intensively studied global cli-

mate pattern, influences large‐scale weather patterns in the western

United States (D'Arrigo & Jacoby, 1991; Dettinger, Cayan, Diaz, &

Meko, 1998). While ENSO also influences weather worldwide (Phi-

lander, 1990; Rasmusson & Wallace, 1983; Walker, 1924; Wyrtki,

1965), impacts on winter precipitation in the western United States

are particularly well‐documented. South of approximately
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40°latitude, El Niño years are associated with above average winter

precipitation, while La Niña years are associated with winter precipi-

tation deficits (Brown & Comrie, 2004; Dettinger et al., 1998). The

effects of ENSO on ecological processes have been extensively stud-

ied (Stenseth et al., 2002), including a subset of studies evaluating

the impacts of ENSO on forest productivity and tree growth.

In the southwestern United States (“Southwest”), the negative

phase (La Niña) and its effects on drought probability are key drivers

of regional forest health and growth (Brown & Wu, 2005; Swetnam

& Betancourt, 1990, 1998). Multi‐year La Niña events are implicated

in the majority of major regional droughts in the instrumental record

in this region (Cole et al., 2002), with clear implications for tree

growth (Touchan, Woodhouse, Meko, & Allen, 2011). Recent work,

however, indicates that understanding growth responses to climate

requires recognition of multi‐year legacy effects of drought on tree

growth (Anderegg, Schwalm et al., 2015; Peltier, Fell, & Ogle, 2016)

and terrestrial productivity more generally (Schwalm et al., 2017),

particularly as multi‐year droughts occur more frequently (Seager et

al., 2007). However, the impacts of annual drought legacy effects on

monthly to seasonal growth–climate sensitivities have not been

quantified. Exceedance of species climatic limits may lead to strongly

altered growth–climate sensitivities preceding mortality (Cailleret et

al., 2017); however, within species tolerances, variability in sensitivi-

ties could occur regularly. If the combination of ENSO‐related winter

drought and variation in summer monsoon patterns associated with

the NAM are driving plasticity (i.e., climatic context dependent vari-

ability) in tree growth–climate responses, this could have significant

effects on tree, woodland, and forest productivity.

The NAM, a pattern of strong convective summer thunder-

storms, typically initiates in early July and continues through

September in the Southwest (Higgins, Chen, & Douglas, 1999). The

NAM creates a summer precipitation gradient across the region, with

southeastern Arizona and southwestern New Mexico receiving com-

paratively high monsoonal precipitation (Douglas, Maddox, Howard,

& Reyes, 1993). Variation in NAM onset date and strength affect

tree‐ring development and growth patterns, including latewood den-

sity and width, occurrence of false latewood bands, and latewood
13C (Babst et al., 2016; Griffin et al., 2013; Leavitt, Wright, & Long,

2002). Additionally, the NAM contribution to annual precipitation

totals varies strongly in the Southwest, and oxygen and carbon iso-

topes show differential use of winter vs summer moisture sources

across this gradient in precipitation seasonality (Szejner et al., 2016).

To better predict carbon fluxes in Southwest forests, tree growth

responses to NAM‐driven summer precipitation and ENSO‐driven
winter precipitation anomalies must be studied simultaneously.

Importantly, although strong NAM years and strong La Niña years

tend to occur out of phase (Stahle et al., 2009), this correlation likely

varies in the record (Griffin et al., 2013), with no clear mechanistic

linkage.

To better understand how ENSO‐related winter droughts and

their legacies control tree growth in the context of summer precipi-

tation variability related to the NAM, we apply the stochastic ante-

cedent modeling (SAM) framework (Ogle et al., 2015) to tree‐ring

data from 364 sites across the Southwest, for three dominant coni-

fers (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii),

obtained from the International Tree‐Ring Data Bank (ITRDB). We

subset site‐years according to either “La Niña periods” (the year of

and 4 years following a La Niña event) or “other years” (all other

years in the record) and evaluated the response of tree growth (ring

widths) to antecedent (past) climate up to 57 months prior to growth

cessation. We address the following questions: (Q1) How do the cli-

matic sensitivities of three conifers representing three widespread

Southwest forest types (pinyon‐juniper woodland, ponderosa pine

forest, mixed conifer forest) change during La Niña periods com-

pared to other years? (Q2) Do the timescales of influence (or “mem-

ory”) of monthly or seasonal climate variables (e.g., July or monsoon

precipitation) differ during La Niña periods? And (Q3) how do these

differences vary across space in relation to the NAM gradient? We

hypothesize that tree growth sensitivity to climate and the impor-

tance of monthly and seasonal climate variables will reflect legacies

of La Niña events (winter drought), but that species will respond dif-

ferently, as duration of legacy effects (i.e., recovery time) varies

between these species (Peltier et al., 2016). We also hypothesize

that spatial variation related to Q3 will correlate with relative mon-

soon contribution to annual precipitation totals (Peltier, Barber, &

Ogle, 2017). By applying the model to century‐long time‐series of

tree‐ring widths and monthly climate data, there is potential to gain

simultaneous understanding of how intra‐annual variability in climate

can influence tree growth and climatic memory in the context of

large‐scale climate patterns.

2 | MATERIALS AND METHODS

2.1 | Data sources and preparation

Ring width data from the ITRDB were incorporated into a relational

database (Microsoft Access) in early 2016. We used Pinus edulis

Engelm. (pinyon pine), P. ponderosa Dougl. Ex. Laws. (ponderosa

pine), and Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) ring

widths. We extracted data from sites occurring in states (California,

Nevada, Utah, Arizona, Colorado, and New Mexico) that experience

precipitation deficits during La Niña winters (Brown & Comrie, 2004;

Dettinger et al., 1998; Douglas et al., 1993). Observations prior to

1899 (888,948 ring widths) were used in detrending but discarded

prior to analysis given the lack of climate data prior to 1900. The

last ring width year available was 2012, resulting in a‐114 year

record (877,397 ring widths and 9,769 cores after filtering). Monthly

precipitation and mean monthly temperature (0.5° resolution) are

from the PRISM Climate Group (http://prism.oregonstate.edu, 2017).

Self‐calibrating Palmer drought severity index (hereafter, “PDSI,” 0.5°

resolution) was obtained from the West Wide Drought Tracker

(Abatzoglou, McEvoy, & Redmond, 2017).

We detrended raw ring widths for age effects using standard

methods (Fritts, 1976; Fritts & Swetnam, 1989) via the R package

dplR (Bunn, 2008). Detrending was accomplished by dividing ring

widths by a fitted curve—either modified negative exponential
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curves or, when this failed, flat lines—to remove age effects (and

adjust the core‐level mean to be equal to 1, approximately). We con-

structed a single “growth” chronology per site (unique to species) as

the average of all ring width indices (i.e., across cores) in a given

year, producing 365 age‐detrended chronologies (P. edulis: 101,

P. ponderosa: 143, P. menziesii: 121) containing a total of 31,585

annual ring width indices.

2.2 | Model description

Our application of the SAM model to tree growth chronologies is

modified from Peltier et al. (2017). Here, annual growth—chronol-

ogy‐level annual ring width index—is modeled as a linear response

to antecedent climate variables, which are constructed as weighted

averages of monthly climate over the current and preceding 4 years.

The unknown “antecedent weights” are estimated, allowing inference

on climatic memory (Ogle et al., 2015)—operationally defined here

as the temporal pattern of the response of tree growth to past cli-

mate—in addition to the growth sensitivities to climate (regression

coefficients). Previously, our application of this model documented

strong spatial variation in climatic sensitivities, first order autocorre-

lation, and baseline growth, which we suggested was driven in part

by the NAM gradient (Peltier et al., 2017). Here, we expand upon

this previous analysis to understand how La Niña drought may alter

growth–climate sensitivities and memory, and how these differences

may vary across species and space.

We binned growth years and associated climate covariates into

two categories: “La Niña periods” (hereafter, LNP) and “other years”

(hereafter, OY). La Niña years (Appendix S1, ~17% of record, 20 La

Niña events) were selected according to agreement between an

ENSO reconstruction (Li et al., 2013; <−1), NINO 3.4 sea surface

temperature anomalies (SSTA < −0.6), and the Oceanic Niño Index

(ONI < −0.5, NOAA). When ONI was the only record available

(2000‐present), ONI had to be <−0.75 to be considered a La Niña

year. We define LNP as the year of and 4 years following La Niña

years (LNP: 75 years of the 114‐year record considered, or 66%);

OY are defined as all other years in the record (OY: 39 years, or

34%). We note that successive La Niña years were sometimes sepa-

rated by fewer than 4 years (e.g., 1999 and 2000, Appendix S1),

such that the number of years demarked as LNP is not 100

(100 = 20 La Niña events × 5 years per LNP). We include the

4 years following the La Niña events within the LNP because these

periods are (on average) drier and associated with major Southwest

20th century droughts, which often persist after the cessation of

specific La Niña events (Cole et al., 2002). Particularly for Southwest

conifers, 5th–10th percentile droughts are associated with a 4‐year
recovery time on average (“legacy effects,” Anderegg, Flint et al.,

2015; Anderegg, Schwalm et al., 2015; Peltier et al., 2016). Within

our statistical model (Equations 1 and 2), we center each climate

covariate (monthly precipitation, temperature, and PDSI) about their

time period specific (LNP or OY) means to aid interpretation of inter-

cepts and increase computational efficiency of the numerical meth-

ods (see below).

We note that in this dataset, within LNP, mean growth was 7%–
8% lower during, but up to 7% higher 2 years after, La Niña years

compared to mean growth in OY (Figure 1a), thus mean growth

across the whole LNP is essentially equal to that in OY. Growth

decreases were greatest in sites with high monsoonal precipitation

contribution (Figure 1b). Thus, the model is designed to understand

how plasticity in growth responses to climate underlies these pat-

terns in the three study species, and how responses may vary across

the NAM gradient.

For the analysis, we assumed that age‐detrended growth was

normally distributed with mean or predicted ring width index (RWI),

μy,c, in year y for site c, linked to time period p (LNP or OY) associ-

ated with year y, p(y):

μy;c ¼ αc;pðyÞ;1 þ αc;pðyÞ;2Panty;c þ αc;pðyÞ;3Tant
y;c þ αc;pðyÞ;4Dant

y;c

þ αc;pðyÞ;5Panty;c D
ant
y;c þ αc;pðyÞ;6Tant

y;c D
ant
y;c þ αc;pðyÞ;7RWIy�1;c

(1)

the α's (coefficients), each allowed to vary by time period p (LNP

or OY), include the intercept (baseline growth under average, time

period specific climate condition), and the effects of the antecedent

climate covariates of precipitation (Pant), temperature (Tant), and PDSI

(Dant), in addition to a prior RWI term (RWIy–1,c), equivalent to an AR

(1) effect, plus the two‐way interactions Pant × Dant and Tant × Dant.

We note that PDSI represents an interaction between precipitation

and (negative) temperature (Supporting information Figure S1), and

thus, we do not include a Pant × Tant interaction. Equation 1 is essen-

tially an autoregressive, random coefficients linear regression, condi-

tional on the antecedent covariates.

The antecedent climate variables are constructed for year y and

site c, where Xy–t.m denotes the climate value at month m (m = 1, 2,

…, 12 for January, February, …, December), t years into the past

(t = 0, 1, …, 4 for current year, previous year, …, 4 years prior) rela-

tive to year y. We denote the antecedent importance weights as wt,

m,p for time period p. That is, for each species, we assume that the

importance weights are the same across all sites, but that they may

vary among time periods (again, LNP or OY). Thus, the antecedent

climate variables, Xant
y;c ; are calculated as follows:

Xant
y;c ¼ ∑4

t¼0∑
12
m¼1wt;m;p � Xy�t;m;c (2)

Equation 2 is applied to each site‐specific climate variable (where

Xant = Pant, Tant, or Dant, for precipitation, temperature, or PDSI).

This framework allows the data to inform the weights (w terms),

which describe the importance of past conditions on growth. As in

Peltier et al. (2017), we assume the model detection skill declines

with time into the past (i.e., t index in Equation 2), and estimate

weights of increasingly “coarse” time blocks (blocks of months) fur-

ther into the past. Thus, only 35 “free” weight parameters are esti-

mated for each species and period; the remaining 25 weights are

either set equal to zero (post ring formation in t = 0, m = 10, 11, 12;

3 weights) or all monthly weights within a coarse block are assumed

equal (Peltier et al., 2017). Monthly weights are constrained to sum

to one across lag year t and month m for each species s, period p,

and climate variable. Annual weights, Wt,p, are also computed by
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summing all 12 monthly weights within each lag year t for a given

species and climate variable.

We addressed Q1 by comparing Bayesian credible intervals of

the mean effects between the two time periods. To address Q2, we

computed differences, δt,m,s and Δt,s, between the LNP and OY

monthly antecedent climate weights (w's in Equation 2 above) and

between the LNP and OY annual climate weights (W's, sum of

monthly weights within each calendar year):

δt;m ¼ wt;m;LNP � wt;m;OY (3)

Δt;m ¼ Wt;LNP �Wt;OY (4)

Similarly, to address Q3, we estimated differences, dc,z, in the

effects αc,p,z between the two periods p for parameter z, such that:

dc;z ¼ αc;LNP;z � αc;OY;z (5)

Calculation of these quantities allowed explicit evaluation of dif-

ferences in the timescales of influence of climate (Equations 3 and

4) between the two time periods, as well as baseline growth, climate

sensitivities, and AR1 effects (Equation 5).

2.3 | Prior specification

For each species, the model defined in Equations 1–5 was imple-

mented in a hierarchical Bayesian framework, with normal hierarchi-

cal priors for site‐level regression parameters assumed to vary

around species‐level means and variances, which are allowed to vary

by period (LNP or OY) and climate variable. The antecedent impor-

tance weights were assigned Dirichlet priors to constrain their inter-

pretation as relative importance of climate during each time lag. See

Peltier et al. (2017) for more details.

2.4 | Implementation

The model was implemented using JAGS 4.0.0 (Plummer, 2003) via

the R (Team, 2015) package rjags (Plummer, 2013) according to

F IGURE 1 The map provides locations of the 101 Pinus edulis (circles), 143 Pinus ponderosa (triangles), and 120 Pseudotsuga menziesii
(squares) sites across the study region; blue shading shows the average relative monsoon precipitation contribution (Jul‐Aug‐Sep) to total
annual precipitation. Inset plots both display percent change in ring width index (RWI) relative to the mean RWI during OY (other years) for
P. edulis (black bars, circles), P. ponderosa (green bars, triangles), and P. menziesii (brown bars, squares). In (a) species‐level means for each year
of the LNP are shown (0 = La Niña year); (b) average site‐level growth (RWI) changes during La Niña years (0 years after a La Niña event)
relative to mean growth in OY, for each species, where lines show smoothed trends in site‐level growth vs monsoon precipitation contribution
for P. edulis (black solid line), P. ponderosa (green dashed line), and P. menziesii (brown dashed line). In the map, site coordinates are jittered for
display purposes, and no sites occur in the regions covered by inset plots [Colour figure can be viewed at wileyonlinelibrary.com]
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standard methodology (three chains, thinning to obtain ≥3,000 rela-

tively independent samples, chains assessed for convergence). Chains

were run in parallel on high performance computing cluster.

Because the statistical comparisons (Equations 3 and 5) have large

group sizes (δ's: 35, and d's: 101, 143, or 121 for P. edulis, P. ponderosa,

P. menziesii, respectively), we used a significance (“alpha”) level of 0.01

rather than a more traditional 0.05 level. We did not use formal Bonfer-

roni corrections as these are overly conservative, and partial pooling in a

hierarchical Bayesian model reduces risk of erroneous difference detec-

tion, such as for the site‐level effects (d's) (Gelman, Hill, & Yajima, 2012).

Thus, to sufficiently sample the tails of the posterior distributions of the

pairwise differences (δ's and d's), we used at least 100,000 posterior

samples (≥30 times more samples than would be used for a 0.05 signifi-

cant level) to estimate the 99% credible intervals of these comparisons.

2.5 | Posterior analyses

To address Q3, we only considered the effects of covariates (e.g., prior

RWI and AR1 effect) for which species‐level effects differed signifi-

cantly between LNP and OY, and for which we found numerous signif-

icant site‐level pairwise differences (d's). In these cases, we regressed

the posterior means of the d's against site‐level relative monsoon con-

tribution (Jul‐Aug‐Sep summed % of annual) using regression tools in

R. We restricted these analyses to the NAM region (i.e., excluded CA

and NV sites for P. ponderosa and P. menziesii).

2.6 | Model evaluations

We also evaluated model fit (as coefficients of determination, R2,

between predicted and observed annual RWI) of the full, correctly

applied model described by Equations 1 and 2; we evaluated fit for all

years (LNP and OY), and separately for LNP and OY years. We then used

the full model and its associated posterior distributions of parameters to

evaluate the fit of a series of flipped or partially applied predictive “mod-

els” (described in Table 1). The flipped scenarios predicted RWI only dur-

ing OY using the parameters (α's and w's) estimated for LNP (R2
LNP!OY)

and vice versa (OY parameters used to predict RWI during LNP;

R2
OY!LNP). We also estimated the contribution of baseline growth or the

intercept (R2
Intercept), climate effects (R2

Climate), and AR1 (R2
ARI) terms to the

overall R2, using combinations of partially applied models (see Table 1).

We emphasize that these model formulations were not fit to data, but

rather utilize the parameter estimates from the full model to predict RWI

under different scenarios. Thus, R2 values from these “models” are useful

for evaluating the importance of period‐specific parameters (flipped sce-

narios) and the relatively contribution of different components affecting

growth (partially applied scenarios).

3 | RESULTS

3.1 | Model performance

Model goodness of fit (R2 of predicted vs. observed growth) was

relatively high (R2 = 0.67, 0.65, and 0.65 for P. edulis, P. ponderosa,

and P. menziesii, respectively) given the coarse climate data (Fig-

ure 2, Supporting information Figure S2). Applying “flipped” models

with other year (OY) parameters used to predict growth in La

Niña periods (LNP) yielded much poorer model fits (R2 = 0.35,

0.47, and 0.49, for P. edulis, P. ponderosa, and P. menziesii, respec-

tively). Even worse fits were obtained using LNP parameters to

predict OY growth (R2 = 0.06, 0.46, and 0.30 for P. edulis, P. pon-

derosa, and P. menziesii, respectively). Poor flipped model perfor-

mance results from differences in both effects (α's; Figure 3) and

importance weights (Wt,p and wt,m,p's; Figure 4) between the two

time periods.

Based on the correctly applied model described by Equations 1

and 2, model fit (R2) was 0.04 (P. edulis), 0.06 (P. ponderosa), and

0.04 (P. menziesii) lower during LNP (R2
LNP) compared to OY (R2

OY)

(Figure 2). Partially applied models can help to understand how dif-

ferences in fit for different sub‐components of the mean model may

explain differences in overall model fit between the two time peri-

ods. For P. edulis, this decrease in fit during LNP was driven by

decreases in R2 (~0.04 drop) associated with the AR1 component.

For P. ponderosa and P. menziesii, decreases in both R2 associated

with the AR1 (~0.03–0.06 drop) and climate (~0.03–0.04 drop) con-

tributions drove the overall decreases in LNP.

3.2 | La Niña‐related changes are species
dependent

Posterior means, 95% credible intervals, and standard deviations of

all model parameters are presented in Table S2. We focus on spe-

cies‐level effects (i.e., α's), their differences between the two periods

(LNP vs. OY), and spatial variability in site‐level differences (d's)

between the two periods.

In addition to reduced model performance during LNP, many (11

of 21) species‐level effect parameters also differed between LNP

and OY. Across species, the AR1 effects decreased by 0.03–0.08
units (reduction of 11%–36%) during LNP (Figure 3). We note that

the AR1 effect (αc,7) is generally expected to be between 0 and 1,

with 0 indicating the RWI is uncorrelated from 1 year to the next,

and 1 indicating extremely high autocorrelation. The effects of cli-

mate on growth in P. edulis did not differ between periods; though,

the Tant × Dant interaction term was only significant (and negative)

and baseline growth (intercept) was higher during LNP (Figure 3).

P. ponderosa showed decreased sensitivity (less negative effect) to

Tant and Dant, and increased sensitivity (significant negative effect) to

the Tant × Dant interaction during LNP (Figure 3). Pseudotsuga men-

ziesii showed increased sensitivity to Pant and Tant (more negative

effect), and the Dant effect switched from positive to negative during

LNP (Figure 3).

3.3 | Changes in the annual importance of climate

Annual weights (Wt,p) indicate that recent climate (current year and

year prior to ring formation) is most important to growth during both

periods, though the OY weights for P. edulis are comparatively large
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for temperature and PDSI 3 years prior to ring formation (Figure 4).

Relative to OY, there was increased importance of current year PDSI

(P. edulis and P. ponderosa) and precipitation (P. ponderosa) during

LNP (Figure 4). All three species also show shifts in importance of

precipitation from 1 to 2 years prior (decreased weight) to 3 to

4 years prior (increased weight) in LNP, that is, they are relatively

less reliant on recent precipitation, and more reliant on less recent

precipitation than during OY (Figure 4). Increased importance of

temperature 1–2 years prior to ring formation (P. ponderosa) and

decreased importance of PDSI 4 years prior (all species) also charac-

terize LNP (Figure 4).

3.4 | Changes in importance of recent climate

Differences (δt,m terms) in monthly weights for precipitation, which

had a uniformly positive effect on growth (Figure 3), show

increased importance of current March (all three species) and cur-

rent (P. ponderosa) or previous (P. menziesii) July precipitation dur-

ing LNP compared to OY (p < 0.01, Figure 5). July precipitation

δ's (current and previous year) for P. edulis are marginally signifi-

cantly greater than zero (0.01 < p < 0.05). Decreased importance

of previous fall through winter (August‐January) precipitation in

LNP is also apparent for all species, though specific months with

TABLE 1 Summary of the correctly applied model (Equations 1, 2), flipped model scenarios (LNP→OY and OY→LNP), and partially applied
scenarios used to evaluate the importance of separate LNP and OY parameters (effects and weights) and the relative contribution of different
components of the mean model (climate, intercept or baseline growth, and AR1) to overall model performance

Scenario Equation Description

Correctly applied model

Full model μy;c ¼ αc;pðyÞ;1 þ αc;pðyÞ;2Panty;c þ � � � þ αc;pðyÞ;7RWIy�1;c See Equation 1

Flipped models

LNP→OY μy∈OY;c ¼ αc;LNP;1 þ αc;LNP;2Panty∈OY;c þ � � � þ αc;LNP;7RWIy∈OY�1;c LNP parameters predict OY growth

OY→LNP μy∈ LNP;c ¼ αc;OY;1 þ αc;OY;2Panty∈ LNP;c þ � � � þ αc;OY;7RWIy∈ LNP�1;c OY parameters predict LNP growth

Partially applied models

Climate μy;c ¼ αc;pðyÞ;1 þ αc;pðyÞ;2Panty;c þ αc;pðyÞ;3Tant
y;c þ � � � þ αc;pðyÞ;6Tant

y;c D
ant
y;c þ αc;pðyÞ;7 � 1 Intercept and climate effects; no AR1 term

AR1 μy;c ¼ αc;pðyÞ;1 þ αc;pðyÞ;7RWIy�1;c Intercept and AR1 term; no climate effects

Baseline μy;c ¼ αc;pðyÞ;1 þ αc;pðyÞ;7 � 1 Intercept only; no AR1 term or climate effects

Only the correctly applied model was fit to data, separately for each species, and the results (parameter estimates) were used to compute predicted

growth (μ) based on the flipped and partially applied model scenarios. Model performance was evaluated from coefficients of determination (R2)

between observed and predicted RWI. The relative contribution of the climate and AR1 components are estimated from differences in R2 obtained

from the partially applied “climate” and “AR1” scenarios relative to the “baseline” scenario, respectively. The R2 for the baseline scenario gives the rela-

tive importance of only the intercept (baseline growth). Because RWI (the response variable) is a detrended, unitless index with mean 1, the contribu-

tion of AR1 at mean RWIy–1,c is αc,p(y),7 × 1.

F IGURE 2 Model fits (coefficients of determination) for regressions of observed vs predicted ring width chronology indices (RWI) for each
species; (a) correctly applied models (OY in black, LNP in dark gray) and flipped models (LNP→OY in medium gray, OY→LNP in light gray), and (b)
relative contribution of partially applied models to overall model fit for OY (left bars) and LNP (right bars) of climate (black), AR1 (dark gray), and
intercept (light gray) sub‐components, where total bar height equals the R2 value for the correctly applied model. For flipped or partially applied
models (e.g., LNP→OY or AR1, respectively), R2's represent the prediction skill of parameter values estimated in Equation 1 but used under
different conditions (e.g., LNP→OY) or missing other mean model sub‐components (e.g., AR1). See Methods—Model evaluations and Table 1
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significant δ's vary among species (Figure 5). Differences in

monthly weights for temperature, which had a uniformly negative

effect on growth (Figure 3), were variable among species (Fig-

ure 5). During LNP, there was increased importance compared to

OY of temperature during the previous February (P. edulis), previ-

ous October (all species), and current July (P. ponderosa and

P. menziesii), accompanied by decreased importance of temperature

in the previous March (P. ponderosa), previous August (P. edulis),

current May (P. ponderosa and P. menziesii), and current September

(P. edulis and P. ponderosa) (Figure 5). Current May PDSI is notably

more important during LNP for P. ponderosa, with similar (but non-

significant) patterns in other species (Figure 5).

3.5 | Increased variability during LNP in the NAM
region

Across species, few site‐level effect differences (d's) were significant

(at p < 0.01); however, the AR1 effect (αc,7) was significantly lower

at 15 of 101 sites for P. edulis and 17 of 143 sites for P. ponderosa

during LNP (Supporting information Figure S3). For P. ponderosa, lin-

ear regression of dc,7 (AR1 effect difference) on average monsoon

(Jul‐Aug‐Sep) contribution (proportion of mean annual precipitation)

within the NAM region shows greater reductions in the AR1 effect

during LNP relative to OY at sites with higher monsoon contribution

(adj. R2 = 0.24, p < 0.0001). While P. menziesii responded similarly to

P. ponderosa, few site‐level dc,7 terms were significant (3 of 120).

Pinus edulis AR1 strength also decreased with monsoon contribution,

and this relationship was more robust when a squared term for mon-

soon contribution was included (linear: adj. R2 = 0.10, p < 0.001;

quadratic: adj. R2 = 0.21, p < 0.0001). Accordingly, the AR1 effect

decreased with monsoon contribution at P. edulis sites where mon-

soon contribution exceeds 30% of annual precipitation total, sug-

gesting a threshold response (Supporting information Figure S3).

4 | DISCUSSION

This study revealed that periodic drought conditions created by

large‐scale climate phenomena such as ENSO affect growth–climate

F IGURE 3 Species‐level posterior means (points) and 95% Bayesian credible intervals (CIs; vertical lines) for the intercept, antecedent
climate effects (e.g., main effects of Pant, Tant, and Dant), the two‐way interactions (Pant × Dant and Tant × Dant), and the AR1 term for each
species (Pinus edulis, circles; P. ponderosa, triangles; Pseudotsuga menziesii, squares) and climate period (open symbols, OY; filled symbols, LNP).
Pairs of effects that do not significantly differ between OY and LNP periods are colored gray. Note that the y‐axes are scaled differently for
each parameter; magnitudes of effects can be compared among OY vs LNP for a given parameter, but not across different parameters. The
horizontal dotted line indicates the zero line, and 95% CIs that overlap the zero line denote parameters that are not statistically different from
zero
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sensitivities of dominant conifer species in the Southwest. Failure of

flipped models to predict growth demonstrates that plastic growth

sensitivities and climatic memory are driving previously unquantified

variability in tree growth during La Niña periods (LNP) relative to

other years (OY) (Figure 2). Even the best performing flipped model

explains ~15% less variation (R2
OY!LNP vs. R2

LNP for P. menziesii) in

annual growth than the correctly applied model for the same obser-

vations. Moreover, growth–climate relationships for P. edulis during

LNP notably fail to capture growth during OY (R2
LNP!OY = 0.06; Fig-

ure 2). Across species, La Niña periods are associated with a reduced

ability to predict growth (R2
LNP <R2

OY) and a weaker correlation with

prior ring widths (decreased R2
AR1 in LNP). Accompanying these

decreases in predictive ability during LNP are increased importance

of monthly climate preceding the pre‐monsoon arid period and dur-

ing monsoon onset, suggesting a key role for monsoonal precipita-

tion to “rescue” trees following winter drought. However, larger

decreases in AR1 effects during LNP at more NAM‐driven sites sug-

gest monsoonal precipitation cannot compensate for winter precipi-

tation deficits during the La Niña year, but rather aids recovery and

subsequent growth. Taken together, these results suggest ignoring

plasticity in tree growth–climate conditions, especially in the unique

climate conditions driving tree growth in the Southwest, may limit

predictive inference at broader scales under future climate change.

4.1 | Q1: Changes in climate sensitivities during La
Niña periods

La Niña‐related differences in climate sensitivities demonstrate sig-

nificant legacies of La Niña events (i.e., winter droughts). During La

Niña periods—year of and 4 years following La Niña events—climate

sensitivities are unchanged in P. edulis, while P. menziesii shows shifts

in all three climate main effects, with increased sensitivity to

F IGURE 4 Posterior means for the annual importance weights (open symbols, OY [other years]; filled symbols, LNP [La Niña periods]) and
95% Bayesian credible intervals (vertical lines) for each of the three antecedent climate variables (rows: Pant [top], Tant [middle], and Dant

[bottom]), for each species (columns: Pinus edulis [left], P. ponderosa [middle], Pseudotsuga menziesii). Pairs of annual weights that do not differ
between OY and LNP periods are colored gray. The year of ring formation (current year) is indicated by 0 “year prior,” whereas a lag of 1, 2, 3,
or 4 years indicates 1, 2, 3, or 4 years prior to ring formation
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precipitation and temperature, and positive sensitivity to PDSI. Shifts

in temperature‐related—but not precipitation—effects also occurred

for P. ponderosa, and changes in temperature effects on growth of

P. ponderosa are consistent with previous analyses showing shorter

recovery times of precipitation sensitivity, while temperature sensi-

tivity recovery times can be as long as ~5 years for this species (Pel-

tier et al., 2016). Given recovery times for Pinyon spp. are also

~5 years (Peltier et al., 2016), we speculate that decreases in AR1

effects, but not climate sensitivities, could suggest climate legacies in

this species are related to physiological traits such as non‐structural
carbohydrate (NSC) dynamics, rather than changes in precipitation

sensitivity. There is a continuing need for experimental approaches

to understanding the physiology of drought legacies and to disentan-

gle the processes integrating physiological and climatic effects into

whole ring width over a growing season (e.g., Szejner et al., 2018).

Many studies focus on the physiological mechanisms underpinning

tree death during drought (Anderegg, Flint et al., 2015; Bigler, Gavin,

Gunning, & Veblen, 2007), but few address the physiological mecha-

nisms underlying recovery of mature trees following severe drought.

While the La Niña years defined in this study generally received less

precipitation than other years, La Niña events are not always associated

with drought (Cole et al., 2002). Other characteristics of La Niña climate

F IGURE 5 Monthly importance weights for the most recent 24 months: posterior means (open symbols, OY [other years]; filled symbols,
LNP [La Niña periods]) and 99% Bayesian credible intervals (light gray shading, OY; dark gray shading, LNP), for each of the three antecedent
climate variables (rows: Pant [top], Tant [middle], and Dant [bottom]), for each species (columns: Pinus edulis [left], P. ponderosa [middle],
P. menziesii [right]). The asterisks “*”denote pairs of monthly importance weights that significantly differ between OY and LNP. Note that the y‐
axis is scaled differently for each antecedent climate variable. Lag months 1, 2, …, 12 correspond to December, November, …, January of the
year of ring formation (current year), respectively; lag months 13, 14, …, 24 correspond to December, November, …, January of the year prior
to ring formation (previous year)
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could underlie changes in the climatic sensitivities of growth, such as dif-

ferences in timing of rainfall or the occurrence of warm springs (Ault,

Schwartz, Zurita‐Milla, Weltzin, & Betancourt, 2015; McCabe, Ault,

Cook, Betancourt, & Schwartz, 2012). However, our model accounts for

differences in sub‐annual climate by allowing the antecedent importance

weights to differ among periods (LNP vs. OY; see Timing of climatic

events). Regardless, if La Niña period changes in climate sensitivity are

similar in the future, incorporation of periodic growth depressions, and

associated changes in growth sensitivities could improve predictive abil-

ity of the terrestrial carbon cycle in Southwest forest biomes (e.g., pin-

yon‐juniper, ponderosa pine, and mixed conifer forests) under global

climate change. However, the ENSO has been amplifying for at least the

last three decades (Lee & McPhaden, 2010), and the most recent 2016

El Niño suggests warming may be influencing predictability of associated

climate effects, perhaps via changes in atmospheric circulation (Seager,

Naik, & Vecchi, 2010; Singh et al., 2016; Wanders et al., 2017).

4.2 | Q2: Changes in memory of monthly and
seasonal climate during La Niña periods

Differences in monthly importance weights suggest the legacy of La

Niña events is a shift to greater importance of monsoon precipitation

and its related effects on climate (Figure 5). In the NAM region, precipi-

tation begins to decline in March, while temperatures rapidly rise by

June. This “pre‐monsoon arid period” is a defining characteristic of NAM

climate, terminating with monsoon arrival around early July. These NAM

dynamics are key drivers of tree‐ring widths across the NAM region

(Babst et al., 2016; Peltier et al., 2017; Szejner et al., 2016). Here,

increased importance of March and July precipitation (Figure 5) suggests

rainfall received during the pre‐monsoon arid period, and monsoon

onset date (as July precipitation) are both key drivers of growth during

the years following a dry La Niña winter. Increased importance of cur-

rent July temperature during La Niña periods also illustrates the impacts

of monsoon arrival, not only through precipitation, but also via tempera-

ture conditions during this critical phase. In particular, warmer July tem-

peratures (or later monsoon arrival) have a stronger negative effect on

tree growth during La Niña periods compared to other years. Further-

more, May marks the middle of this pre‐monsoon arid period, and May

PDSI is associated with the largest monthly importance weights that we

detected (P. edulis and P. ponderosa, Figure 4); this pattern was stron-

gest during La Niña periods. Thus, following La Niña winters, the

drought conditions during the middle of this typically dry period are par-

ticularly important to growth, particularly for P. ponderosa.

Recall that PDSI was derived from the same PRISM data used to

define antecedent precipitation (Pant) and temperature (Tan), and

PDSI represents an interaction of precipitation and (negative) tem-

perature (Supporting information Figure S1). Hence, high (positive)

PDSI values correspond to cool, wet conditions, and low (negative)

values generally reflect hot, dry conditions. Other studies find posi-

tive effects of PDSI as a sole predictor of ring width (Adams & Kolb,

2005) or when using independently derived PDSI (Peltier et al.,

2017). Here, responses to antecedent drought conditions (Dant) dur-

ing La Niña periods were uniformly negative, suggesting growth is

more sensitive to precipitation when it is warm (“negative” tempera-

ture is low). Given temporal lags inherent in the PDSI calculation

(Dai, Trenberth, & Qian, 2004; Palmer, 1965; Wells, Goddard, &

Hayes, 2004), high May PDSI importance may also reflect the impor-

tance of precipitation during the warm springs (February‐March) that

are characteristic of La Niña years (Ault et al., 2015; McCabe et al.,

2012). Given increased importance of February temperature weights,

warm springs likely decrease growth during La Niña phases. Higher

October temperature weights further suggest longer growing sea-

sons (as warmer temperatures during the shoulder seasons) are also

detrimental to growth during drier La Niña periods (Figure 5). While

P. menziesii has the lone positive response to PDSI during other

years, this may reflect a less negative or even slightly positive

response to temperature, as it also has the least negative response

to the main temperature effect during this period (Figure 2), and in

the Southwest, it typically grows at or above elevations of 1,800 m

or in cool microclimates (e.g., cold‐air drainages).
Differences in annual weights (Δ's, Equation 4 and Figure 3) sug-

gest while greater importance of current conditions is a key feature

(particularly for PDSI), there is likely a role for long‐term NSC stor-

age in enduring stress during La Niña periods. Increased sensitivity

to 3–4 years prior precipitation across species suggests increased

reliance on older, less‐frequently accessed pools of stored carbohy-

drates (Carbone et al., 2013; Peltier et al., 2016; Richardson et al.,

2013) or deeper water sources (Rempe & Dietrich, 2018) during La

Niña periods. Reliance on carbon or water reserves is expected if La

Niña conditions create dry surface and subsurface soils and/or

reduced photosynthesis in response to water stress. Decreases in liv-

ing root biomass or increases in rhizosphere investment could also

underlie drought legacies (Hagedorn et al., 2016). This dual strategy,

reliance on older conditions with heightened sensitivity to current

climate, seems highly adaptive in the Southwest where drought is a

semi‐regular climate component (Cook & Krusic, 2004). While longer

term (3–4 years prior to growth) climate memory is fairly weak, dif-

ferences between climate periods are important in the context of

changing climate, as droughts are expected to become more fre-

quent (Dai, 2013; Trenberth et al., 2014; but see Sheffield, Wood, &

Roderick, 2012). Tree physiological acclimation to stress, such as the

ability to draw upon older NSC pools, will be increasingly important.

4.3 | Q3: Variation in growth responses during La
Niña periods across the NAM region

Changes in memory discussed above suggest strong monsoon pre-

cipitation can rescue trees following winter drought during La Niña

periods. However, large decreases in AR1 effects at NAM‐driven
sites (monsoon precipitation > 30% of annual total; southern part of

the region) reflect that La Niña winter precipitation deficits (and thus

initial growth declines) are the largest at these sites, but that recov-

ery is also the strongest (Supporting information Figures S3 and S4).

This suggests that these southern sites may exhibit the greatest plas-

ticity in growth–climate sensitivities and are perhaps the most

drought resilient. Southern populations of P. menziesii have been
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shown to be more resilient to climate change, with the smallest

modeled growth reductions under predicted climate change scenar-

ios (Chen, Welsh, & Hamann, 2010). Based on our results, use of late

season monsoonal precipitation, perhaps to accumulate additional

NSC late in the growing season, may underlie this resilience.

Changes in memory and effects could also be due to non‐physiologi-
cal mechanisms, namely variation in temperature or vapor pressure defi-

cit associated with monsoon arrival leading to decreased total growing

season moisture stress during La Niña years with early monsoon arrival.

We note that monsoonal precipitation is notoriously variable (particu-

larly in onset date) and spatially heterogeneous, which could increase

both spatial and temporal variability in growth across La Niña periods.

This variability as well as the key role of the monsoon in drought recov-

ery is further evident in dendrochronological reconstructions of mon-

soonal and winter precipitation in the southwest, where the most

severe decadal droughts are often associated with monsoon failure (low

summer precipitation) in combination with prior winter drought (Griffin

et al., 2013). In the dataset used here, abnormally wet Julys tended to

follow dry winters, which could underlie NAM effects on growth during

La Niña periods due to likely incidental (Griffin et al., 2013) correlations

between winter and monsoonal precipitation extremes (Stahle et al.,

2009). Given our results, monsoon failure following a La Niña winter

could have particularly severe impacts on southern populations, and in‐
phase cool and warm‐season precipitation anomalies are associated with

major long‐term drought events in the tree‐ring record over the last four

centuries (Carrillo, Castro, Woodhouse, & Griffin, 2016).

Changes in climate sensitivities during La Niña periods compared

to other generally wetter years could also be an artifact of the

coarse resolution of the climate data. The gridded climate data that

we used do not necessarily reflect actual site‐level variability, and
they certainly do not capture the microclimates experienced at the

site or tree level. These results could also be a consequence of our

modeling assumptions, which assume linear relationships between

growth (RWI) and antecedent precipitation, temperature, and

drought conditions (PDSI). However, the inclusion of PDSI is meant

to account for non‐linear, interactive effects of temperature and pre-

cipitation on growth, and two‐way interactions between PDSI and

temperature and/or precipitation account for potentially important

interactive effects. Experimental approaches to evaluating growth

responses to climate and their legacies would also help to rule out

these potential data and modeling artifacts.

Our results show prediction of tree growth in the Southwest

requires consideration of the effects of both the ENSO and NAM on

variability in winter and summer precipitation, as they simultaneously

drive tree growth sensitivities, growth characteristics, drought legacies,

and physiology (e.g., NSC storage). Failure of flipped models to predict

growth during distinctly different time periods (LNP vs OY) demonstrates

that models parameterized for different ENSO phases are not inter-

changeable, and capture distinct growth responses to climate. The north-

western United States also experiences significant fluctuations in winter

precipitation associated with ENSO (Dettinger et al., 1998), which could

affect tree growth parameters, though we did not evaluate this. In the

NAM region, winter precipitation deficits associated with La Niña years

result in drought legacies and increased reliance on monsoonal precipita-

tion, particularly for species growing at low and mid‐elevations (e.g., P.

edulis and P. ponderosa). Delayed NAM onset is predicted with climate

change, which could further reduce growth during La Niña periods (Cook

& Seager, 2013). Though southern populations in the Southwest may

exhibit the most variable growth responses, delayed monsoon arrival

would likely have particularly severe consequences for these populations

following La Niña winters, as monsoonal precipitation plays a key role in

drought recovery. Changes in ENSO influences on winter precipitation

could also arise with warming and changes in global or regional atmo-

spheric circulation (Singh et al., 2016; Wanders et al., 2017). Widespread

mortality events suggest conditions may already be exceeding the resili-

ence capacity in these systems (Allen et al., 2010).

Here, we take a statistical approach to understand how fine‐scale
(monthly) climate affects variability in annual growth (ring widths)

under different climate conditions. Recent studies are also imple-

menting a more direct approach to understanding sub‐annual con-
trols on sub‐annual ring width processes in this region (Belmecheri,

Wright, Szejner, Morino, & Monson, 2018; Szejner et al., 2018).

These different approaches are, together, greatly improving our

understanding of tree growth in the NAM region. Our results pro-

vide a lens through which to understand the unique interaction of

climatic factors controlling tree growth in the Southwest, and

emphasize a continuing need for experimental and/or physiological

studies that explore factors controlling the plasticity of growth at

sub‐annual timescales, especially in the context of responses to and

recovery from drought.
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