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A B S T R A C T

Land surface phenology (LSP) has been widely retrieved from time series of various satellite instruments in order
to monitor climate change and ecosystem dynamics. However, any evaluation of the quality of LSP data sets is
quite challenging because the in situ observations on a limited number of individual trees, shrubs, or other plants
are rarely representative of the landscape sampled in a single satellite pixel. Moreover, vegetation indices de-
tecting biophysical features of vegetation seasonality are different from (but related to) the specific plant life
history stages observed by humans at ground level. This study is the first comprehensive evaluation of the LSP
product derived from Visible Infrared Imaging Radiometer Suite (VIIRS) data using both MODIS LSP products
and observations from the PhenoCam network across the Contiguous United States during 2013 and 2014.
PhenoCam observes vegetation canopy over a landscape at very high frequency, providing nearly continuous
canopy status and enabling the estimate of discrete phenophase using vegetation indices that are conceptually
similar to satellite data. Six phenological dates (greenup onset, mid-greenup phase, maturity onset, senescence
onset, mid-senescence phase, and dormancy onset) were retrieved separately from daily VIIRS NDVI (normalized
difference vegetative index) and EVI2 (two-band enhanced vegetation index) time series. Similarly, the six
phenological dates were also extracted from the 30-min time series of PhenoCam data using GCC (green
chromatic coordinate) and VCI (vegetation contrast index) separately. Phenological dates derived from VIIRS
NDVI and EVI2 and PhenoCam GCC and VCI were generally comparable for the vegetation greenup phase, but
differed considerably for the senescence phase. Although all indices captured green leaf development effectively,
performance discrepancies arose due to their ability to track the mixture of senescing leaf colors. PhenoCam GCC
and VCI phenological observations were in better agreement with the phenological dates from VIIRS EVI2 than
from VIIRS NDVI. Further, the VIIRS EVI2 phenological metrics were more similar to those from PhenoCam VCI
than from PhenoCam GCC time series. Overall, the average absolute difference between the VIIRS EVI2 and
PhenoCam VCI phenological dates was 7–11 days in the greenup phase and 10–13 days in the senescence phase.
The difference was smaller in forests, followed by grasslands and croplands, and then savannas. Finally, the
phenological dates derived from VIIRS EVI2 were compared with MODIS detections, which showed a good
agreement with an average absolute difference less than a week except for the senescence onset. These results for
the first time demonstrate the upper boundary of uncertainty in VIIRS LSP detections and the continuity to
MODIS LSP product.

https://doi.org/10.1016/j.agrformet.2018.03.003
Received 10 November 2017; Received in revised form 21 February 2018; Accepted 4 March 2018

⁎ Corresponding author at: Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA.
E-mail address: xiaoyang.zhang@sdstate.edu (X. Zhang).

Agricultural and Forest Meteorology 256–257 (2018) 137–149

Available online 20 March 2018
0168-1923/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2018.03.003
https://doi.org/10.1016/j.agrformet.2018.03.003
mailto:xiaoyang.zhang@sdstate.edu
https://doi.org/10.1016/j.agrformet.2018.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2018.03.003&domain=pdf


1. Introduction

Vegetation phenology plays an important role in understanding
climate change due to the biophysical nature of the timing of leaf-on
and leaf-off (Cleland et al., 2012; Ivits et al., 2012; Menzel et al., 2006;
Morisette et al., 2009; Parmesan and Yohe, 2003). Ground-based direct
visual observations and measurements have traditionally been used to
record the timing of specific phenological events (e.g., flowering) for
particular plant species, at small spatial extents (Abu-Asab et al., 2001;
Ault et al., 2015; Morin et al., 2009; Richardson et al., 2006; Schwartz
et al., 2006, 2013, 2002). Sensors onboard satellite observatories, such
as the Advanced Very High Resolution Radiometer (AVHRR) and the
MODerate resolution Imaging Spectroradiometer (MODIS), provide
Earth observations at nearly global coverage every day. These data
allow the seasonal dynamics of the vegetated land surface to be mapped
and monitored at regional to global scales. As a result, a variety of land
surface phenology (LSP) products have been developed for the study of
climate change, ecosystem dynamics, biodiversity, and terrestrial
carbon budget at multiple scales (Henebry and de Beurs, 2013). For
example, the start and end of vegetation growth, as observed since 1981
at spatial resolutions of 8–16 km, have been extensively investigated
using the normalized difference vegetation index (NDVI) data derived
from the AVHRR GIMMS (Global Inventory Modeling and Mapping
Studies) dataset at local, regional, and global scales (de Beurs and
Henebry, 2010; de Jong et al., 2011; Myneni et al., 1997; Reed et al.,
1994; White et al., 2009; Zhang et al., 2007). More recently, LSP pro-
ducts with spatial resolutions of 250–1000m have been produced from
MODIS NDVI and enhanced vegetation index (EVI) data, including the
USGS EROS 250m eMODIS LSP data (2001–2014) across the Con-
tiguous United States (CONUS) (cf. Reed et al., 1994); the NASA NACP
(North American Carbon Program) 250m LSP data over North America
(Tan et al., 2011); and the NASA 500m Land Cover Dynamics Products
(MCD12Q2) covering the entire globe (Ganguly et al., 2010; Zhang
et al., 2006, 2003). Further, for continuity purposes, since the AVHRRs
lack a separate blue channel needed to calculate the EVI, the two-band
enhanced vegetation index (EVI2; Jiang et al., 2008), which is func-
tionally equivalent to the EVI, has been used to detect long-term global
land surface phenology from both AVHHR and MODIS at a spatial re-
solution of 0.05° (Zhang et al., 2014).

It is challenging to evaluate and validate LSP with in-situ mea-
surements due to vast differences in scale and the different kinds of
phenomena being observed. Consequently, the quality of satellite-de-
rived LSP products and their relation to biological events in plants have
been poorly characterized. Previous studies evaluated LSP using phe-
nological timing from empirical or bioclimatic models (Schaber and
Badeck, 2003; Schwartz, 1999), ground-based cryosphere and hy-
drology network records (White et al., 2009), phenological measure-
ments from long-term ecological research networks (Ganguly et al.,
2010; Soudani et al., 2008; Zhang et al., 2006), gross primary pro-
ductivity from flux towers (Sakamoto et al., 2010; Xiao et al., 2013),
observations of specific species in a phenology network (Delbart et al.,
2015; Liang et al., 2014), and landscape phenology indices aggregated
from individual plants (Liang et al., 2011). The samples from these
assessments are not intrinsically comparable to satellite-derived LSP
because different biophysical properties were being measured and the
data are available only at very few locations and a limited number of
ecosystem types. Thus, these approaches are ineffective for the direct
evaluation and validation of LSP data at satellite pixels.

Recently, near-surface remote sensing has been used to provide
diurnal monitoring of vegetation developments at canopy to landscape
scales without significant impacts from atmospheric scattering or ob-
scuring clouds (Richardson et al., 2009a). The PhenoCam network
captures digital images from tower-mounted web cameras, thus pro-
viding consistent and continuous monitoring of vegetation canopy
conditions at locations throughout the United States (Hufkens et al.,
2012; Richardson et al., 2009b, 2007; Sonnentag et al., 2012). The

digital repeat photography generated by PhenoCam protocol contains
high spatial and temporal resolution imagery composed of red, green,
and blue color planes. These images allow for the characterization of
seasonal dynamics via image processing approaches similar to those
applied to satellite imagery. They also provide the opportunity for vi-
sual interpretation of vegetation development, because they appear like
ordinary photographs at a familiar resolution. Combining visual inter-
pretation and image processing of PhenoCam time series enables a
generalized phenology of the observed vegetation canopies to be
characterized. The PhenoCam system and protocols are not able to re-
place direct high-quality field observations (e.g., date of first leaf, date
of flowering, etc.). Thus, time series of PhenoCam observations have
been used to monitor vegetation phenology at the local and regional
scales (Sonnentag et al., 2012; Toomey et al., 2015). PhenoCam data
have also been shown to be a robust tool to evaluate phenological
transition dates derived from satellite remote sensing (Keenan and
Richardson, 2015; Klosterman et al., 2014; Rodriguez-Galiano et al.,
2015).

A well-validated long-term LSP product is critical for investigating
the phenological shifts induced by climate change and land disturbance
as well as the phenological impacts on ecosystem function, biodiversity,
and carbon budgets. For this purpose, MODIS LSP product (MCD12Q2)
has been operationally produced in NASA from time series of MODIS
observations since 2000 (Ganguly et al., 2010; Zhang et al., 2006,
2003). Because the MODIS sensors are aging and nearing the end of
their duty cycles, the Visible Infrared Imaging Radiometer Suite (VIIRS)
sensor, onboard the Suomi National Polar-orbiting Partnership (NPP)
satellite (launched October 28, 2011), is intended to provide continuity
with the MODIS data record (Justice et al., 2013; Roman et al., 2011).
During the next few decades, VIIRS on the Joint Polar Satellite System
(JPSS) series, which is planned to launch in late 2017 (JPSS-1) and late
2021 (JPSS-2) (Goldberg et al., 2013), will continue to provide the
capability to monitor LSP. Thus, the MODIS phenology product
(MCD12Q2) will be replaced using LSP retrievals from VIIRS data,
which makes it critical now to understand the capabilities of VIIRS
observations for LSP detections.

This study is the first comprehensive evaluation of the VIIRS phe-
nology product that will become the operational standard to continue
the MODIS phenology record. The three goals of this study are (1) to
investigate the differences between NDVI and EVI2 for LSP detections
so that the better vegetation index may be selected for VIIRS LSP pro-
duct generation; (2) to evaluate the accuracy and uncertainty of VIIRS
LSP detections by direct comparison against phenological transition
dates derived from two indices calculated from PhenoCam data; and (3)
to verify that VIIRS will provide continuity with MODIS by directly
comparing the VIIRS LSP detections at PhenoCam sites with the cor-
responding MODIS retrievals.

2. Data and methods

2.1. Land cover and land surface temperature data

To define the land cover types of the VIIRS pixels that the
PhenoCams were viewing, we used the International Geosphere-
Biosphere Programme (IGBP) scheme in the MODIS land cover product
(MCD12Q1) in 2013 (Friedl et al., 2010).

MODIS land surface temperature (LST) product (MOD11A1, V006)
at a spatial resolution of 1 km was used from July 2012 to June 2015.
The LST data were rescaled to 500m using a nearest neighbor method
to match the spatial resolution of the VIIRS data. These LST time series
determined the winter period in the processing of VIIRS time series (cf.
Section 2.4). Note that the VIIRS LST product, which is currently under
development for operational production by NASA, will eventually re-
place the MODIS LST after the MODIS sensors reach their end of their
duty cycles, by approximately 2021 or sooner.
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2.2. PhenoCam data and time series of PhenoCam vegetation indices

The PhenoCam network provides digital photographs every 30min
between 0400 and 2130 local time at most sites. The data are stored on
the PhenoCam server (http://klima.sr.unh.edu/) at the University of
New Hampshire (Sonnentag et al., 2012). During 2013–2014 there
were about 150 sites distributed across North America. After excluding
sites without a full year of continuous observations (i.e., some sites
were newly established or recorded data temporarily), 82 sites in 2013
and 82 sites in 2014 remained for use in this study (Fig. 1).

PhenoCam digital images are stored in JPEG format, which contain
red, green, and blue (RGB) color channels. For this study, RGB data
were extracted from polygonal regions of interest (ROI) unique to each
site based on the GUI (graphical user interface) tool provided on the
PhenoCam project page (https://phenocam.sr.unh.edu/webcam/tools/
). Each ROI was constructed to eliminate the influence of non-vegetated
areas (e.g., sky, water, bare soil, or rocks) and was selected based on the
predominant land cover types in the corresponding VIIRS pixels
(Klosterman et al., 2014). In the heterogeneous sites, such as savannas,
we selected the ROI containing the most uniform mixture of trees and
grasses.

We calculated two vegetation indices for each image using the RGB
pixels in each ROI polygon (Fig. 2). The green chromatic coordinate
(GCC), which has been frequently used to derive near-surface time
series for phenological analysis (Klosterman et al., 2014; Wingate et al.,
2015), was calculated from red (R), green (G), and blue (B) digital
numbers (DN) in each pixel as follows:

=
+ +

GCC G
R B G( ) (1)

A new related index, the vegetation contrast index (VCI), was cal-
culated in each pixel as follows:

=
+

VCI G
R B( ) (2)

While GCC describes the proportion of green channel brightness re-
lative to total image brightness, VCI contrasts the green channel relative
to the sum of the red and blue channels. The VCI is a nonlinear trans-
form of the GCC resulting in a higher dynamic range for the VCI relative
to the GCC.

Across each ROI in each image the GCC and the VCI were averaged
separately. Daily time series of GCC and VCI were created from the 30-

min values by calculating the 90th percentile of GCC or VCI for each
day (Sonnentag et al., 2012). This filtering step minimized the effect of
spuriously large and most of low GCC and VCI values arising from
image noise and artifacts (Fig. 2). These daily GCC and VCI time series
were calculated at each PhenoCam location to detect phenophase
transitions (cf. Section 2.4).

2.3. VIIRS NBAR data and VIIRS vegetation indices

The Nadir BRDF (Bidirectional Reflectance Distribution Function)-
Adjusted Reflectance (NBAR) data retrieved from daily VIIRS imagery
provides the remote sensing data from which to detect land surface
phenology. NBAR data are generated by using the daily retrieved BRDF
model parameters within a 16-day moving window to correct variations
resulting from off-nadir viewing geometry, and to adjust the solar ze-
nith angle to local solar noon (Liu et al., 2017b; Schaaf et al., 2002,
2011; Wang et al., 2012). Thus, the impacts of extreme viewing geo-
metries (± 56° across-track) in the VIIRS surface reflectance data are
minimized in the NBAR values. This study generated 14 tiles of 500m
daily VIIRS NBAR data collected between July 1, 2012 and June 30,
2015 (prior to operational production). These tiles (H08V04, H08V05,
H08V06, H09V04, H09V05, H09V06, H10V04, H10V05, H10V06,
H11V04, H11V05, H12V04, H12V05 and H13V04) covered all of
CONUS. The VIIRS NBAR product also provides cloud and snow flags in
its quality assurance (QA) data. The QA scores rank from 0 to 3 as
follows: QA=0 indicates “best quality”, where the BRDF model was
established using more than 7 cloud-free observations within a 16-day
window with a model RMSE (Root Mean Squared Error) of less than
0.08 and a WoD (Weight of Determination) less than 1.65 (indicating an
appropriate sampling of the surface anisotropy); QA=1 indicates
“other quality”, where the RMSE and WoD of the BRDF model were
larger but still acceptable; QA=2 or 3 both indicate “poorer quality”,
where cloud-free observations were only available from 2 to 7 days or
magnitude inversion was used; and QA=4 indicates “fill value”, where
cloud-free observations were less than 2 days (Liu et al., 2017b). Fi-
nally, snow retrieval was applied when snow reflectance observations
were used (Liu et al., 2017b).

Although many vegetation indices have been used to analyze ve-
getation dynamics (Huete et al., 2013; Vina et al., 2012), the NDVI has
been most widely used to investigate local and global vegetation
properties, including phenology, land cover type, net primary produc-
tion, and aboveground biomass (Carlson and Ripley, 1997; Friedl et al.,

Fig. 1. Spatial distribution of PhenoCam sites in 2013 and 2014.
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2002; Myneni et al., 2002; White et al., 1997). Relative to the NDVI, the
enhanced vegetation index (EVI) (Huete et al., 2002) is less sensitive to
bare ground cover and atmospheric effects and retains a higher sensi-
tivity over denser vegetation canopies than the NDVI (Huete et al.,
2002). Calculation of EVI requires reflectance values in the near-in-
frared, red, and blue wavelengths, but some coarse-spatial resolution
spectroradiometers (e.g., AVHRR and 500 VIIRS NBAR) lack blue
channels. To overcome this limitation, an alternative two-band EVI
(EVI2) was developed using the relationship between red and blue
bands (Huete et al., 2006; Jiang et al., 2008):

⎜ ⎟= ⎛
⎝

−
+ +

⎞
⎠

EVI G
ρ ρ

ρ ρ L
2 NIR red

NIR red (3)

where ρNIR and ρRED are spectral reflectances acquired in the near-in-
frared and red regions, L is the canopy background adjustment (equal to
1), C is aerosol resistance coefficient (equal to 2.4), and G is a gain
factor with a value of 2.5.

Here, daily VIIRS NDVI and EVI2 values were derived from the
VIIRS NBAR spectral reflectance data of red band (I1: 0.640 μm) and
near infrared band (I2: 0.865 μm) to detect phenophase transition dates
over CONUS in 2013 and 2014.

2.4. Land surface phenology detections from time series data

Many methods have been developed to reduce noise, enhance
signal, and retrieve land surface phenology from time series of vege-
tation indices. These methods include a Fourier harmonic function
(Moody and Johnson, 2001), a Gaussian function (Jonsson and
Eklundh, 2002), a piecewise-logistic function (Zhang et al., 2003),
Adaptive Savitzky–Golay filter (Chen et al., 2004), a convex quadratic
function based on accumulated growing degree-days (de Beurs and
Henebry, 2004; Henebry and de Beurs, 2013), a polynomial curve
function (Bradley et al., 2007), iterative “Caterpillar” singular spectrum
analysis method (Golyandina and Osipov, 2007), temporal smoothing

and gap filling (Verger et al., 2011), and consistent adjustment of the
climatology to actual observations (Verger et al., 2013). Due to the
complexity of satellite sensor time series, each method has its distinct
advantages and disadvantages, which have been shown in various inter-
comparisons (Atkinson et al., 2012; Hird and McDermid, 2009;
Kandasamy et al., 2013; Kandasamy and Fernandes, 2015; White et al.,
2009).

Here we used the Hybrid Piecewise Logistic Model (HPLM) based
Land Surface Phenology Detection (LSPD) algorithm (HPLM-LSPD)
(Zhang, 2015; Zhang et al., 2003). The HPLM-LSPD algorithm offers
several advantages: each model parameter can be assigned to a bio-
physical meaning related to vegetation growth or senescence; the model
is capable of flexibly describing either symmetric or asymmetric de-
velopment of vegetation indices with multiple cycles of vegetation
growth; and phenophase transition dates are determined from the fitted
parameter coefficients rather than from predefined thresholds.

The followings provide a brief description of HPLM-LSPD algorithm
for retrieving phenological transition dates from daily PhenoCam time
series of GCC and VCI and, separately, from the daily VIIRS NBAR time
series of NDVI and EVI2. The daily VIIRS NBAR vegetation indices (VI)
were aggregated into separate 3-day composites by first selecting the
highest quality data (cloud-free observations) and then selecting the
maximum value if more than one VI value within the 3-day period had
the same quality. VIs contaminated by snow were replaced using
background observations at each site; this background value was de-
termined using the mean of the top 50 percentile of cloud and snow-free
winter VI values (denoted using VIIRS NBAR QA flag) during the winter
period when LST≤ 278 K (Zhang, 2015). Data gaps in the time series
caused by poor quality observations (fill values defined in the VIIRS
NABR QA) were replaced using a moving average of neighboring good
quality data. Finally, a Savitzky–Golay filter was used to smooth the VI
time series.

The HPLM approach was used to fit time series of PhenoCam GCC
and VCI and VIIRS NDVI and EVI2, separately, at each PhenoCam lo-
cation. The logistic model in HPLM is a physically-based model

Fig. 2. Variations of PhenoCam observations in the Konza Prairie Biological Station, Kansas State University, Kansas. (A) Extracted ROI from imagery, (B) RGB DN values averaged from
ROI in a 30-min interval, (C) diurnal variation (every 30min) in GCC and VCI.
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developed for monitoring crop growth (Richards, 1959; Ratkowsky,
1983) and has been adopted to simulate the temporal trajectory of the
development of canopy “greenness” (Zhang et al., 2003). Apparent
greenness could decrease slightly under summer water stress or other
impacts, which would result in a greenness trajectory differing from
that occurring under optimally favorable weather conditions. The
greenness under stress can be described by adding an impact factor to
the logistic model (Elmore et al., 2012; Melaas et al., 2013). To simulate
vegetation greenness trajectories effectively, the HPLM was character-
ized based on the following functions (Zhang, 2015):where VI is ve-
getation index, t is time in the day of year (DOY), a is related to the
vegetation growth time, b is associated with the rate of plant leaf de-
velopment, c is the amplitude of VI variation, d represents vegetation
under summer water stress or other impacts, and VIb is the background
VI value. In order to determine whether the vegetation suffers from
stress or not, Eqs. (4) and (5) were compared in fitting the temporal VI
time series and the function with better fit was chosen (Zhang, 2015).

In the fitted HPLM, the extreme points in the curvature change rate
of the reconstructed temporal trajectories indicate the phenophase
transition dates (Zhang et al., 2006, 2003). Specifically, the curvature
(K) for the HPLM models was calculated as follows:

= =
′

+ ′

′
K t dα

ds
VI t

VI t
( ) ( )

(1 ( ) )2 3
2 (6)

where α is the angle in radians of the unit tangent vector at time t along
a differential curve, s is the unit length of the curve, VI(t) is calculated
from Eqs. (4) or (5), and ʹ and ʺ denote the first and second derivatives,
respectively.

The curvature change rate (K’), which is the first derivative of the
curvature K for the HPLM (Eq. (6)), determined the four key phenolo-
gical transition dates (Zhang et al., 2006, 2003). During the vegetation
greenup phase, three extreme points were identified from the VI cur-
vature change rate (K’). The two maximum values correspond to the
greenup onset [i.e. start-of-spring (SOS)] and maturity onset [i.e. end-
of-spring (EOS)], respectively. Transition dates of both senescence
onset [i.e. start-of-fall (SOF)] and dormancy onset [i.e. end-of-fall
(EOF)] during a senescence phase were estimated in a similar fashion.
These four key transition dates characterize the start of four generalized
vegetation growth phases: greenup, maturity, senescence, and dor-
mancy. We also determined the mid-greenup phase [i.e. middle-of-
spring (MOS)] and mid-senescence phase [i.e. middle-of-fall (MOF)] at
50% of the seasonal amplitude. The latter two metrics could be used to
characterize the phenological timings within greenup and senescence
phase, such as 4 or 5 nodes for soybean and 8 or 9 leaves for corn during
crop greenup, and near-peak coloration of deciduous forests during
senescence phase (Zhang et al., 2012). Moreover, these two metrics are
often used to define vegetation growing season from satellite data in
various studies (White et al., 2009; White and Nemani, 2006; White
et al., 1997). Thus, this study focuses on a total of six phenological dates
(Fig. 3). Phenophase transition dates detected from VIIRS NDVI or EVI2
time series are hereafter referred to as “VIIRS phenology” and, likewise,
those detected from GCC or VCI time series as “PhenoCam phenology”.

The quality of the VIIRS time series data significantly impacts the
confidence of vegetation phenology detection (Zhang, 2015; Zhang
et al., 2017). Specifically, seasonal dynamics in the VIIRS NDVI and
EVI2 may not be properly reconstructed if cloud cover or other sources
cause long gaps in the time series. Thus, phenology detection quality
was evaluated using the local proportion of high quality observations
available during each three 3-day period before and after each of the
four retrieved phenophase transitions, separately (Zhang et al., 2017):
greenup onset, maturity onset, senescence onset, and dormancy onset.
It requires at least one high quality (best quality or other quality. cf.
Section 2.3) observation that is available within an 8-day period to
derive reliable phenophase transition dates (Zhang et al., 2009b). The
retrieval of a phenological event was considered as “high confidence”

only if the corresponding local proportion of good quality VIIRS ob-
servations was larger than 60%. Otherwise, it was flagged as “low
confidence”.

2.5. Evaluation of VIIRS phenology using PhenoCam phenology

We first compared the statistical relationships among the time series
of NDVI, EVI2, GCC, and VCI. This comparison provided us the simi-
larity of different vegetation indices in tracing temporal development of
the vegetated land surface.

Phenological metrics from VIIRS NDVI and EVI2 time series were
further evaluated using phenophase transition dates retrieved from
PhenoCam GCC and VCI. Average absolute difference (AAD), bias, and
coefficient of determination (R2) from linear regression models were
used to quantify agreement between the VIIRS and PhenoCam pheno-
phase transitions. AAD is a measure of statistical dispersion equal to the
average absolute difference of two independent variables (VIIRS phe-
nology and PhenoCam phenology). Bias quantifies the average over-
estimation (positive bias) or underestimation (negative bias). A reduced
major axis regression was used to examine the correlations between
samples of PhenoCam and VIIRS phenophase transition dates because
this regression accounts for uncertainty in both the dependent and in-
dependent variables.

Each of these statistical parameters was estimated for each of the six
phenophase transition dates derived from the VIIRS data and
PhenoCam imagery (164 site-years during 2013 and 2014). We also
stratified the phenological dates based on IGBP land cover type (cf.
Section 2.1). In particular, we focused on forests (mixed forests and
deciduous broadleaf forests), croplands, grasslands, and savannas
(woody savannas and savannas), which accounted for 53%, 11%, 10%,
and 10% of PhenoCam sites, respectively. Other land cover types were
not investigated because they had low representation in the PhenoCam
sites available for statistical analysis.

2.6. Comparison of VIIRS phenology with MODIS phenology

VIIRS phenology was compared with MODIS phenology at selected
PhenoCam locations to investigate the data product continuity between
the two sensors. Therefore, we also collected the Collection V006 daily
gridded 500m MODIS NBAR data from the MODIS operational BRDF,
Albedo and NBAR products (MCD43) (Schaaf et al., 2002, 2011; Wang
et al., 2012). MODIS NBAR is produced based on multiple observations
from the MODIS sensors on both the Terra and Aqua satellite platforms.
The MODIS phenology detections were conducted using the algorithm
described in Section 2.4. Finally, six phenological transition dates from
VIIRS EVI2 at the Phenocam sites were compared with those from
MODIS EVI2, separately, by calculating the reduced major axis re-
gression and the average absolute difference.

3. Results

3.1. Trajectories of PhenoCam and VIIRS data and retrieved phenophase
transition dates

Fig. 2 shows data from PhenoCam observations over grasslands at
the Konza Prairie Biological Station, near Manhattan, Kansas, USA, to
illustrate the nature and quality of phenological information that is
available from PhenoCam imagery. While the diurnal RGB DN values
fluctuated greatly with only modest seasonality (Fig. 2B), the calculated
GCC and VCI substantially reduced the fluctuations (Fig. 2C).

Fig. 3 presents the six phenophase transition dates retrieved from
the VIIRS and PhenoCam time series at the Konza Prairie Biological
Station during 2014. Visual inspection of the PhenoCam images verified
similar temporal developments of the NDVI, EVI2, GCC, and VCI time
series. Specifically, SOS was clearly related to the timing of leaf emer-
gence, and EOS corresponded to timing approaching maximum green

X. Zhang et al. Agricultural and Forest Meteorology 256–257 (2018) 137–149

141



grass cover. Similarly, SOF was associated with the start of leaf senes-
cence and EOF corresponded to widespread brown grasses. At Konza,
the six phenophase transition dates (SOS, MOS, EOS, SOF, MOF, EOF)
derived from each time series were comparable. In particular, the SOS
difference was less than 6 days from all vegetation indices, and their
EOF difference was less than 8 days, except for the NDVI. However, the
difference in EOS and SOF between VIIRS and PhenoCam phenology
detections was relatively large.

3.2. Phenophase transition dates from PhenoCam indices

Phenological metrics from PhenoCam GCC and VCI data were in
very close agreement for all six phenophase transition dates (Table 1
and Fig. 4). Phenological differences were relatively smaller for spring
greenup than senescence; specifically, the AAD was less than 2 days in
spring but more than 3 days in autumn. The largest differences were
associated with the timing of senescence onset. Analysis of bias statis-
tics indicates that the spring phenological dates from GCC were slightly
earlier than those from VCI, while the pattern was reversed during
autumn senescence phenology (Table 1). Results from regression
models show that the slope between dates retrieved from GCC and VCI

was close to 1 and coefficients of determination (R2) were over 0.94,
although R2 values were slightly higher during spring than in autumn.

3.3. Comparison of phenophase transition dates from VIIRS indices

Phenological detections from the VIIRS NDVI and EVI2 time series
were compared at each PhenoCam site in 2013 and 2014 (Table 1,
Fig. 5). AADs from spring greenup were less than 7 days, which was
much less than the AADs of 12–19 days found during autumn senes-
cence. The smallest difference appeared in MOS, while the largest dif-
ference appeared in SOF. Bias statistics show there were no systematic
differences between NDVI and EVI2 detections in the spring phenolo-
gical dates; however, EVI2-based retrievals were 6–17 days earlier than
NDVI-based retrievals for the phenological events of senescence in
autumn (Table 1). Regression models indicated that slopes were closer
to unity and the intercepts were smaller in the greenup phase than in
the senescence phase (Fig. 5). The coefficients of determination were all
highly significant, and larger than 0.9 in the spring phases, but some-
what lower for the autumn phases (R2≥ 0.72).

Excluding low confidence retrievals (local good quality observa-
tion < 60%), decreased slightly the differences in phenophase

Fig. 3. Temporal variations in PhenoCam observations and phenology detections from GCC (A), VCI (B), EVI2 (C), and NDVI (D) in the Konza Prairie Biological Station, Kansas State
University, Kansas. The dots are raw observations and the solid lines are fitted curves. The symbols of a, b, c, d, e and f represent the phenological timings of SOS, MOS, EOS, SOF, MOF,
and EOF with corresponding images, respectively.
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transition dates between NDVI and EVI2: AAD decreased by 0.5–1 days
(Table 1). As expected, VIIRS data quality affects the detection of
phenological dates in NDVI and EVI2 time series.

3.4. Comparison of VIIRS phenology with PhenoCam phenology

The statistical relationship among EVI2, NDVI, VCI, and GCC time
series reflects similarity in tracing the vegetation phenology develop-
ment. Specifically, PhenoCam VCI values exhibit significant positive
correlation with both VIIRS EVI2 and NDVI across all the sites with
coefficients of determination (R2) of 0.919 ± 0.059 (ranging from
0.739 to 0.998) and 0.837 ± 0.098 (ranging from 0.585 to 0.982),
respectively. The comparison of the mean correlation coefficient be-
tween EVI2 and VCI with that between NDVI and VCI shows a Z-score
of 4.14 (p-value < 0.0001). Similarly, PhenoCam GCC is significantly
correlated to VIIRS EVI2 and NDVI with R2 of 0.906 ± 0.097 (ranging
from 0.389 to 0.999) and 0.839 ± 0.106 (ranging from 0.405 to
0.978), respectively. The comparison of the mean correlation coeffi-
cient between EVI2 and GCC with that between NDVI and GCC shows a
Z-score of 3.34 (p-value < 0.001). These correlations and Z-scores
suggest that the relationship between VIIRS EVI2 and PhenoCam VCI is
stronger and VIIRS EVI2 is superior to VIIRS NDVI in capturing

temporal PhenoCam VCI and GCC variations.
Table 2 presents statistical comparisons of the phenophase transi-

tion dates from the VIIRS NDVI and EVI2 time series (excluding low
confidence retrievals) with the PhenoCam GCC and VCI data. For each
phenological event, smaller AADs occurred between VCI and EVI2 de-
tections. In contrast, larger AADs occurred between retrievals from GCC
and NDVI in spring and between the VCI and NDVI retrievals in au-
tumn, except for EOF. Overall the AADs were much smaller during
spring than autumn. The differences increased slightly from the SOS to
the EOS during the greenup phase while the differences decreased from
the SOF to EOF for the senescence phase. Moreover, both VIIRS (NDVI
and EVI2) retrievals in spring were more comparable with PhenoCam
VCI than GCC phenology, while the pattern of difference between VIIRS
and PhenoCam phenological dates was mixed in autumn. Because of the
similarity between GCC and VCI phenology, we focus hereafter on VCI
PhenoCam phenology results. Bias shows that the PhenoCam phenology
was generally earlier than the VIIRS phenology, except for the critical
SOS event where the bias was less than 1 day. Regression models be-
tween VIIRS phenology and PhenoCam phenology indicated strong
correspondence (R2≥ 0.78) with slopes close to 1 (Fig. 6).

Table 1
Statistical comparison of phenological transition dates estimated from PhenoCam GCC and VCI and VIIRS NDVI and EVI2 in PhenoCam sites. Units for Average Absolute Difference (AAD)
and Bias are days. AAD values are mean and one standard deviation. Positive (negative) bias means GCC or NDVI dates are later (earlier) than VCI or EVI2 dates.

Vegetation index Statistic parameters Greenup phase Senescence phase

SOS MOS EOS SOF MOF EOF

GCC vs. VCI AAD 1.9 ± 3.9 1.1 ± 2.1 1.3 ± 2.6 5.1 ± 7.5 3.8 ± 6.3 3.7 ± 6.1
Bias −2 −1 0 1 3 2
R2 0.98 0.99 0.98 0.94 0.97 0.97

NDVI vs. EVI2 AAD 5.9 ± 7.7 4.8 ± 6.1 6.5 ± 6.8 19.2 ± 10.8 15.3 ± 8.9 11.6 ± 10.4
Bias 1 0 0 17 13 6
R2 0.91 0.93 0.91 0.89 0.89 0.72

NDVI vs. EVI2 (excluding sites with low confidence) AAD 4.7 ± 4.7 4.3 ± 4.9 6.1 ± 6.2 18.4 ± 10.1 14.6 ± 7.9 10.5 ± 9.1
Bias 1 0 −1 17 12 5
R2 0.95 0.95 0.92 0.90 0.91 0.78

Fig. 4. Comparison of phenology transition dates (DOY) between PhenoCam GCC and VCI estimates in 2013 and 2014.
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3.5. Differences between the PhenoCam and VIIRS phenophase transition
dates across different land cover types

Fig. 7 presents a comparison of VCI and EVI2 time series for selected
sites with contrasting land covers. As expected, raw EVI2 time series
derived from a single VIIRS pixel could be relatively noisy and include
large gaps, leading to inaccurate detection of phenological dates. In
contrast, the near-surface VCI observations appeared minimally im-
pacted by atmospheric effects exhibiting more stable phenological
curves. Visual inspection showed strong correspondence between the
EVI2 and VCI seasonal trajectories during 2013 and 2014. Additionally,
the HPLM-simulated curves generally do a good job of reproducing the
seasonal dynamics in both EVI2 and VCI for all four sites, although the
modeled curves smooth out some of the rapid dynamics evident in the
VCI time series. However, seasonal trajectories show distinct differ-
ences among different land cover types. In the forest site (Harvard
Barn), VCI increased faster than EVI2 in the spring greenup phase but
they decreased in a similar pattern during the senescence phase. In
cropland site (Uiefmaize), VCI could decrease rapidly relative to EVI2.

The temporal pattern between EVI2 and VCI could differ in difference
growing phases in grassland (Lethbridge) and savanna (Monture) sites.
The temporal pattern also shows that the similarity between EVI2 and
VCI could vary interannually. Moreover, the amplitude EVI2 or VCI
during the growing season indicates that the seasonality in forest and
crop sites was stronger than in grass and savanna sites (Fig. 7).

Table 3 presents a summary of the comparisons between pheno-
phase transition dates from VIIRS EVI2 and those from PhenoCam VCI
for different land cover types, revealing ecosystem-dependent differ-
ences. Several patterns are evident in the results (Table 3). First, de-
tection of spring phases is better in forests than in croplands or grass-
lands than in savannas. Second, detection of spring phases are better
than analogous autumn phases. Third, biases in land cover types fea-
turing woody vegetation (forests and savannas) was lower in absolute
terms across spring and autumn phases than croplands and grasslands,
where herbaceous vegetation dominates. Fourth, herbaceous cover
types exhibited strong negative biases at end of season with VCI dates
being 6–17 days earlier than EVI2 dates. Fifth, PhenoCam spring green
up dates are later than EVI2 dates for croplands and grasslands. Sixth,

Fig. 5. Comparison of phenology transition dates (DOY) between VIIRS NDVI and EVI2 estimates in 2013 and 2014.

Table 2
Statistical comparison of phenological transition dates estimated from VIIRS NDVI and EVI2 (excluding low quality time series) with those from PhenoCam GCC and VCI in PhenoCam
sites. Units for Average Absolute Difference (AAD) and Bias are days. AAD values are mean and one standard deviation. Positive (negative) bias means PhenoCam dates are later (earlier)
than VIIRS dates.

PhenoCam index Remote index Statistic Greenup phase Senescence phase

SOS MOS EOS SOF MOF EOF

GCC NDVI AAD 8.0 ± 6.5 8.6 ± 5.3 11.4 ± 6.8 22.8 ± 12.2 19.2 ± 11.8 16.5 ± 12.2
Bias −2 −5 −6 −15 −14 −5
R2 0.87 0.88 0.79 0.79 0.80 0.79

EVI2 AAD 7.4 ± 6.2 8.3 ± 5.1 11.1 ± 6.9 13.3 ± 9.4 11.2 ± 8.2 10.2 ± 7.1
Bias 0 −5 −7 −3 −3 −3
R2 0.87 0.88 0.81 0.79 0.80 0.78

VCI NDVI AAD 7.3 ± 5.8 8.3 ± 5.9 11.1 ± 6.5 23.3 ± 13.2 20.4 ± 12.9 16.1 ± 12.5
Bias 0 −4 −6 −18 −17 −6
R2 0.89 0.87 0.81 0.80 0.80 0.79

EVI2 AAD 6.9 ± 5.8 7.7 ± 5.1 11.0 ± 6.8 13.0 ± 8.5 11.4 ± 8.1 10.0 ± 7.0
Bias 1 −4 −7 −2 −5 −3
R2 0.89 0.88 0.81 0.81 0.81 0.78
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coefficients of determination are generally lower (poorer fits) for au-
tumn than spring phases.

In forests, AAD was as low as 6 days for the SOS and as large as 9
days for the EOS. Systematic bias was largest for the EOS, followed by
the MOS. These results suggest that all phenological events were

realistically detected with similar uncertainties, with typical differences
of less than 6 days when the effect of systematic bias was removed.

AAD value between VCI and EVI2 phenologies in croplands varied
between 9 and 13 days for all phenophase transitions except SOF. The
SOF difference in the AAD was as large as 18 days. Similar differences

Fig. 6. Comparison of phenology transition dates (DOY) between PhenoCam VCI and VIIRS EVI2 estimates in 2013 and 2014.

Fig. 7. Comparison of temporal variations in PhenoCam VCI and VIIRS EVI2 in different land cover types.
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occurred in the grasslands, where the largest AAD value was found for
the EOF. Bias indicated that the VCI phenophase transition dates were
earlier than the EVI2 detections in some events but later in others.

AAD value in savannas was the largest among all the land cover
classes. AAD was 11–13 days for the spring phenological dates, but
24–29 days for the senescence events (Table 3). Bias was relatively
small, suggesting that the differences were mainly associated with
random variations.

3.6. Continuity of phenology detections from MODIS to VIIRS

Fig. 8 compares VIIRS phenology detection dates with those from
MODIS. The timings of the phenophase transitions exhibited highly
significant positive correlation with coefficients of determination ran-
ging from a low of 0.88 for senescence onset to a high of 0.96 for
dormancy onset. Smaller AADs appeared for the mid-season dates in
both spring and autumn. The largest discrepancy (∼9 days) appeared
in the senescence onset date in contrast to the greenup onset date dis-
crepancy of ∼6.5 days. With the exception of the onset of senescence

the AADs were less than a week.

4. Discussion and conclusion

This study comparing phenophase transition dates retrieved from
near-surface PhenoCam and satellite-based VIIRS vegetation indices
offers several new approaches and important findings. First, our ana-
lysis is the first to evaluate comprehensively the phenology products
derived from VIIRS, which exemplifies the operational spectro-
radiometers following the MODIS era. The MODIS data record will end
in approximately 2021 or sooner, while the VIIRS on JPSS series will
remain operational through the next few decades.

Second, compared to previous evaluations of MODIS phenology
products using PhenoCam data (Hufkens et al., 2012; Klosterman et al.,
2014), we used here a much larger evaluation data set, consisting of
164 PhenoCam sites across multiple cover types. Third, we introduce
the VCI, a new PhenoCam index related to the widely-used GCC, but
which offers increased dynamic range. Fourth, our results show gen-
erally strong agreement between EVI2 from VIIRS and VCI from

Table 3
Comparison of phenological transition dates between VCI and EVI2 detections in different land cover types. Units for Average Absolute Difference (AAD) and Bias are days. AAD values
are mean and one standard deviation. Positive (negative) bias means VCI dates are later (earlier) than EVI2 dates.

Land cover type Statistic Greenup phase Senescence phase

SOS MOS EOS SOF MOF EOF

Forest AAD 5.8 ± 5.1 6.9 ± 4.2 9.2 ± 5.3 6.6 ± 4.5 6.3 ± 4.4 7.4 ± 4.8
Bias 0 −6 −8 −1 −2 −2
R2 0.87 0.79 0.76 0.64 0.69 0.76

Cropland AAD 9.4 ± 9.5 9.3 ± 5.6 12.7 ± 5.2 18.0 ± 10.6 11.8 ± 9.4 11.2 ± 7.6
Bias 5 −3 −9 4 −6 −10
R2 0.83 0.87 0.69 0.77 0.56 0.69

Grassland AAD 9.1 ± 6.4 10.1 ± 7.3 10.6 ± 8.8 11.2 ± 7.4 13.7 ± 4.8 17.0 ± 12.0
Bias 6 1 4 −2 −10 −17
R2 0.89 0.87 0.81 0.52 0.62 0.64

Savannas AAD 12.2 ± 9.6 11.4 ± 8.2 13.0 ± 12.8 24.4 ± 18.8 23.9 ± 17.8 29.2 ± 24.2
Bias 0 −2 −1 −1 0 −4
R2 0.80 0.84 0.80 0.79 0.86 0.78

Fig. 8. Comparison of six phenological dates detected from MODIS and VIIRS time series over the PhenoCam sites in 2013 and 2014.

X. Zhang et al. Agricultural and Forest Meteorology 256–257 (2018) 137–149

146



PhenoCam. Fifth and perhaps most critical, our results demonstrate
tight linkages between VIIRS and MODIS phenology detections
(R2≥ 0.9 and AAD < 7 days for five out of the six phenological dates)
giving us high confidence both in the VIIRS phenological retrievals and
in the ability of VIIRS to provide continuity with the MODIS record.

Time series of the vegetation indices were modeled using the phy-
sically-based HPLM-LSPD, which provided the functional descriptions
of vegetation dynamics from which phenophase transitions were re-
trieved. HPLM-LSPD captures the four phenological phases (greenup
phase, maturity phase, senescence phase, and dormancy phase) in a
vegetation growing cycle with four key phenophase transition dates and
two additional middle of phase values (middle of the greenup phase and
the senescence phase separately). Although PhenoCam time series
might be better fitted using more complex and generalized sigmoidal
models (Klosterman et al., 2014), more sophisticated models are also
sensitive to over-fitting to small variations associated with noise or
short frequency transient greenness variations. Moreover, the pheno-
logical dates in this study were identified using the change of curvature
rate, a strategy that can detect phenological variations from various
curves with or without distinctive vegetation seasonality.

Phenophase transition dates derived from both PhenoCam and
VIIRS data were based on time series of vegetation indices. However,
these indices characterize different aspects of the biophysical properties
of vegetation. Indeed, the EVI2 is more sensitive to vegetation gross
primary production (GPP), net primary production (NPP), and FPAR
(the fraction of photosynthetically active radiation) absorbed by
chlorophyll (FPARchl); whereas, the NDVI is more representative of the
total leaf variation on a vegetation canopy (including leaves with and
without photosynthetic activities) and the FPAR absorbed by the ca-
nopy (FPARcanopy) (Huete et al., 2013; Zhang et al., 2009a, 2005).
Likewise, VCI and GCC also reflect vegetation dynamics differently. VCI
emphasizes the green vegetation more strongly as a nonlinear scaling of
GCC. In contrast, GCC primarily represents how green the canopy is and
only secondarily is sensitive to the amount of foliage, so it could be low
for autumn colored foliage even though leaf area index could be still
high. As a consequence, it is not surprising that some discrepancies
occurred among the phenological dates detected from various datasets.
This study demonstrated that EVI2 and NDVI time series were quite
similar in detecting spring phenophase transition dates (AADs less than
6 days), while they differed substantially in retrieving senescence
phenology (AAD from 10 to 18 days). Although VCI and GCC were very
similar in detecting the spring phenology (AAD less than 2 days), they
were more different in detecting autumn senescence phenology (AAD
being 4–5 days). The different uncertainties in the phenology retrievals
between spring and autumn vegetation growing phases likely arise
because (1) all of the vegetation indices are constructed to be more
sensitive to greens rather than to reds, yellows, or browns, and (2) fo-
liage senescence experiences more gentle transition than the rapid
spring flush of new foliage, particularly in forested cover types. Thus,
the onset of spring is more readily detected than the onset of autumn.

PhenoCam phenology was more comparable with VIIRS EVI2 phe-
nology than with NDVI phenology in various ecosystems across the
CONUS. This finding is consistent with previous results from deciduous
forests (Klosterman et al., 2014). Assuming that PhenoCam observa-
tions can represent well the phenophase transition dates observed at
ground level (Kosmala et al., 2016), it can be concluded that EVI2 is the
better choice for detecting phenology than NDVI. Furthermore, EVI2
phenology is closer to VCI than GCC based retrievals, although their
differences are smaller than 1 day. Comparing PhenoCam VCI phe-
nology as a proxy for ground observations, we could further conclude
that the uncertainty of the VIIRS EVI2 phenology is relatively small for
spring phenophase transition dates (7–11 days for the AAD) and large
for autumn senescence phenophase transition dates (10–13 days for the
AAD). Among all the phenophase transition dates, SOS was best de-
tected, followed by MOS, EOF, EOS, MOF, and SOF.

The difference between VIIRS EVI2 and PhenoCam VCI phenology

reveals that VIIRS phenology in forests was well detected with an AAD
of 6 days in SOS, followed by grasslands and croplands. However,
phenology detection in savannas is complicated, likely due to the spa-
tial heterogeneity captured in the field of view by the PhenoCam and
the VIIRS observations. Although the PhenoCam field of view is much
larger than other existing ground observations, it is difficult to match
well with the actual VIIRS pixel size. Indeed, the spectral reflectances in
a 500m VIIRS pixel represent a median effective resolution of 565m by
595m (Campagnolo et al., 2016). As a result, VIIRS phenology detec-
tions should be expected to be more comparable to PhenoCam esti-
mates in homogenous sites than in heterogeneous sites. This corre-
spondence was demonstrated in the forest sites where vegetation cover
was relatively homogenous, and phenological differences were rela-
tively small, which is in an agreement with the comparison between
MODIS phenology and PhenoCam observations in deciduous forests
(Klosterman et al., 2014). In contrast, it is challenging to match a VIIRS
pixel with a PhenoCam in arid and semiarid savannas where the spatial
pattern of vegetation types is highly heterogeneous. This complication
was particularly evident at the Tonzi site, California, where grass and
tree crown were mixed and phenological dates from PhenoCam in the
autumn could differ by more than 3 months between grassland and tree
canopy (Liu et al., 2017a). The mixture of different tree and grass
proportions leads to large variations in the phenological dates of the
savannas. Thus, the VIIRS EVI2 detections were not as consistent with
PhenoCam estimates. Because of the difference between PhenoCam and
VIIRS imagery, their dissimilarity of phenology detection will increase
with the level of heterogeneity or mismatch in the scene. Therefore, the
results from this study likely provides the upper boundary of un-
certainty in VIIRS phenology detection.

To conduct more accurate evaluations of VIIRS phenology, the
mismatch in view geometry and spatial coverage between VIIRS pixels
and PhenoCam data could be more fully considered. However, this is
very challenging (Baumann et al., 2017; Hufkens et al., 2012;
Klosterman et al., 2014; Melaas et al., 2016; Norman et al., 2017;
Sonnentag et al., 2012). One solution is to scale up PhenoCam ob-
servations to the VIIRS footprint using high temporal and spatial re-
solution satellite observations (Liu et al., 2017a). The scaling method to
bridge accurately between PhenoCam and VIIRS data may become
feasible by using the consistent and harmonized surface reflectance
product from Landsat-8 OLI (Operational Land Imager) and Sentinel-2
MSI (Multi-Spectral Instrument) data that will be produced from the
NASA Harmonized Landsat-Sentinel-2 (HLS) project (https://hls.gsfc.
nasa.gov/) (Claverie et al., 2016). However, it should be kept in mind
that cloud-free observations in the HLS time series are not always sa-
tisfactory for phenology detections and the spatial resolution may be
still too coarse to distinguish surface heterogeneity at the Phenocam
scale.

To conclude, the results of this study demonstrated that VIIRS LSP
metrics are consistent with MODIS LSP and are well characterized and
validated using the near-surface remote sensing observations available
from the PhenoCam network. With the spatially-distributed dataset of
canopy-scale observations from PhenoCam across the CONUS, we have
found that VIIRS EVI2 is more suitable for detecting LSP metrics than
NDVI and that the overall uncertainty (average absolute difference) on
VIIRS LSP phenophase transition dates during entire growing seasons is
between 7 and 13 days. The disagreement is less in spring than autumn,
less in forests than in croplands or grassland than in savannas, and less
in homogenous than in heterogeneous land covers. Consequently,
evaluation of VIIRS LSP metrics helps pave the way for more wide-
spread use of VIIRS LSP products and the ability to continue the im-
portant MODIS data record.
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