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Abstract Inferences about subsurface CO2 fluxes often rely on surface soil respiration (Rsoil) estimates
because directly measuring subsurface microbial and root respiration (collectively, CO2 production, STotal)
is difficult. To evaluate how well Rsoil serves as a proxy for STotal, we applied the nonsteady state
DEconvolution of Temporally varying Ecosystem Carbon componenTs model (0.01-m vertical resolution),
using 6-hourly data from aWyoming grassland, in six simulations that cross three soil types (clay, sandy loam,
and sandy) with two depth distributions of subsurface biota. We used cross-wavelet coherence analysis to
examine temporal coherence (localized linear correlation) and offsets (lags) between STotal and Rsoil and
fluxes and drivers (e.g., soil temperature and moisture). Cross-wavelet coherence revealed higher coherence
between fluxes and drivers than linear regressions between concurrent variables. Soil texture and moisture
exerted the strongest controls over coherence between CO2 fluxes. Coherence between CO2 fluxes in all
soil types was strong at short (~1 day) and long periods (>8 days), but soil type controlled lags, and rainfall
events decoupled the fluxes at periods of 1–8 days for several days in sandy soil, up to 1 week in sandy
loam, and for a month or more in clay soil. Concentrating root and microbial biomass nearer the surface
decreased lags in all soil types and increased coherence up to 10% in clay soil. The assumption of high
temporal coherence between Rsoil and STotal is likely valid in dry, sandy soil, but may lead to underestimates of
short-term STotal in semiarid grasslands with fine-grained and/or wet soil.

Plain Language Summary Soil CO2, which is produced underground by roots and microbes, is a
major part of the global carbon cycle. There are large uncertainties over how soil CO2 will change as global
temperatures and atmospheric CO2 rise. One source of uncertainty is how quickly soil CO2 moves from
the sites where it is produced underground to the surface where it is released to the atmosphere. In this
paper, we use a numerical model to test the common assumption that CO2 produced underground is
released immediately to the atmosphere. We found that this assumption is valid when soil is coarse and dry,
but there are delays between subsurface CO2 production and release to the atmosphere when the soil has a
fine texture and/or is wet.

1. Introduction

Soil respiration (Rsoil) represents a major component of the global carbon cycle (e.g., Bond-Lamberty &
Thomson, 2010; Cox et al., 2000; Raich & Schlesinger, 1992; Rey, 2015; Roland et al., 2015; Schlesinger &
Andrews, 2000; Stoy et al., 2007), but there are large uncertainties in how this flux of CO2 to the atmosphere
will respond and feedback to climate change (e.g., Doetterl et al., 2015; Tang & Riley, 2014). Many ecosystem
models predict that increased global temperatures will lead to an increased flux of soil CO2 to the atmo-
sphere, suggesting that, globally, soil is likely to be a net source of CO2 as temperatures rise (Crowther
et al., 2016; Koven et al., 2011). Though there is a positive correlation between Rsoil rates and mean annual
temperature across a diverse range of ecosystems (e.g., Raich & Schlesinger, 1992), ecosystem-scale and
terrestrial biosphere models can give widely varying Rsoil estimates (Tian et al., 2015). These varying estimates
of Rsoil may be attributed to oversimplifications of modeled soil CO2 production and efflux processes (e.g.,
Bond-Lamberty & Thomson, 2010; Luo et al., 2015; Todd-Brown et al., 2013).

A typical simplifying assumption in field and modeling studies is that subsurface CO2 produced by roots (SR)
and microbes (SM) is instantly released as Rsoil (Baldocchi et al., 2006; Jassal et al., 2004; Maier &
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Schack-Kirchner, 2014; Pingintha et al., 2010; Vargas et al., 2010),
despite empirical evidence for hysteresis between subsurface and
surface soil CO2 fluxes (Baldocchi et al., 2006; Kim et al., 2017; Tang &
Baldocchi, 2005; Vargas et al., 2010, 2011; Zhang et al., 2015).
Estimating the differences between CO2 production rates in the soil
(e.g., STotal = SR + SM) versus the CO2 flux rate from the soil surface to
the atmosphere (i.e., Rsoil) is difficult, mostly due to practical limitations
in estimating diffusivity, a key step in converting direct measurements
of CO2 concentrations to fluxes (Maier & Schack-Kirchner, 2014; Risk
et al., 2008).

Furthermore, ecosystem-scale studies typically rely on Rsoil measured at
the surface to infer complicated and difficult to measure subsurface
root/rhizosphere respiration and/or rates of microbial decomposition
of soil organic matter (e.g., Ryan & Law, 2005). For example, such
approaches may (1) use steady state models of surface soil CO2 efflux
(Rsoil) to infer subsurface CO2 production rates (Del Grosso et al.,
2005; Sierra, 2012; Vargas et al., 2010; Zobitz et al., 2008) and/or (2) rely
on 13C or 14C measured in surface-respired CO2 (i.e., isofluxes) to parti-
tion subsurface root/rhizosphere and microbial contributions to Rsoil
(Carbone et al., 2008; Kuzyakov, 2006; Pendall et al., 2003; Takahashi
et al., 2008). These approaches essentially assume that there is no delay
between subsurface CO2 production and surface measured Rsoil. In rea-
lity, subsurface CO2 transport processes, which are a function of CO2

concentration at each depth coupled with soil physical factors that
influence both diffusivity and effective path lengths, can lead to tem-
poral lags between subsurface and surface CO2 fluxes and between
CO2 fluxes and environmental drivers such as Tsoil and soil water con-
tent (SWC; e.g., Vargas et al., 2010; Zhang et al., 2015).

Physical-based models can provide insights into the robustness of the
aforementioned simplifying assumptions (Baldocchi et al., 2006; Lee
et al., 2004; Ryan et al., 2018; Šimůnek et al., 2012; Tang et al., 2003;

Vargas et al., 2010) and should be able to capture temporal lags. Suchmodels should consider the biophysical
processes underlying CO2 production, transport, and efflux, because Rsoil is a complicated function of both
subsurface biological activity (microbial respiration [SM] and root respiration [SR]) and CO2 transport through
the soil column (e.g., Stoy et al., 2007; Figure 1). Therefore, variables that influence SM and SR, such as soil tem-
perature (Tsoil) and SWC, affect the total amount of CO2 in the soil column at any given time. Further, the sub-
surface distribution of roots and microbes can influence diffusivity by creating preferential pathways to the
surface (e.g., via macropores or root channels (Angers & Caron, 1998; Devitt & Smith, 2002; Ragab & Cooper,
1993)) and controlling the effective path length for diffusion, from the depth of CO2 production to the surface
where soil CO2 is emitted to the atmosphere. Finally, physical factors that control CO2 diffusivity (e.g., soil bulk
density, Tsoil, and SWC) influence the rate at which CO2 diffuses through the soil column (Moldrup et al., 2001).

Understanding the factors that affect the temporal relationship between Rsoil and STotal is particularly impor-
tant in grasslands, which comprise approximately 32% of terrestrial land cover (Oertel et al., 2016). Temperate
grasslands play a major role in the carbon cycle and typically serve as carbon sinks that sequester CO2 in their
dense root biomass and soil organic matter (Carrillo et al., 2014; Frank & Dugas, 2001; Oertel et al., 2016). In
North America, the native mixed-grass prairie is an extensive temperate grassland that currently serves as a
net carbon sink, but it is being increasingly stressed due to grazing and other land use and climate factors
(e.g., Zelikova et al., 2014). Changes in temperature, precipitation patterns, and atmospheric CO2 have the
potential to affect the dense root network of this ecosystem, which will likely change seasonal CO2 fluxes
and the temporal relationship between Rsoil and STotal. These changes influence carbon cycle feedbacks to
climate change (Carrillo et al., 2014; Frank & Dugas, 2001; Pendall et al., 2013), underscoring the importance
of evaluating assumptions about the relationship between subsurface production and Rsoil.
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Figure 1. Conceptual model of subsurface CO2 fluxes described by the
DEconvolution of Temporally varying Ecosystem Carbon componenT model.
CO2 concentration at time t and depth z is a function of biotic (root + microbial)
respiration or CO2 production at that depth (red arrows) and diffusion in and out
of that layer (black arrows; Ryan et al., 2018).
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Our objective is to evaluate the assumption that CO2 fluxes measured at the surface (i.e., Rsoil) are a valid
proxy for understanding subsurface CO2 production by roots/rhizosphere and microbes. Further, we aim to
understand how environmental conditions related to subsurface CO2 production and transport affect the
validity of this assumption. We evaluate this assumption by combining a biophysical-based model of soil
CO2 production and transport with time series analysis techniques that provide quantitative insight into
the temporal coupling of subsurface and surface CO2 fluxes. We apply these simulations in the context of
a mixed-grass prairie in Wyoming, United States. In doing so, we specifically address the following questions:
(1) How do Rsoil and total subsurface CO2 production rates (STotal = SR + SM) vary over subdaily to seasonal
time scales in a semiarid grassland? (2) How does soil texture influence the temporal coherence (i.e., the local
linear correlation between two time series) and time lags between Rsoil and STotal? Finally, how do (3) biolo-
gical (e.g., depth distribution of roots and microbes) factors and (4) physical properties of the soil column
(e.g., SWC and Tsoil) affect the temporal relationship between each CO2 flux variable (i.e., Rsoil or STotal)? To
address these questions, we used the nonsteady state DEconvolution of Temporally varying Ecosystem
Carbon componenTs (DETECT) model (Ryan et al., 2018) to calculate both surface Rsoil and subsurface CO2

production rates (i.e., SM and SR) at subdaily (6 hourly) time steps and fine (0.01 m) depth resolution, and
we subsequently applied cross-wavelet coherence (CWC) analysis to examine temporal coherence and off-
sets (lags) between STotal and Rsoil.

2. Methods

To evaluate the influence of subsurface CO2 production and diffusivity through the soil column on the tem-
poral relationship between STotal and Rsoil, we simulated CO2 fluxes using the DETECT model. Our goal was
to evaluate these relationships under relatively realistic conditions. Thus, DETECT was parameterized based
on the well-studied Prairie Heating and CO2 Enrichment (PHACE) study in Wyoming, United States,
(Bachman et al., 2010; Pendall et al., 2013; Zelikova et al., 2015) and run with driving data representative
of the PHACE site. We then applied a CWC analysis to the model output to evaluate variability in the
temporal relationship between STotal and Rsoil and between these CO2 fluxes and environmental driving
variables at subdaily to monthly time scales over the course of a single growing season. The DETECT model
(Ryan et al., 2018) and CWC techniques (Grinsted et al., 2004; Labat, 2005, 2010; Torrence & Compo, 1998;
Vargas et al., 2010) are described in detail elsewhere, but we summarize important aspects in sections 2.2
and 2.3.

2.1. Field Site for Model Parameterization

The PHACE site is situated at an elevation of 1,930 m in a mixed-grass prairie dominated by two C3 grasses,
western wheatgrass (Pascopyrum smithii (Rydb.) A. Löve) and needle-and-thread grass (Hesperostipa comata
Trin and Rupr), and one C4 grass, blue grama (Bouteloua gracilis (H.B.K.) Lag; Bachman et al., 2010). Soil at the
site is characterized in the Ascalon series as a fine-loamy, mixed mesic Aridic Argiustoll with no biological
crusts (Bachman et al., 2010). This semiarid site (mean annual precipitation = 384 mm) experiences cold
winters (mean January temperature = �2.5°C) and moderately warm growing seasons (mean July
temperature = 17.5°C; Morgan et al., 2011).

The PHACE experiment involved an incomplete factorial manipulation of temperature, soil water (via sup-
plemental watering), and atmospheric CO2 concentration. The treatment combinations were applied to
30 instrumented plots (six treatment levels and five replicate plots per treatment level). The CO2 manipula-
tions involved two levels: ambient (385 ppmv) or elevated (600 ppmv) CO2 conditions, which were
combined with one of two temperature levels (no warming or 1.5°C [3°C] warming in day [night]). The
ambient CO2 and nonwarmed treatments were also combined with one of three irrigation levels (i.e., none,
“shallow,” and “deep”; Dijkstra et al., 2010). For the purposes of this study, we used data from the ambient
and elevated CO2 plots with ambient temperature and no supplemental watering to inform parameter
values in DETECT, including the depth distribution of root and microbial biomass carbon. We did not utilize
or discuss data and experimental results from the other treatment combinations. The DETECT model was
previously parameterized using these data with the goal of specifying values representative of this
mixed-grass prairie site (see Ryan et al. (2018) for details on the parameterization methods and parameter
values uses).
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2.2. Numerical Simulations
2.2.1. Model Description
DETECT is a nonsteady state, physical-based model of soil CO2 production and transport that calculates CO2

concentrations, C (z,t), at each predefined depth (z) and time (t) interval. Underlying DETECT is a partial differ-
ential equation (PDE, equation (1)) that describes how CO2 varies with z and t as a function of physical (i.e.,
diffusivity, Dgs (Moldrup et al., 2001)) and biological (i.e., source term, S(z,t) processes). Here S(z,t) is total
CO2 production rate at depth z and time t associated with microbial decomposition of soil organic matter,
SM(z,t), and root respiration, SR(z,t), such that S(z,t) = SM(z,t) + SR(z,t). For the purposes of our simulation experi-
ments, we assumed that CO2 production and efflux took place along an idealized vertical soil column and
that advection due to bulk air transport and reactions of dissolved CO2 (Fang & Moncrieff, 1999; Rey, 2015;
Roland et al., 2015) were negligible. This allowed us to isolate potential factors that could uncouple surface
and subsurface fluxes, in the absence of other confounding processes.

The PDE model that forms the basis of DETECT follows Fang and Moncrieff (1999), as modified by Ryan et al.
(2018), and is given by

∂C z; tð Þ
∂t

¼ ∂
∂z

Dgs z; tð Þ ∂C z; tð Þ
∂z

� �
þ S z; tð Þ: (1)

where C (z,t) is CO2 concentration (mg CO2/m
3 soil) at depth z and time t. The soil CO2 diffusivity submodel for

Dgs(z,t) (m
2/s) is a function of atmospheric pressure (P), soil physical properties (e.g., total soil porosity,

derived from bulk and particle density, air-filled porosity at a soil water potential of �10 kPa, and the pore
size distribution), Tsoil, and SWC at each z and t (Moldrup et al., 1999, 2004). Although the diffusivity submodel
does not account for plant-induced changes to physical properties of the soil (e.g., Angers & Caron, 1998;
Devitt & Smith, 2002; Ragab & Cooper, 1993) or for phase and air-filled volume changes associated with aqu-
eous chemical reactions, it provides idealized insights into movement of CO2 from the subsurface to the
atmosphere. The treatment of phase and volume changes is consistent with established methods, which
are based on the assumption that CO2 in gas and aqueous phase equilibrate almost instantaneously without
driving up the concentration of gaseous CO2 in a smaller pore volume and that excluding the concentration
of aqueous CO2 does not significantly influence diffusion calculations (e.g., Fang & Moncrieff, 1999). See Ryan
et al. (2018) for details.

We solved the PDE in equation (1) numerically via a forward Euler discretization for the time derivative and a
centered-difference method for the depth derivative (Haberman, 1998). In doing so, we assumed an initial
condition of C(z, t = 0) = C0(z), coupled with atmospheric CO2 concentration (Catm, equivalent to 356 ppm)
as the upper boundary condition, C(z = 0, t), and a zero-flux lower boundary condition at z = 100 cm (i.e.,
∂C z¼100;tð Þ

∂z ¼ 0; Haberman, 1998). The initial depth profile, C0(z), was informed by field data on observed soil

CO2 concentrations, as described in Ryan et al. (2018). Note that Δt represents the time interval at which
model outputs are stored, but the numerical time step at which the PDE is solved is normally substantially
smaller than Δt to ensure numerical stability. We conducted simulation tests and determined that a time
interval (Δt) of 6 hr and a depth increment (Δz) of 0.01 m provided an accurate, stable, and computationally
efficient solution to the PDE, and increasing the spatial and temporal resolution (e.g., Δt = 1 hr and
Δz = 0.005 m) did not significantly change the numerical results. The model achieved numerical stability after
44 time steps (i.e., days 1 to 11), so we considered the first 11 days as a model “spin-up” and removed these
from our analysis. See Ryan et al. (2018) for a more detailed overview of the numerical solution approach.

Each component of the subsurface CO2 production or source term (i.e., SM(z,t) and SR(z,t)) was determined
separately based on previously published models that have been tested in a number of settings (Davidson
et al., 2012, 2006; Lloyd & Taylor, 1994; Luo & Zhou, 2010; Ryan et al., 2015; Todd-Brown et al., 2012). The
microbial contribution, SM(z,t), was calculated based on a modified Dual-Arrhenius Michaelis-Menton
(DAMM) model (Davidson et al., 2012; Lloyd & Taylor, 1994; Luo & Zhou, 2010; Ryan et al., 2015; Todd-
Brown et al., 2012). The DAMM model describes microbial decomposition rates (CO2 production) based on
Michaelis-Menton dynamics for enzymatic reactions, which are, in turn, controlled by Tsoil, carbon substrate
availability, and microbial carbon use efficiency (Davidson et al., 2012; Lloyd & Taylor, 1994). Root respiration,
SR(z,t), is described by a function that describes the effect of both temperature (akin to an energy-of-
activation model, (Lloyd & Taylor, 1994)) and SWC, as informed by studies of soil and ecosystem
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respiration (Cable et al., 2013; Luo & Zhou, 2010; Ryan et al., 2015). DETECT expands on the DAMM and Lloyd
and Taylor models for SM and the SRmodel by applying the calculations to each soil depth (z) and by allowing
both current and past (antecedent) Tsoil and SWC to modify both SM and SR (Ryan et al., 2015). See Ryan et al.
(2018) for details on the SM and SR submodels.

We calculated total subsurface production rates and total surface soil respiration rates as follows. First, we cal-
culated the total CO2 production rate in the entire soil column at time t, S(t) (mg C · cm3 · hr1) by summing the
depth-specific production rates (equation (2)):

S tð Þ ¼
Xz¼1 m

z¼0:01 m

SM z; tð Þ þ SR z; tð Þð Þ: (2)

We then calculated STotal by converting S(t) to flux units (μmol CO2 · m2 · s), using a conversion factor of
6.3117 × 10�5 μmol CO2 · m

2 · s/mg C · cm3 · hr. The total flux of CO2 from the soil surface to the atmosphere
(Rsoil, μmol CO2 · m

2 · s) was computed as follows:

Rsoil tð Þ ¼ Dgs z ¼ 0:01 m; tð Þ
Δz

C z ¼ 0:01 m; tð Þ � Catm tð Þð Þ: (3)

where Dgs(z = 0.01 m, t) and C(z = 0.01 m, t) are the CO2 diffusivity and concentration, respectively, calculated
for the top soil layer (z = 0.01 m), and Catm(t) is the atmospheric CO2 concentration at time t.
2.2.2. Environmental Driving Data
DETECT requires continuous environmental data as inputs to compute CO2 production, transport, and efflux,
including meteorological data (e.g., air temperature and atmospheric pressure), subsurface soil conditions
(e.g., SWC and Tsoil), and indices of aboveground vegetation activity (e.g., greenness). Again, we drew upon
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Figure 2. Time series of DEconvolution of Temporally varying Ecosystem Carbon componenT model predictions of (a) total
CO2 fluxes (STotal, gray curve, and Rsoil, black curve), (b) the difference between subsurface (STotal) and surface (Rsoil)
CO2 fluxes at each time step, (c) soil CO2 diffusivity (Dgs) averaged across shallow (0.05 to 0.15 m, gray curve) and deep
(0.35 to 0.45 m, black curve) intervals. These DEconvolution of Temporally varying Ecosystem Carbon componenT
predictions are driven by environmental data, including (d) daily precipitation, (e) shallow (0.05 to 0.15 m, gray curve) and
deep (0.35 to 0.45 m, black curve) soil water content (SWC), and (f) shallow (0.03 m, gray curve) and deep (0.05 m, black
curve) soil temperature (Tsoil). While Dgs, SWC, and Tsoil values were available for each 0.01 m down to 1 m, we only show
example output or data for the depths and depth intervals measured at the Wyoming Prairie Heating and CO2 Enrichment
site. Results are shown for each soil texture (columns) scenario applied in combination with the depth distribution of
roots and microbes scenario, which corresponds to predicted fluxes under ambient CO2 (Catm = 385 ppmv) conditions.
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the wealth of information from the PHACE study to provide realistic
inputs to the DETECT model, with the goal of simulating soil CO2

dynamics representative of a real semiarid grassland ecosystem.

Following Ryan et al. (2018), we used data from an “average climate
year,” the 2008 growing season (1 April to 30 September), at the
PHACE site to drive the DETECT model. The total and daily average pre-
cipitation (340 and 1.9 mm, respectively) during the 2008 growing sea-
son were within 1 standard deviation of the average seasonal and daily
rainfall (total: 279 ± 84 and daily: 1.5 ± 0.46 mm) measured at the site
from 2004 to 2013. There were two major precipitation events in
2008, each of which occurred within 1 day of the peak average daily
events representative of the “typical” (2004 to 2013) growing season.
More than 70% of the 2008 growing season precipitation fell during
these two major series of storms, which occurred from days 52 to 68
(23 May to 8 June; ~100 mm of rain) and days 125 to 138 (4 to 17
August; ~165 mm). Long rain-free episodes preceded each multiday
precipitation event (Figure 2d). These precipitation patterns influenced
the temporal and depth variation of SWC (Figure 2e) and Tsoil (Figure 2f),
which are important inputs to the DETECT model.

With the exception of the meteorological data, field measurements
were discontinuous both temporally and spatially, but the model
requires inputs scaled to the time and depth interval appropriate for
DETECT. We averaged hourly meteorological data to obtain 6-hourly

inputs. We used a simple linear interpolation to gap-fill greenness values to the appropriate temporal scale
(Ryan et al., 2015). At the PHACE site, SWC was monitored daily at three depth intervals (5–15, 15–25, and
35–45 cm), and Tsoil was recorded hourly at two depths (3 and 10 cm). We gap-filled and interpolated SWC
and Tsoil to a 6-hourly time step and 0.01-m depth increment to a depth of 1 m using the physical-based soil
water model, HYDRUS-1D v4.16.0090 (Ryan et al., 2018; Šimůnek et al., 2012, 2008), driven by site-level soil
properties and meteorological data, including precipitation. Although DETECT calculates changes to carbon
fluxes at each depth and time, the SWC and Tsoil results presented here focus on field measurement depths
for Tsoil, and averaged across each field depth interval for SWC since these, or similar, depths are frequently
used in field studies. In the results and discussion, we evaluate the influence of “shallow” (Tsoil = 3 cm;
SWC = 5–15 cm) and “deep” (Tsoil = 10 cm; SWC = 35–45 cm) Tsoil and SWC. Details are provided in Ryan
et al. (2018).

DETECT also requires information about the depth distribution of root andmicrobial biomass and soil organic
carbon (SOC). Again, we used data from the PHACE study to obtain realistic depth distributions of these quan-
tities. We smoothed and extrapolated distributions of subsurface biomass and organic carbon observed in
different experimental treatment plots at the PHACE site to evaluate the influence of different root andmicro-
bial distributions that develop under varying environmental conditions. We focused our analysis on experi-
mental plots (see section 2.1) with ambient (385 ppmv) and elevated (600 ppmv) CO2 because preliminary
analyses indicated that they exhibited the most distinct differences in the depth distribution of roots,
microbes, and SOC. We used root and microbial biomass measurements from the top 0.40 m and extrapo-
lated these distributions to a depth of 1 m along with SOC profiles described by Ryan et al. (2018). To help
characterize root distributions, we used minirhizotron data collected to a depth of 0.40 m in 2008 (Carrillo
et al., 2014) and fit gamma distribution functions to these measurements separately for the ambient and ele-
vated CO2 plots. Roots measured at the PHACE site were generally longer under elevated CO2 conditions and
were concentrated in the upper 0.10 m while roots were concentrated at depths of around 0.20 m under
ambient CO2 conditions (Figure 3a).

We used data collected annually from soil cores to characterize the depth distribution of microbial biomass
(Figure 3b) and SOC (Figure 3c; Dijkstra et al., 2012). We modeled these distributions as gamma and expo-
nential distribution functions, respectively, to obtain interpolated values to a depth of 1 m. Root (and micro-
bial) distributions were shallower under elevated CO2 than ambient conditions (Mueller et al., 2018), and we
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organic carbon (SOC) depth distributions based on Prairie Heating and CO2
Enrichment (PHACE) site data from plots with ambient (Catm = 385 ppmv) and
elevated (Catm = 600 ppmv), including data (bottom x axes) on (a) root length
(squares), measured by minirhizotrons to a depth of 0.4 m, (b) microbial biomass
(bars) measured at depths centered on 0.05, 0.10, and 0.15 m, and (c) SOC
(bars) measured at depths centered on 0.05 and 0.10 m. Statistical models were
fit to these data to extrapolate to 1 m, producing continuous distributions of
normalized (top x axes; a) root biomass, (b) microbial biomass, and (c) SOC for
the deep (black curve) and shallow (gray dotted curve) biomass distribution
scenarios. See text for details.
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refer to these variable distributions of subsurface biomass as the “shallow” (informed by elevated CO2

plots in the PHACE experiment) and “deep” (informed by ambient plots in the PHACE experiment)
biomass scenarios.
2.2.3. Simulation Experiments
To evaluate the influences of soil texture (question 2), distribution of subsurface biomass (question 3), and
environmental factors (question 4) on the temporal relationship between STotal and Rsoil, we used DETECT
to simulate CO2 fluxes based on three different soil texture scenarios (clay, sandy loam, and sandy) and asso-
ciated SWC and Tsoil, crossed with two scenarios for the distribution of roots and microbes (shallow and
deep). We based soil properties for the sandy loam scenario (20% clay, 20% silt, and 60% sand) on soil at
the PHACE site (Bachman et al., 2010) and varied the proportions of clay and sand relative to this scenario
to establish soil properties for the other two scenarios: clay (60% clay, 20% silt, and 20% sand) and sandy
(10% clay, 10% silt, and 80% sand). As described in Ryan et al. (2018), these soil texture scenarios, along with
site meteorological data, were input to the HYDRUS-1D model to simulate time- and depth-varying input
data for SWC and Tsoil for each soil texture scenario. The simulated SWC and Tsoil data were combined with
the depth-varying root and microbial distributions to drive DETECT, producing 6-hourly outputs of Dgs, root,
and microbial production (i.e., SR and SM), and STotal and Rsoil (Figure 2a).

In establishing our simulation experiments, we attempted to control for the number of variables that could
influence the temporal relationships between Rsoil and STotal and between these fluxes and their environmen-
tal drivers. For this reason, we did not incorporate plant-soil feedbacks into our analysis. While it is possible
that changes in root, microbial, or soil carbon could feedback to affect soil physical properties or that soil phy-
sical properties could influence the distribution of roots, microbes, or SOC, we chose to independently vary
biomass distributions and soil properties in our simulation experiments. This flexibility allowed us to tease
apart the effects of each of these factors on the temporal coherence between Rsoil and STotal and between
CO2 fluxes and their environmental drivers.
2.2.4. Informal Model Validation
We evaluated DETECT’s ability to predict reasonable Rsoil values by comparing Rsoil output (equation (3)) with
measurements of Rsoil obtained via soil chambers deployed in vegetated PHACE plots exposed to ambient
CO2 and temperature (Ogle et al., 2016). We used Rsoil values that were measured twice amonth in 2008, from
1 April to 30 September, producing a total of 60 measurements across the 5 replicate plots for the ambient
CO2 (control) treatment. CO2 concentrations measured over time in each chamber were converted to fluxes
via linear regression in a Bayesian framework. We matched median values of these flux calculations to the
average of 6-hourly DETECT output from the same day.

Although the model was not formally parameterized with data from the PHACE site, the DETECT output was
within the 95% credible interval of, and followed the same temporal trends as, Rsoil calculated frommeasure-
ments at the PHACE site (Figure S1 in the supporting information). This is consistent with the analysis by Ryan
et al. (2018), which showed that chamber measurements of Reco along with observed CO2 concentrations in
the subsurface were consistent with DETECT output. Variability in Rsoil measurements at the site increased
during the two precipitation events, most likely due to nonuniform conditions in soil moisture. Median
Rsoil measurements during the August precipitation event were up to 3 times lower than DETECT estimates
during this period. These discrepancies are likely due to variable soil moisture conditions at the site (e.g., var-
iations in infiltration) versus the idealized SWC input to DETECT. Nonetheless, the DETECT output was still
contained within the 95% credible interval of the measurements. Further, the coefficient of determination
between measured and modeled Rsoil was 0.77 (p = 0.000109), indicating a high level of agreement between
modeled and measured Rsoil.

2.3. CWC Analysis

CWC analysis provided insights into the time scales and conditions when it is appropriate to assume Rsoil,
measured (or modeled) at the surface, is a direct representation of subsurface CO2 production rates.
2.3.1. Background on CWC Analysis
CWC was developed by geophysicists to evaluate temporal relationships between time series with nonsta-
tionary periodicity without imposing user-defined assumptions about frequencies of interest or temporal
lags between the data sets (Grinsted et al., 2004; Torrence & Compo, 1998; Vargas et al., 2010). This type of
analysis has been critical in identifying subseasonal variations in the temporal relationships between Rsoil
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and its drivers, which are difficult to identify through other time series methods that assume invariant tem-
poral relationships between drivers and responses (Vargas et al., 2010, 2011). In this analysis, each time series
is transformed into a wavelet (i.e., a finite form of a wave function) to obtain a continuous time signal. The
wavelet transformation is based on a “mother wavelet,” which is a complex function that is scaled to capture
the range of frequencies represented in the time series of interest. There are several functions available to
construct a mother wavelet, each of which has tradeoffs in time and frequency resolution (Vargas et al.,
2010). Once the time series is transformed to a wavelet, it is then smoothed and crossed with a wavelet that
represents the other time series of interest to evaluate the linear correlation at a range of frequencies. If the
correlation is outside the range of edge effects (i.e., “cone of influence”) and different from the “red noise”
background, it is deemed significant. Equations and details for CWC analysis can be found in Torrence and
Compo (1998), Grinsted et al. (2004), Labat (2005, 2010), and Vargas et al. (2010).

Importantly, CWC analysis provides information about both temporal coherence and lags between two time
series. Temporal coherence can be thought of as short-term linear correlation in time-frequency space
(Grinsted et al., 2004). The degree of coherence is expressed as an R2 term, which quantifies the coherence
between the two signals, and has a formula (equation (4)) that bears some similarity to a correlation coeffi-
cient localized in time-frequency space (Grinsted et al., 2004):

R2 sð Þ ¼ S s�1WXY
n sð Þ� ��� ��2

S s�1 WX
n sð Þ�� ��2� �

�S s�1 WY
n sð Þ�� ��2� � (4)

WX
n and WY

n are the normalized wavelets for each time series (e.g., X and Y) under consideration, WXY
n is the

cross-wavelet transform of the two time series, and s is the circular standard deviation as described in
Grinsted et al. (2004). The S functions are smoothing operators specific to themother wavelet chosen for each
analysis (Grinsted et al., 2004; Torrence & Compo, 1998).

CWC analysis also produces phase angle (PA) values, which represent offsets or temporal lags, between the
time series, for each time step and period. A PA, which is proportional to a temporal lag, can be thought of as
the difference between the points at which each wavelet (time series) passes through the horizontal axis. The
conversion of the calculated offset (PA) to an explicit time lag leads to nonunique solutions due to uncer-
tainty in the PA (e.g., a PA of π/2 radians or 90° appears to be the same as a PA of (5π)/2 radians or 450° when
visualized on a unit circle). Therefore, quantifying time lags based on this approach must be done cautiously.
Time lags can, nonetheless, be estimated based on PA by eliminating PA values that yield lags that exceed
the period (Grinsted et al., 2004).
2.3.2. Implementation of CWC Analysis
We used CWC analysis to evaluate temporal relationships, at multiple time scales, between total CO2 fluxes
(Rsoil or STotal) and (1) each other (Y = Rsoil, X = STotal), (2) Tsoil (Y = Rsoil or STotal, X = Tsoil), and (3) SWC
(Y = Rsoil or STotal, X = SWC). We implemented the CWC analysis using the cross-wavelet and wavelet coher-
ence Matlab toolbox (Griffis et al., 2016; Grinsted et al., 2004) and used a Morlet wavelet as the mother wave-
let. The Morlet wavelet is commonly used in geophysical and ecological studies because this complex wave
provides a balance between time and frequency localization (Grinsted et al., 2004; Torrence & Compo, 1998;
Vargas et al., 2010).

Each DETECT model run produced time series outputs that spanned 183 days at a time step (Δt) of 6 hr for a
total of 732 simulated CO2 fluxes during the growing season. After removing the results from the spin-up per-
iod (see section 2.2.1), the results of the CWC analysis are expressed in terms of “periods,”which are inversely
proportional to the frequency of the time series. A period of 1, therefore, represents a single time step (6 hr), a
period of 4 is equivalent to a single day, and a period of 128 is equivalent to a 32-day (approximatelymonthly)
time block. Evaluating coherence at different periods provided insights into the time scales over which Rsoil
measured at the surface was a direct picture of subsurface production and the time scales over which Rsoil
might not have provided information about concurrent subsurface processes. Further, the CWC analysis pro-
vided insights into the temporal relationships between environmental drivers (e.g., Tsoil and SWC) and pro-
duction and Rsoil. For each analysis, we explored the influence of soil texture and the distribution of root
and microbial biomass carbon on the temporal relationships between the time series of interest. When eval-
uating the temporal relationship between CO2 fluxes and Tsoil or SWC, we focused on the relationship at soil
depths or depth intervals for which these variables were measured at the Wyoming PHACE site (see Ryan
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et al. (2018)), which correspond roughly to typical depths used in many field studies, allowing us to address
implications of analyzing field-based, empirical data.

We estimated time lags between the Y and X variables by calculating the PA (in radians) between the two
time series and scaling it by the period: lag = PA×period/(2π) (Grinsted et al., 2004). We chose the smallest
PA of all possibilities when estimating temporal lags to gain insights into the changes in the temporal rela-
tionship between the CO2 fluxes at subdaily to monthly periods. To summarize the temporal relationships
across the entire growing season, we averaged both R2 and lag values over time within a given period for
each soil texture and biomass distribution scenario.

3. Results

We present results from DETECT model simulations and the associated CWC analysis in the context of our
main research questions. We first summarize predicted STotal and Rsoil variations over subdaily to seasonal
time scales (question 1) and link these variations to seasonal precipitation patterns and modeled changes
in soil CO2 diffusivity (Dgs), exploring how soil texture (question 2) and the depth distribution of roots and
microbes (question 3) influence the temporal coherence and lags between Rsoil and STotal. We then evaluate
the temporal relationship between each soil CO2 flux variable and physical drivers (SWC and Tsoil; question 4).

3.1. Seasonal Variation in Rsoil and STotal

The DETECT model predicted that the total amount of CO2 produced per square meter in the subsurface over
the course of the growing season (sum of STotal over the 183-day period) was within 1% of the total amount of
CO2 emitted from the surface (sum of Rsoil), regardless of soil texture or the distribution of subsurface biomass
carbon. Total seasonal fluxes were predicted to be approximately 1.6 times higher in clay soil than in both
sandy loam and sandy soil (Figure S2).

Precipitation was concentrated in two main periods, early season (~days 50–75) and late season (days
125–135). Both STotal and Rsoil increased during the two multiday precipitation events, with the greatest
increase during the second event, regardless of soil texture (Figure 2a). These rain events led to increases
in SWC (Figure 2e) that coincided with suppression of diffusivity, Dgs (Figure 2e), especially in sandy and
sandy loam soils. In the clay soil, SWC remained above 0.25 (i.e., 25% v/v) throughout the growing season
whereas the sandy and sandy loam soils had lower water holding capacities. Because of its relatively high
SWC, the clay soil had Dgs values roughly 3 times lower than the sandy and sandy loam soils (Figure 2c).
Tsoil increased to a maximum of ~30°C on day 125 in all soil types and then decreased at the start of the sec-
ond precipitation event (Figure 2f). The combination of soil moisture and temperature led to similar temporal
patterns (but different magnitudes) of Stotal and Rsoil in all soil types (Figure 2a). Clay soil had the highest
fluxes, up to 29 μmol · m2 · s, and the difference between Stotal and Rsoil was greatest in the clay soil
(Figure 2b). These differences were most pronounced when SWC and Tsoil were highest, contributing to
higher production rates in clay soil. These higher production rates coincided with the lowest Dgs, increasing
the lag times between surface efflux and subsurface production.
3.1.1. Temporal Coherence Between Rsoil and STotal in the Deep-Biomass (Ambient CO2) Scenario
Rsoil and STotal were positively correlated (in phase) at daily to monthly periods in all soil texture scenarios dur-
ing times with little to no precipitation and relatively dry soil (Figure 4). However, over subdaily to daily per-
iods, there was either no coherence between Rsoil and STotal (blue colors, Figure 4) or there were lags between
the two fluxes in all soil types, with STotal consistently leading Rsoil. Regardless of soil texture, PA at subdaily to
daily time scales ranged from 45° to 135° when the soil was dry. The PA range can be interpreted as a
temporal lag of 0.5 to 1.5 periods or 3 to 9 hr (0.5 (1.5) period × 6 hr/period = 3 (9) hr). These lags were most
apparent in the first 25 days of the simulated growing season, during an extended rain-free episode. During
and immediately after precipitation events, there was little to no coherence between the Rsoil and STotal time
series at subdaily to biweekly periods in clay soil (Figure 4a) and daily to weekly periods in sandy loam and
sandy soils (Figures 4b and 4c). The deterioration of the temporal coherence at these periods lasted for up to
a month in clay soil (Figure 4a), up to a week in sandy loam soil, and 1 or 2 days in sandy soil (Figures 4b
and 4c).

The CWC analysis revealed temporal lags between Rsoil and STotal in soil of all textures during and following
the two main precipitation pulses. During the first precipitation event (days 52 to 68, 23 May to 8 June), in all
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soil types (Figure 4) a temporal lag of at least 6 hr was observed between the time CO2 was produced within
the soil profile and the time it was emitted to the atmosphere. This lag between the two time series was again
apparent at the start of the second precipitation event (day 125, 4 August) in the sandy and sandy loam soils,
but, in general, there were few lags between Rsoil and STotal at biweekly to monthly periods in these two soil
types (Figures 4b and 4c). In clay soil, there was limited coherence between STotal and Rsoil at biweekly and
shorter time scales during each precipitation episode. When coherence was significant in clay soil during
these precipitation episodes, there were temporal lags of at least 48 hr (Figure 4a). This means that during
precipitation events, it could take up to 2 days for CO2 produced in the subsurface to be emitted to the
atmosphere in the clay soil scenario (Figure 4a).

The timing of the decreased coherence in clay soil and increased lags in sandy loam and sandy soils corre-
sponds to the timing of suppressed Dgs (averaged across all depths) in all soil types (gray bars under each
wavelet plot in Figure 4). Dgs decreased by approximately 50% in all soil types in the middle of the first mul-
tiday precipitation event (around day 60). In clay soil, Dgs remained ~16% below pregrowing season values
at the start of the second multiday precipitation event (around day 125) while Dgs in sandy loam and sandy
soil recovered and was approximately 20% higher than early growing season values around day 125
(Figure 2c and gray bars in Figure 4). There was a sharp decrease in Dgs in all soil types with the onset
of the second precipitation event, but Dgs remained approximately 67% below early growing season values
in clay soil and recovered to 100% of early growing season values in the coarser sandy loam and sandy soil
(Figure 4).
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Figure 4. Cross-wavelet coherence plots demonstrate the temporal coherence between modeled soil respiration (Rsoil; Y)
and total subsurface CO2 production (STotal; X) over the course of the growing season in (a) clay, (b) sandy loam, and
(c) sandy soil. Colors are scaled to show coherence (R2) between the two time series at different periods (Δt = 6 hr, so the
time scale is subdaily when period <4 and daily when period = 4). Statistically significant R2 values are outlined with a
heavy black line. Arrows on the cross-wavelet coherence plots indicate the phase angle between the two time series. Phase
angle arrows that point to the right indicate that the two time series are in phase (e.g., positively correlated with no lags)
while arrows that point to the left are antiphase (e.g., negatively correlated with no lags). Arrows pointing down (up)
indicate that the X (Y) time series leads the Y (X) time series by 90° (π/2 radians). The precipitation (ppt) panel (bottom)
shows the timing and magnitude of precipitation events over the course of the growing season, while the diffusivity (Dgs)
gray scale bar (above ppt panel) indicates the CO2 diffusivity at each time step, averaged over all depth intervals, as a
percent of Dgs at the start of the growing season, when the soil were relatively dry (high air-filled porosity).
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3.1.2. Effect of Shifting the Distribution of Subsurface Biota to Shallower Soil Layers
Concentrating biomass in the upper 0.1 m of the soil column (“shallow” biomass scenario) had little impact on
the overall coherence between Rsoil and STotal, but it did decrease lag times between these two fluxes relative
to the “deep” biomass scenario. The overall coherence between Rsoil and Stotal was generally insensitive to
the distribution of roots and microbes in the sandy and sandy loam soils, with a difference in average R2 of
less than 0.1 at all periods (Figure 5a). In clay soil, R2 values were higher by approximately 0.10 in the shallow
biomass scenario. In all soil types, time lags between Rsoil and STotal were shorter in the shallow-biomass
scenarios (Figure 5b). Average lag times for a given period decreased by up to 10 hr in clay soil, 5 hr in sandy
loam soil, and 2 hr in sandy soil when the biomass was concentrated in the uppermost 0.10 m of the
soil column.

3.2. Influence of Tsoil and SWC

When Rsoil was related directly to concurrent subsurface environmental drivers (Tsoil and SWC), correlation
coefficients were significantly lower than maximum coherence determined using CWC techniques that take
into account lags and a varying temporal structure. For example, when Rsoil (Y) was regressed on concurrent
Tsoil (X) at 0.03 m or 0.10 m, the coefficient of determination was low (R2 ≤ 0.10; Figures 6a and 6b), but regres-
sions of Rsoil on SWC from 0.05 to 0.15 m or 0.35to 0.45 m produced R2 values as high as 0.63 (Figures 6c and
6d). However, CWC revealed higher average coherence (R2 values) between Rsoil and these environmental
drivers (Figures 5c and 5d), due to the ability to account for different time scales and lags.
3.2.1. Temporal Relationships Between CO2 Fluxes and Tsoil
CWC analysis indicated that both STotal and Rsoil (Y variables) were highly coherent with shallow (0.03 m) and
deep (0.10 m) Tsoil (X variable) when the soil was dry, regardless of soil type and the depth distribution of
roots and microbes (Figure 7). In general, CO2 fluxes were coherent with Tsoil at multiple time scales (1 to
16 days) when the soil was dry. In contrast, CO2 fluxes and Tsoil were coherent only at short to intermediate
(1 to 4 days) time scales during rainy periods. Coherence between Rsoil and Tsoil deteriorated during the sec-
ond precipitation episode late in the growing season in clay soil.
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Although coherence between Rsoil or STotal (Y variables) and Tsoil (X) was
generally high during nonrainy times at relatively short and intermedi-
ate time scales, regardless of soil type and the distribution of roots and
microbes, temporal lags between both Rsoil or STotal versus Tsoil varied
between soil type. Generally, STotal was highly coherent with both shal-
low (z = 0.03 m; Figure 7a) and deep (z = 0.10 m; Figure 7c) Tsoil at the
daily to biweekly time scale. However, lag times between each CO2 flux
and shallow Tsoil were longer (~3 hr in sandy loam [shown] and 6 hr in
clay [not shown] soil). Lag times were generally longer between Rsoil
and Tsoil in all soil types (Figures 7b and 7d) when compared to the rela-
tionship between STotal and Tsoil (Figure 7).
3.2.2. Temporal Relationships Between CO2 Fluxes and SWC
Rsoil and STotal were highly coherent with shallow (0.05 to 0.15 m) and
deep (0.35 to 0.45 m) SWC at periods of 4 days or longer during the
dry episode between the two multiday precipitation events. Earlier in
the growing season, the CO2 fluxes were only coherent with SWC prior
to the onset of the first precipitation episode, and the coherence struc-
ture again deteriorated during the second multiday precipitation
event. During the two main precipitation episodes, there was high
coherence and few lags between each CO2 flux and SWC at periods
of 1–2 weeks and 1 month in sandy loam soil regardless of subsurface
biomass distribution. There were few lags between STotal or Rsoil versus
shallow SWC in sandy loam soil (Figures 8a and 8b), but the high coher-
ence between both STotal or Rsoil versus deep SWC (Figures 8c and 8d)
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at periods of 1 week and 1 month was characterized by lags of up to 3 days at the weekly period and up to
2 weeks at the monthly period. In clay soil, there was little coherence between each CO2 flux and SWC at
periods of less than a month.

4. Discussion

The purpose of this study was to evaluate the common and simplifying assumptions that soil respiration
(Rsoil) measured at the soil surface is a reliable proxy for concurrent subsurface CO2 production by roots
and microbes (i.e., STotal) and that Rsoil can be modeled as a function of concurrently varying soil drivers
(e.g., Tsoil and SWC). Our modeling results indicate that at seasonal time scales, Rsoil and subsurface CO2 fluxes
are essentially equivalent, at least for the soil textures and root and microbial depth distributions considered
here. However, at subdaily to monthly time scales, there are variations in temporal coherence and time lags
between Rsoil and STotal that depend on soil texture, the depth distribution of roots and microbes, and soil
environmental drivers (e.g., Tsoil and SWC) that may invalidate the assumption that Rsoil provides a snapshot
of concurrent subsurface CO2 production. Soil texture, and the associated SWC and Tsoil profiles, exerted the
strongest control over the temporal coherence and time lags between subsurface and surface CO2 fluxes,
while the depth distribution of root and microbial biomass carbon mainly affected the time lags between
the two fluxes.

4.1. Temporal Coherence of Rsoil and STotal

The two multiday precipitation events increased the magnitude of both STotal and Rsoil, which is consistent
with observations at the site (Figure S1) and elsewhere (Kim et al., 2017), including in other semiarid and arid
regions (Deng et al., 2012). Rsoil at the Wyoming PHACE site also increased following precipitation episodes,
but the magnitude of that increase after the second precipitation event was lower than predicted by DETECT.

Figure 8. Cross-wavelet coherence plots of subsurface (Y = STotal; panels a and c) and surface (Y = Rsoil; panels b and d) CO2
fluxes with shallow (panels a and b) and deep (panels c and d) soil moisture (X = soil water content [SWC]). Results are
shown for sandy loam soil with the deeper biomass (ambient CO2) scenario but are generally the same, with amplified
temporal lags in clay soil and shorter temporal lags in the shallow biomass (elevated CO2) scenario. The color scales for R

2

and precipitation values and explanation of arrows are the same as in Figure 5.
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Previous studies have attributed increased Rsoil following precipitation events to physical mechanisms (e.g.,
displacement of CO2 stored in dry soil pores (Huxman et al., 2004; Kim et al., 2012; Marañón-Jiménez et al.,
2011)) or biological mechanisms (e.g., increased microbial metabolism (Kim et al., 2017)). Rsoil can also
decrease following precipitation events, which has also been attributed to physical (e.g., decreased Dgs

(Davidson et al., 2000; Kim et al., 2012; Rochette et al., 1991; Šimůnek & Suarez, 1993)) and biological
processes (e.g., shift from aerobic to anaerobic decomposition (Ball et al., 1999; Davidson et al., 2000; Kim
et al., 2012)).

Although the current DETECT model does not explicitly consider physical displacement of soil CO2 by water
nor a shift from aerobic to anaerobic metabolism (expected to be rare in this ecosystem), we can make infer-
ences regarding the causes of increased Rsoil following precipitation. For example, increases in Rsoil due to dis-
placement would likely be short-lived, and there is little evidence to suggest that the sustained increase in
Rsoil observed at the PHACE site and predicted by DETECT during rain events can be attributed to physical
displacement of CO2 (Xu & Baldocchi, 2004). Increased SWC does lead to reduced Dgs in the model, which
would likely lead to decreased Rsoil, regardless of changes in root and/or microbial CO2 production.
DETECT does allow us to evaluate the contributions of both microbial (SM) and root (SR) CO2 production to
the increase in CO2 fluxes following rain. SM increased first following precipitation events, followed by
increases in both root respiration (SR) and Rsoil. For this reason, we attribute the increase in STotal and Rsoil pri-
marily to increased subsurface biological activity following an influx of moisture.

Although DETECT did not predict decreased Rsoil during precipitation events, lag times between Rsoil and sub-
surface CO2 production (STotal) increased during the two rainfall events in coarse soil, coherence deteriorated
between the two fluxes in fine-grained soil, and STotal consistently exceeded Rsoil at the start of each multiday
precipitation event and on days when total precipitation was relatively high (Figure 2). This implies that pre-
cipitation, and the resulting Tsoil and SWC profiles, decreased CO2 diffusivity in all soil types (Ryan & Law,
2005), but the effect was strongest in the fine-grained (clay) soil. Soil bulk density and particle size distribution
exert a direct control over CO2 diffusivity because they control pore size distribution, water retention, and air-
filled and total porosity at each depth and time (Moldrup et al., 2001; Rey, 2015; Ryan et al., 2018; Sala et al.,
1992). Thus, soil texture influenced temporal coherence and time lags between simulated Rsoil and STotal in a
number of ways, with a net result that temporal coherence between the two CO2 fluxes was highest, and lag
times shortest, in coarse soil with little clay (Figure 5). Soil texture also modulated responses to environmental
drivers such as precipitation and the resulting Tsoil and SWC profiles. Since we did not consider aqueous trans-
port and storage mechanisms (e.g., CO2 dissolution) in the formulation of DETECT, we hypothesize that lags
associated with precipitation represent minimum temporal offsets between STotal and Rsoil since CO2 dissolu-
tion in soil water would increase lag times.

4.2. Time Scales of Influence of Tsoil and SWC

Studies frequently relate Rsoil measured at the surface to measurements of Tsoil and/or SWC made at particu-
lar locations (depths) within the soil profile in an effort to understand how variations in these factors affect
soil CO2 efflux (Cable et al., 2008, 2011; Davidson et al., 1998; Lloyd & Taylor, 1994; Sierra, 2012) and feedbacks
to atmospheric CO2 (Davidson & Janssens, 2006; Schlesinger & Andrews, 2000). Production and diffusivity are
functions of Tsoil and SWC, which modify base microbial and root respiration rates (Lloyd & Taylor, 1994;
Marañón-Jiménez et al., 2011; Moldrup et al., 2001; Ryan et al., 2018; Wang et al., 2014). Evaluating Rsoil as
a function of concurrent Tsoil measured at the PHACE site, as might be typical of many data analyses, leads
to the appearance that there was no relationship between Rsoil and Tsoil (Figures 6a and 6b).

CWC analysis, however, provided a more nuanced perspective of the relationships between these variables,
such that Rsoil is generally coupled to Tsoil but at varying time scales. This suggests a nonstationary relation-
ship between Rsoil and Tsoil, which agrees with empirical observations of hysteresis in the Rsoil versus Tsoil rela-
tionship (Barron-Gafford et al., 2011; Zhang et al., 2015). DETECT predicted that Tsoil influenced themovement
of CO2 through the soil column and into the atmosphere with highest coherence at short periods when the
soil was warm and dry (Figures 7 and 9). At the start of the growing season, high coherence between the CO2

fluxes (STotal or Rsoil) versus Tsoil occurred at longer periods. This high coherence at the start of the growing
season is likely related to higher activation energy, which is explicitly modeled in DETECT (Ryan et al.,
2018), when Tsoil is low. This result is consistent with findings of other studies (e.g., Tang & Riley, 2014).
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As with Tsoil, CWC analysis of the relationship between both shallow
and deep SWC revealed complicated temporal interactions not evident
from simple linear regressions. In contrast to Tsoil, both Rsoil and STotal
were highly coherent with SWC at long time scales, particularly after
the first precipitation episode (Figures 8 and 9). The higher degree of
coherence between each CO2 flux and SWC in deeper soil during the
second precipitation episode was consistent with greater infiltration
depths associated with the heavier rainfall delivered during this preci-
pitation event (Huxman et al., 2004).

4.3. Effect of Changing the Distribution of Subsurface Biomass

As one might expect, lag times were shorter and temporal coherence
between the CO2 fluxes was higher when root and microbial biomass
was concentrated in the uppermost 0.10 m of the soil column
(Figure 5). This effect was most dramatic in the clay soil scenario but
was also apparent in the coarser soil texture scenarios. Concentrating
biomass at shallower depths led to shorter diffusion path lengths,
allowing CO2 produced in the subsurface to reach the surface more
quickly (Moldrup et al., 2001), decreasing lag times and increasing
temporal coherence.

At the Wyoming PHACE site, elevated atmospheric CO2 conditions
(600 ppmv) favored a plant community with shallower roots compared
to ambient CO2 conditions (385 ppmv; Mueller et al., 2018). As atmo-
spheric CO2 and temperatures increase globally, grasslands across the
region will likely experience changes in plant rooting distributions

due to two factors. First, elevated CO2 may stimulate the local grasses to develop longer, thinner roots to
increase exploration for soil water and nutrients (Carrillo et al., 2014). Further, under elevated CO2, the com-
munity composition is shifting to favor species—such as the subdominant C3 sedge, Carex duriuscula—with a
greater propensity for root branching (Carrillo et al., 2014; Kropp et al., 2017; Zelikova et al., 2014). Both effects
were observed at the Wyoming PHACE site during the experiment, and such shifts in the distribution of roots
and associated root litter (substrate for microbes) could impact the utility of using Rsoil to infer subsurface
processes affecting CO2 fluxes.

4.4. Implications in a Changing Climate

The influence of precipitation and the depth distribution of subsurface biota on the temporal relationships
between STotal and Rsoil suggests that these temporal relationships will likely change as climate changes. In
the northern Great Plains, where the Wyoming PHACE site is located, mean annual temperatures have
increased at a rate of 2.6°C per century over the course of the instrumental record (Kunkel et al., 2013;
Zelikova et al., 2014). Although there is some evidence that this increase in temperature has been accompa-
nied by decreases in precipitation in eastern Wyoming (Ficklin et al., 2013), there are no significant trends in
mean annual precipitation across the region. It is, however, likely that growing season precipitation will occur
as less frequent, but more intense, storms separated by longer dry periods (Groisman & Knight, 2008; Kunkel
et al., 2013; Zelikova et al., 2014). Further, elevated CO2 led to a shift toward more shallowly distributed root
and microbial biomass in this grassland ecosystem during the PHACE experiment. DETECT predicted that this
shift to shallower biomass leads to fewer lags between CO2 production and efflux. Less frequent but more
intense storms might lead to increased STotal that is released as Rsoil with fewer and/or shorter lags as the soil
dries between precipitation events. This suggests that the assumption that Rsoil is a quantitative proxy for
STotal in the subsurface may become more valid in semiarid grassland ecosystems as climate changes.

5. Conclusions and Future Directions

The DETECT model provides insights into the validity of assuming Rsoil measured at the surface is represen-
tative of subsurface CO2 production at the time of measurement. This study indicates that this assumption is
generally valid for coarse-grained, dry soil, but it should be cautiously applied in fine-grained and/or wet soil,

Te
m

p
o

ra
l c

o
h

er
en

ce
Y

 =
 R

so
il

High

ya
l

C
dn

a
S

Low

W
et

S
hallow

D
eep

D
ry

SWC Tsoil

(Roots and microbes)
STotal STotal

Clay

X = ...

S
easonal

S
ubdaily

Sand

Physical controls Biological controls

S
easonal

S
ubdaily

S
hallow

D
eep

S
easonal

S
ubdaily

W
arm

 / D
ry

C
ool / W

et

S
easonal

S
ubdaily

Figure 9. Conceptual summary of the different physical and biological controls
on the temporal coherence between surface (Rsoil) and subsurface (STotal) CO2
fluxes, which act on different time scales. Soil texture exerted the strongest
control over the temporal coherence between Rsoil and STotal, with the strongest
coherence in the more coarse-grained soils. The temporal coherence between
Rsoil and soil water content (SWC) is complicated but is generally high at sea-
sonal time scales during rain-free periods and at weekly or shorter periods dur-
ing times of precipitation. Rsoil responds to changes in soil temperature (Tsoil) at
faster time scales when soil is dry. The coherence between Rsoil and STotal is
highest when the subsurface biota (root and microbes) is concentrated in the
uppermost 10 cm of the soil column (i.e., under elevated CO2 conditions), rela-
tive to more deeply distributed biota (under ambient CO2 conditions). Biological
factors amplify effects of soil texture rather than exerting a first-order control.
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especially following precipitation events that can dramatically alter soil air-filled porosity and CO2 diffusivity.
The results of this study and others (e.g., Stoy et al., 2007) imply that physical processes can cause lags
between CO2 production and efflux from the soil surface, which can be challenging to distinguish from bio-
logically induced lags, due to, for example, upregulation of root or microbial activity or delayed root or micro-
bial growth. Physical lags are likely more important in finer-textured soils and at higher water contents,
particularly at subdaily to daily time scales. These time lags and decoupling between fluxes suggest that
Rsoil measurements do not directly reflect root and microbial activity at the time of measurement, leading
to disequilibrium between estimates of SM, SR, and Rsoil, and poor estimates of each subsurface component
of Rsoil. Therefore, any empirical or modeling study that aims to link Rsoil to subsurface production should
consider lags between these CO2 fluxes particularly in fine-grained and/or wet soil (e.g., depth-
averaged SWC ≥ 0.2).

The current version of DETECT provides important insights into the primary controls over temporal relation-
ships between subsurface CO2 production (e.g., STotal) and surface efflux (Rsoil). Incorporating nondiffusive
transport processes into DETECT would improve insights into mechanisms that induce lags between CO2 pro-
duction and efflux and between these CO2 fluxes and their environmental drivers. For example, there is evi-
dence that nondiffusive transport mechanisms (e.g., advection) have a significant impact on the temporal
relationships between STotal and Rsoil and between these fluxes and their environmental drivers, particularly
at short time scales (Roland et al., 2015). Further, incorporating an evaluation of carbonate reactions that take
place in soil water (e.g., Fang & Moncrieff, 1999) would allow us to explicitly evaluate ephemeral processes
that likely affect the presence and magnitude of lags at short time scales, including physical displacement
of gaseous CO2 following rain pulses in semiarid grassland ecosystems. Incorporating these processes may
help improve the ability of DETECT to predict the magnitude of Rsoil following precipitation events and pro-
vide better estimates of lags. Further, incorporating these processes would allow us to evaluate the condi-
tions and time scales over which nondiffusive versus diffusive transport processes exert the greatest
influences over movement of CO2 from the subsurface to the atmosphere.

Nonetheless, our results are consistent with a growing body of studies that indicate that temporal lags asso-
ciated with Rsoil must be accounted for in carbon cycle models that operate at subseasonal time scales (e.g.,
Baldocchi et al., 2006; Kim et al., 2017; Stoy et al., 2007; Tang & Baldocchi, 2005; Vargas et al., 2010; Zhang
et al., 2015). Further, our current analysis highlights the importance of evaluating how temporal relationships
vary over time. This sort of analysis will become more important when examining more detailed mechanistic
controls over STotal and Rsoil.
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