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Abstract Recently, severe droughts that occurred in North America are likely to have impacted its
terrestrial carbon sink. However, process-based understanding of how meteorological conditions prior to
the onset of drought, for instance warm or cold springs, affect drought-induced carbon cycle effects remains
scarce. Here we assess and compare the response of terrestrial carbon fluxes to summer droughts in 2011 and
2012 characterized by contrasting spring conditions. The analysis is based on a comprehensive ensemble of
carbon cycle models, including FLUXCOM, TRENDY v5, SiBCASA, CarbonTracker Europe, and CarbonTracker,
and emerging Earth observations. In 2011, large reductions of net ecosystem production (NEP;
�0.24 ± 0.17 Pg C/year) are due to decreased gross primary production (�0.17 ± 0.18 Pg C/year) and slightly
increased ecosystem respiration (+0.07 ± 0.17 Pg C/year). Conversely, in 2012, NEP reductions (�0.17 ± 0.25
Pg C/year) are attributed to a larger increase of ecosystem respiration (+0.48 ± 0.27 Pg C/year) than gross
primary production (+0.31 ± 0.29 Pg C/year), induced predominantly by an extra warmer spring prior to
summer drought. Two temperate ecoregions crops/agriculture and the grass/shrubs contribute largest to
these reductions and also dominate the interannual variations of NEP during 2007–2014. Moreover, the
warming spring compensated largely the negative carbon anomaly due to summer drought, consistent with
earlier studies; however, the compensation occurred only in some specific ecoregions. Overall, our analysis
offers a refined view on recent carbon cycle variability and extremes in North America. It corroborates earlier
results but also highlights differences with respect to ecoregion-specific carbon cycle responses to drought
and heat.

1. Introduction

Terrestrial ecosystems offset approximately one fourth of global anthropogenic CO2 emissions (Le Quéré
et al., 2016), substantially slowing down the increase of CO2 concentration in the atmosphere and the pace
of global warming. However, climate extremes (e.g., droughts and extremely low or high temperature) exert
strong impacts on carbon sequestration by terrestrial ecosystems (van der Molen et al., 2011). Understanding
the effects of climate extremes on the terrestrial carbon cycle is paramount for studies on global climate
change as well as natural resource and food security.

In recent decades, large-scale droughts have impacted many regions around the world (Ciais et al., 2005;
Gatti et al., 2014; Zhao & Running, 2010), including North America (Luo et al., 2017; Schwalm et al., 2012;
Wolf et al., 2016). For example, the 2012 summer drought over the Central Great Plains in the United
States was reported as “themost severe seasonal drought in 117 years resultedmostly from natural variations
in weather” (Hoerling et al., 2014). While many studies have examined the effects of droughts on the terres-
trial carbon cycle, these typically focus on site or local scales (Biederman et al., 2016; Doughty et al., 2015;

HE ET AL. 2053

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE
10.1029/2018JG004520

Key Points:
• Large NEP reductions in 2011 and

2012 are due to contrasting effects of
GPP and Reco in the context of
droughts

• Two temperate ecoregions
crops/agriculture and grass/shrubs
contributed largest to these
reductions

• Compensation of drought-induced
carbon uptake reductions due to
warm spring occurred only in some
specific ecoregions

Supporting Information:
• Figure S1

Correspondence to:
W. Ju,
juweimin@nju.edu.cn

Citation:
He, W., Ju, W., Schwalm, C. R., Sippel, S.,
Wu, X., He, Q., et al. (2018). Large-scale
droughts responsible for dramatic
reductions of terrestrial net carbon
uptake over North America in 2011 and
2012. Journal of Geophysical Research:
Biogeosciences, 123, 2053–2071. https://
doi.org/10.1029/2018JG004520

Received 30 MAR 2018
Accepted 5 JUN 2018
Accepted article online 14 JUN 2018
Published online 7 JUL 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0003-0779-2496
http://orcid.org/0000-0002-0010-7401
http://orcid.org/0000-0001-7447-0257
http://orcid.org/0000-0002-4051-3228
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961
http://dx.doi.org/10.1029/2018JG004520
http://dx.doi.org/10.1029/2018JG004520
http://dx.doi.org/10.1029/2018JG004520
http://dx.doi.org/10.1029/2018JG004520
http://dx.doi.org/10.1029/2018JG004520
mailto:juweimin@nju.edu.cn
https://doi.org/10.1029/2018JG004520
https://doi.org/10.1029/2018JG004520


Scott et al., 2015; Wolf et al., 2013). Only a few studies have examined at large scales (Jung et al., 2017;
Schwalm et al., 2012; Wolf et al., 2016; Zscheischler et al., 2014). There are large knowledge gaps regarding
the impacts of large-scale droughts on terrestrial carbon cycle due to a couple of challenges as below.

One big challenge in studying the impacts of large-scale droughts on the terrestrial carbon cycle is how to
accurately estimate carbon fluxes over large regions, which are not directly measurable. A common way is
to simulate carbon fluxes using bottom-up terrestrial biosphere models (TBMs), including a new generation
of modeling approaches with a richer representation of functional diversity (i.e., dynamic global vegetation
models, DGVMs, e.g., ORCHIDEE) and traditional modeling approaches based on a small number of fixed
plant functional types (e.g., the combined Simple Biosphere/Carnegie-Ames-Stanford Approach [SiBCASA]).
Owing to uncertainties in model inputs and parameters as well as the failure of models to capture carbon
cycling processes, intermodel differences in simulated carbon fluxes are large (Huntzinger et al., 2012;
Restrepo-Coupe et al., 2017). Atmospheric inversion models (AIMs), complementing bottom-up biosphere
modeling, optimize net regional and global biosphere carbon fluxes by adjusting prior estimates from
TBMs to match high-precision atmospheric CO2 measurements (Peters et al., 2007; Peylin et al., 2013; van
der Laan-Luijkx et al., 2017). At finer scales, the eddy covariance technique monitors net ecosystem produc-
tion (NEP), on which gross primary production (GPP) and ecosystem respiration (Reco) could be estimated
using partitioning approaches (Lasslop et al., 2010; Reichstein et al., 2005). These in situ CO2 flux measure-
ments can be upscaled to regions or the globe using remote sensing data and machine learning (ML) algo-
rithms (Jung et al., 2017). Integration of carbon fluxes estimated using different approaches is a practical way
to constrain uncertainties in estimated carbon fluxes.

Another challenge is associated with uncertainties in large-scale drought monitoring and the complexity of
drought impacts on carbon fluxes, including not only land-atmosphere interactions concurrently to extreme
events (Sippel et al., 2016; Wolf et al., 2016) but also inducing memory effects (Schwalm et al., 2017). Recent
rapid development of satellite Earth observations (EO) makes it possible to monitor soil moisture (SM), under-
ground water storage, and vegetation physiological activity—all valuable observations for monitoring hydro-
logical and vegetation processes during droughts and to understand the impacts on the terrestrial carbon
cycle. A number of emerging spaceborne data have also been employed for this purpose, such as solar-
induced chlorophyll fluorescence (SIF; Sun et al., 2015; S. Wang et al., 2016), satellite SM (Nicolai-Shaw
et al., 2017; Velpuri et al., 2016), and terrestrial total water storage (TWS; Cao et al., 2015; Xie et al., 2016;
Yang et al., 2014; Yi & Wen, 2016). The synergy of different types of EO data might more effectively character-
ize droughts and helps to attribute their impacts on the terrestrial carbon cycle.

In 2011 and 2012, two large-scale droughts hit North America (Sun et al., 2015). In both years, strong summer
droughts took place but with contrasting unusually cold (2011) and warm (2012) spring conditions that
preceded summer drought. These meteorological differences thus offer an opportunity for a comparative
analysis of spring-summer carbon cycle dynamics, which we hypothesized might lead to different carbon
cycle responses. A recent study by Wolf et al. (2016) investigated the compensation effect of the spring
warming to the summer drought impact on terrestrial net carbon uptake in the United States in 2012.
However, several uncertainties remain, mainly with respect to the impact of different meteorological condi-
tions before summer drought (i.e., in spring), and their carry-over impacts on summer drought, and also when
it comes to the quantification of spring carry-over effects and summer drought effects across different carbon
cycle data sets.

In this study, we revisit the 2012 drought and also the 2011 drought in North America, studying their impacts
on terrestrial carbon fluxes with an ensemble of carbon flux estimates and remotely sensed hydroclimate and
vegetation activity. To constrain uncertainties in modeled carbon fluxes, we use a range of carbon flux data
sets or models, including in situ flux upscaled data set (i.e., a data-driven model, FLUXCOM), TBMs (TRENDY
DGVMs and SiBCASA), and atmospheric inversions (CarbonTracker Europe [CTE] 2016 and CarbonTracker [CT]
2016). The employed remotely sensed metrics include Global Land-surface Evaporation Amsterdam
Methodology (GLEAM) root-zone SM, Gravity Recovery and Climate Experiment (GRACE) terrestrial TWS,
Global Ozone Monitoring Experiment-2 (GOME-2) solar-induced fluorescence, and Moderate Resolution
Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI). This study aims to answer the follow-
ing scientific questions: (1) What was the direction and magnitude of net carbon uptake anomalies during
two large-scale North American summer droughts in 2011 and 2012? (2) How did individual processes
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(GPP and Reco) contribute to these anomalies, and which role did the unusually cold (warm) spring in 2011
(2012) prior to drought play in determining the interplay of GPP and Reco? (3) How did spatial patterns and
individual ecoregions contribute to these net carbon uptake anomalies?

2. Data and Methods
2.1. Study Area

North America spans 10–80°N, 175–55°W, including Canada, the United States, and Mexico. We divided the
study area into different ecoregions based on the Olson ecosystem classification (Olson et al., 2000) and
Transcom land regions (Gurney et al., 2004). These ecoregions (Figure 1) include four classes for both boreal
and temperate zones: grass/shrubs, crops/agriculture, forests/wooded, and tundra/taiga. As most drought
events occur in temperate North America, we focused the analysis over five selected subregions across the
midlatitudes (Figure 1). In addition, we used the Köppen-Geiger climate zone classification (Kottek et al.,
2006; Rubel et al., 2017; supporting information Figure S1) to delineate arid and semiarid areas.

2.2. CO2 Fluxes

In order to constrain the uncertainties in the analysis of carbon flux variability, we employed an ensemble of
state-of-the-art CO2 flux products, including FLUXCOM, TRENDY DGVMs, SiBCASA, CTE2016, and CT2016. CO2

flux data, satellite land surface data, and meteorological data used in this study are summarized in Table 1
and are introduced in the following sections.
2.2.1. FLUXCOM
The FLUXCOM product is based on upscaled FLUXNET CO2 flux measurements. Upscaling uses ML algorithms
(Jung et al., 2017; Tramontana et al., 2016) to scale in situ CO2 flux measurements into time-resolved
0.5° × 0.5° grids of NEP, Reco, and GPP for the period 1980–2013 using meteorological data and mean seaso-
nal cycles of remotely sensed data. Meteorological variables were retrieved from the CRUNCEP v6 data set.
The distribution of plant functional types originates from the majority class of annually resolved MODIS land
cover product (collection 5; Friedl et al., 2010). The daily fluxes were finally aggregated to monthly values.
Predictions of GPP and Reco fluxes were performed with three different ML algorithms, including artificial
neural networks, multivariate adaptive regression splines, and random forests, and two methods used for
separating GPP and Reco from tower-based NEP (Lasslop et al., 2010; Reichstein et al., 2005). Thus, there
are six sets of GPP and Reco, respectively, and a total of 36 sets of NEP by combining these GPP and Reco data
sets. In this study, we used the means and standard deviations of different NEP, GPP, and Reco data sets over
the period from 2007 to 2013 for analysis.

Figure 1. The aggregated ecoregions based on Olson ecosystem classification and Transcom land regions of North
America and the subregions (R1–R5) used for analysis of the impact of droughts.
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2.2.2. TRENDY DGVMs
Monthly carbon fluxes (GPP, autotrophic respiration, and heterotrophic respiration) at a spatial resolution of
0.5° × 0.5° simulated by six DGVMs from the TRENDY project (version 5, simulation S2; Sitch et al., 2015) were
used here. These models include ORCHIDEE (Krinner et al., 2005), CABLE (Y. Wang et al., 2010), DLEM (Tian
et al., 2015), ISAM (Jain et al., 2013), VEGAS (Zeng et al., 2005), and VISIT (Kato et al., 2013). They were all driven
by the CRUNCEP v7 data set (https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_
2015/catalog.html). Outputs from the TRENDY project have been widely employed to study the terrestrial
carbon cycle at regional and global scales (Ahlström et al., 2015; Bastos et al., 2016; Jung et al., 2017; Le
Quéré et al., 2016; Piao et al., 2013; Sitch et al., 2015).
2.2.3. The Combined Simple Biosphere/Carnegie-Ames-Stanford Approach
The SiBCASA model (Schaefer et al., 2008) is a combination of the Simple Biosphere (SiB) model (Baker et al.,
2008; Sellers et al., 1996) and the Carnegie-Ames-Stanford Approach (CASA) model (Potter et al., 1993). This
study used the simulation with improved biomass burning fluxes following van der Velde et al. (2014). The
meteorological drivers were retrieved from the European Centre for Medium-Range Weather Forecasting
data set. We used the simulated carbon fluxes at a spatial resolution of 1° × 1° and a temporal resolution
of 3 hr.
2.2.4. CarbonTracker Europe
The CTE (Peters et al., 2010; van der Laan-Luijkx et al., 2017) developed at Wageningen University assimilates
global air samples of CO2 mole fractions to constrain prior surface carbon fluxes simulated by the SiBCASA
model. The CTE data set has been widely applied in carbon cycle studies (Le Quéré et al., 2016; Thompson
et al., 2016). Recently, Wolf et al. (2016) used the CTE products (CTE2014 and CTE2015) to study the response
of carbon fluxes to the 2012 drought over south Great Plains in the United States. Here we used the monthly
CTE2016 data set with a spatial resolution of 1° × 1°.
2.2.5. CarbonTracker
Another atmospheric CO2 inversion product from CT2016 (Peters et al., 2005; Peters et al., 2007) developed at
the National Oceanic and Atmospheric Administration was also employed in this study. The differences
between CTE2016 and CT2016 were illustrated by van der Laan-Luijkx et al. (2017) in detail. The most impor-
tant differences are as follows: CTE2016 uses gridded state vector, while CT2016 uses ecoregion state vector;
they use different prior fluxes for biosphere, ocean, fires, and fossil fuels; and they use different subsets of CO2

observations. We used the monthly CT2016 data set at a spatial resolution of 1° × 1°.

2.3. Satellite Land Surface Data

Relative to most carbon cycle models, satellite observations provide more direct and uniform information
about land surface and thus are valuable for identifying spatiotemporal anomalies in hydrological and vege-
tation status. Four remote sensing metrics were chosen to indicate hydrological conditions and vegetation
activities: root-zone SM, terrestrial TWS, solar-induced fluorescence, and EVI. All those metrics can be used
to indicate drought conditions; and SIF also is often used as a proxy for GPP.

Table 1
Specifics of the CO2 Fluxes, Meteorological Data, and Satellite Land Surface Data Used in This Study

Products Spatial resolution Temporal resolution Time span References

FLUXCOM 0.5° × 0.5° Monthly 1980–2013 Tramontana et al. (2016); Jung et al. (2017)
TRENDY DGVMs 0.5° × 0.5° Monthly Diverse, including 2007–2014 Sitch et al. (2015)
SiBCASA 1° × 1° 3-hourly 2000–2014 van der Velde et al. (2014)
CTE2016 1° × 1° Monthly 2000–2015 van der Laan-Luijkx et al. (2017)
CT2016 1° × 1° Monthly 2000–2015 Peters et al. (2007)
CRUNCEP 0.5° × 0.5° 6-hourly 1901–2013 New et al. (2000)
GLEAM v3.1a 0.25° × 0.25° Monthly 1980–2016 Martens et al. (2017)
GRACE TWS 1° × 1° Monthly 2000–2014 Swenson and Wahr (2006); Landerer and Swenson (2012)
GOME-2 SIF 0.5° × 0.5° Monthly 2007–2016 Joiner et al. (2013)
MODIS EVI 0.05° × 0.05° 16 days 2000–2016 Huete et al. (2002)

Note. DGVMs = dynamic global vegetation models; SiBCASA = combined Simple Biosphere/Carnegie-Ames-Stanford Approach; CTE = CarbonTracker Europe; CT =
CarbonTracker; GLEAM = Global Land-surface Evaporation AmsterdamMethodology; GRACE TWS = Gravity Recovery and Climate Experiment total water storage;
GOME-2 SIF = Global Ozone Monitoring Experiment-2 solar-induced chlorophyll fluorescence; MODIS EVI = Moderate Resolution Imaging Spectroradiometer
enhanced vegetation index.

10.1029/2018JG004520Journal of Geophysical Research: Biogeosciences

HE ET AL. 2056

https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html
https://vesg.ipsl.upmc.fr/thredds/catalog/store/p529viov/cruncep/V7_1901_2015/catalog.html


2.3.1. GLEAM SM
The GLEAM root-zone SM v3.1a data was inferred from the satellite surface SM product ESA-CCI SM (v02.5) by
data assimilation (Martens et al., 2017; Miralles et al., 2011). ESA-CCI SM is a satellite SM product from the
European Space Agency Climate Change Initiative and an Essential Climate Variable, which is a combination
of passive (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, and SMOS) and active (AMI-WS and MetOp A/B
ASCAT) microwave products with a spatial resolution of 0.25° × 0.25° (Dorigo et al., 2017). The data set has
been validated against in situ measurements by many studies (Dorigo et al., 2015; Peng et al., 2015). By assim-
ilating the ESA-CCI SM data, GLEAM SM (v3.1a) has a better spatial continuity and also higher correlation with
carbon flux anomalies indicated in our experimental comparison; hence, we used the GLEAM SM data in
our analysis.
2.3.2. GRACE TWS
GRACE reveals dynamics of terrestrial TWS over the globe through observing temporal gravity field variations.
The 1° × 1° GRACE Level-2 RL05 TWS data were downloaded from NASA’s GRACE Tellus website (http://
podaacftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/) over North America for the period from 2007 to
2014 (Landerer & Swenson, 2012; Swenson &Wahr, 2006). To minimize the uncertainties associated with data
preprocessing, the product used ensemble means of the available three GRACE-TWS products preprocessed
independently by three research centers: NASA Jet Propulsion Laboratory, University of Texas Center for
Space Research, and the GeoForschungsZentrum Potsdam. In this product, scaling coefficients from the
National Center for Atmospheric Research’s CLM 4.0 model (Gent et al., 2011) were adopted to correct and
restore the GRACE signal attenuation due to filtering (Xie et al., 2016).
2.3.3. GOME-2 SIF
SIF has shown great promise for probing spatiotemporal variations of GPP (Guanter et al., 2014; Zhang et al.,
2016) and is also sensitive to water stress (Alden et al., 2016; Lee et al., 2013; Sun et al., 2015). The monthly SIF
at 740 nm with a spatial resolution of 0.5° × 0.5° (version 26) retrieved from the GOME-2 (Joiner et al., 2013)
was used to indicate vegetation activity specifically on photosynthetic CO2 uptake under droughts or
temperature anomalies.
2.3.4. MODIS EVI
Complementary to SIF, EVI from the MODIS product MOD13C1 was also used to indicate vegetation response
to droughts and temperature anomalies. This 16-day composite data set at a spatial resolution of 0.05° × 0.05°
was calculated using the MODIS/Terra reflectance (v6) data (Huete et al., 2002). A Savitzky-Golay filter built in
the TIMESAT 3.2 software (Jönsson & Eklundh, 2004) was applied to filter low-quality data.

2.4. Meteorological Data

In order to disentangle the drought impact from the combined effect of water and temperature anomalies on
carbon fluxes, we included air temperature data in our analysis. Precipitation data can also be used as a refer-
ence for satellite hydrological metrics. We used monthly air temperature and precipitation data at a spatial
resolution of 0.5° × 0.5° from the CRUNCEP v6 data set produced by the Institute Pierre Simon Laplace of
France (Wei et al., 2014). CRUNCEP v6 is a merged product of Climate Research Unit observation-based
monthly 0.5° × 0.5° climate variables (New et al., 2000; 1901–2014) and the 6-hourly high-resolution reanalysis
of National Centers for Environmental Prediction. This data set is also the meteorological driver of the
FLUXCOM and TRENDY products.

2.5. Analysis Methods
2.5.1. Calculation of Anomalies
The anomalies of carbon fluxes and meteorological, hydrological, and vegetation metrics were calculated as
follows:

Xi
0 ¼ Xi � XBL (1)

where Xi
0
is the anomaly of variable X in the ith month or year. Xi denotes the value of variable X in the ith

month or year, and XBL is the mean of variable X in months or years during a baseline period. Following
Wolf et al. (2016), we took the period from 2008 to 2010, when climate conditions were relatively harmonious,
as the baseline.
2.5.2. Correlation Analysis
Pearson’s correlation was used as a measure of association between anomalies of meteorological or hydro-
logical metrics and carbon fluxes. All data sets were processed to consistent 0.5° × 0.5° grids and monthly
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time steps for correlation calculations. We considered lagged effects for hydrological variables (precipitation,
SM, and TWS) and cumulative effects for precipitation. To calculate maximum correlation coefficients,
anomalies of precipitation, SM, and TWS in each grid were chosen as those with a backward shift of
several months (0 to 12 months) to correlate anomalies of carbon fluxes in the current month;
precipitation was additionally used as the mean of those in two previous months (Eisfelder et al., 2014;
Yang et al., 2014).

3. Results
3.1. Annual Anomalies of Carbon Fluxes During 2007–2014 and Links to Climatic Factors
3.1.1. Annual Anomalies of GPP, Reco, and NEP During 2007–2014
Overall, terrestrial ecosystems in North America act as a carbon sink for the period 2007–2014 but with large
discrepancies in magnitudes of carbon fluxes estimated by different models (Table 2). These models were
classified into three categories: data-driven FLUXCOM, TBMs (DGVMs and SiBCASA), and AIMs (CTE2016
and CT2016). The annual means of NEP range from 0.23 (DLEM) to 3.01 Pg C/year (FLUXCOM), with an ensem-
ble estimate of 1.01 ± 0.85 Pg C/year. The annual means of GPP range from 14.59 (DLEM) to 25.29 Pg C/year
(ORCHIDEE), with an ensemble estimate of 17.95 ± 3.36 Pg C/year. The annual means of Reco range from
12.62 (FLUXCOM) to 24.14 Pg C/year (ORCHIDEE), with an ensemble estimate of 16.89 ± 3.43 Pg C/year.
Among these models, FLUXCOM simulates lowest means and interannual variations (IAVs) of GPP and
Reco, which is consistent with previous findings regarding similar data sets (Anav et al., 2013; Kumar et al.,

Table 2
Terrestrial Carbon Fluxes of North America During 2007–2014 From 10 Models (Unit: Pg C/year)

Fluxes Models 2007 2008 2009 2010 2011 2012 2013 2014 Mean STD CV

GPP FLUXCOM 15.65 15.66 15.59 15.78 15.54 15.55 15.69 - 15.64 0.09 0.01
SiBCASA 17.58 17.53 17.28 18.29 17.57 17.82 17.25 17.57 17.61 0.33 0.02
ORCHIDEE 24.70 24.99 24.47 26.19 24.74 25.53 25.60 26.10 25.29 0.66 0.03
CABLE 18.08 18.51 18.18 18.84 18.17 18.63 18.56 18.61 18.45 0.27 0.01
DLEM 14.87 14.25 14.02 15.08 14.23 15.17 14.52 14.55 14.59 0.42 0.03
ISAM 17.78 17.45 17.07 18.26 17.68 18.03 18.02 18.43 17.84 0.44 0.02
VEGAS 15.55 14.90 14.84 15.51 15.07 15.74 15.15 15.47 15.28 0.33 0.02
VISIT 18.81 18.57 18.56 19.08 18.60 19.01 18.92 19.69 18.90 0.38 0.02
Mean 17.88 17.73 17.50 18.38 17.70 18.19 17.96 18.63 17.95 - -
STD 3.09 3.35 3.23 3.54 3.26 3.32 3.48 3.76 3.36 - -

Reco FLUXCOM 12.64 12.52 12.51 12.77 12.57 12.72 12.65 - 12.62 0.10 0.01
SiBCASA 17.25 17.20 17.11 17.83 17.35 17.51 17.17 17.26 17.34 0.23 0.01
ORCHIDEE 23.81 23.65 23.53 24.66 24.00 24.64 24.21 24.63 24.14 0.46 0.02
CABLE 16.59 16.40 16.43 16.98 16.59 17.12 16.59 16.66 16.67 0.25 0.02
DLEM 14.50 14.02 13.97 14.70 14.35 14.79 14.20 14.30 14.35 0.30 0.02
ISAM 17.20 16.70 16.58 17.75 17.48 17.95 17.32 17.63 17.33 0.48 0.03
VEGAS 15.08 14.56 14.49 15.11 14.76 15.24 14.72 14.95 14.86 0.27 0.02
VISIT 17.48 17.37 17.56 18.12 17.67 18.06 17.73 18.18 17.77 0.31 0.02
Mean 16.82 16.55 16.52 17.24 16.85 17.25 16.82 17.66 16.89 - -
STD 3.29 3.34 3.32 3.54 3.41 3.51 3.48 3.38 3.43 - -

NEP FLUXCOM 3.01 3.14 3.08 3.02 2.96 2.83 3.04 - 3.01 0.10 0.03
SiBCASA 0.33 0.33 0.17 0.46 0.23 0.31 0.08 0.30 0.27 0.12 0.42
ORCHIDEE 0.89 1.34 0.93 1.53 0.74 0.90 1.39 1.47 1.15 0.31 0.27
CABLE 1.49 2.11 1.76 1.86 1.58 1.51 1.98 1.95 1.78 0.23 0.13
DLEM 0.37 0.23 0.04 0.39 �0.12 0.38 0.32 0.25 0.23 0.18 0.78
ISAM 0.58 0.74 0.49 0.51 0.20 0.08 0.70 0.80 0.51 0.26 0.50
VEGAS 0.47 0.34 0.35 0.40 0.31 0.50 0.43 0.52 0.42 0.08 0.19
VISIT 1.34 1.21 0.99 0.96 0.93 0.95 1.19 1.51 1.13 0.21 0.19
CTE2016 1.00 0.71 0.81 0.96 0.81 0.79 0.66 0.86 0.82 0.11 0.14
CT2016 0.86 0.35 0.94 0.92 0.67 0.50 0.66 0.91 0.73 0.22 0.30
Mean 1.03 1.05 0.96 1.10 0.83 0.87 1.04 0.95 1.01 - -
STD 0.80 0.94 0.89 0.83 0.89 0.80 0.90 0.58 0.85 - -

Note. Bold signifies maximum or minimum values. STD = standard deviation; CV = coefficient of variation; CTE = CarbonTracker Europe; CT = CarbonTracker.
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2016; Piao et al., 2013). FLUXCOM simulates much larger NEP than TBMs and AIMs but with the lowest IAV
indicated by the standard deviation (as expected from earlier studies with data-driven models). The 8-year
average NEP estimated by the two AIMs is close to the ensemble mean, while NEP simulated by TBMs are
divergent, ranging from 0.27 (SiBCASA) to 1.78 Pg C/year (CABLE). In summary, there is still a large
discrepancy in the magnitudes and IAV of carbon fluxes estimated by different models.

However, flux anomalies derived from different carbon models are generally consistent in signs over time
(Figure 2 and Table S1). GPP and Reco show relatively large IAV, whereas NEP has much smaller variations
with substantial declines in 2011 and 2012 indicated by the ensemble means. The model ensemble suggests
an annual average increase of GPP (0.09 ± 0.26 Pg C/year) and Reco (0.12 ± 0.19 Pg C/year) and as a result a
slight decrease of NEP (�0.03 ± 0.08 Pg C/year) relative to the period 2008–2010 during 2007–2014 in North
America (Table S1). Annual NEP anomalies over the study area depend on the magnitudes and signs of GPP
and Reco anomalies (Figures 2a–2c). For 2010 and 2014, both GPP and Reco are clearly larger than those dur-
ing the baseline period; the former increases more than the latter, resulting in NEP above the baseline. For
2011 and 2012, although variations in GPP and Reco were different, NEP decreases in similar magnitudes indi-
cated by the ensemble mean. It should be noted that the NEP anomalies of 2011 and 2012 derived from dif-
ferent models exhibit large discrepancies (Figures 2c and 2d); the two atmospheric inversions show much
smaller NEP reduction than TBMs in 2011, which is mainly contributed by the inconsistent positive anomaly
during the summer (see Figure 5). Despite the discrepancies, all the three categories of models (Figure 2d)
show a considerable reduction of NEP in both years.

We further investigated annual anomalies of GPP, Reco, and NEP across different ecoregions (Figure 3) using
TBMs only. On the whole, a large negative anomaly is observed in the temperate area with a small negative
NEP anomaly in the boreal area, indicating that the temperate area was mainly responsible for the North
American NEP reductions over 2007–2014. In addition, large anomalies of GPP and Reco are observed in both
areas. Compared to the boreal area, the temperate area shows less increase on GPP but more on Reco. In the
boreal area, forests/wooded and grass/shrubs show negative NEP anomalies, while tundra/taiga shows a
positive NEP anomaly. The forests/wooded shows a negative NEP anomaly due to larger increase of Reco
than that of GPP while inversely for tundra/taiga. From a regional perspective, the positive NEP anomaly in
tundra/taiga compensates the negative anomaly caused by forests/wooded. In contrast, the temperate area
shows evident negative NEP anomalies, being responsible by the large NEP reductions of grass/shrubs and

Figure 2. Annual anomalies of GPP, Reco, and NEP (Pg C/year) relative to the baseline period 2008–2010 from an ensemble
of carbon cycle models in North America during 2007–2014. TBMs indicates the mean of DGVMs and SiBCASA; AIMs
indicates the mean of CTE2016 and CT2016;MEAN is the mean of all used carbon models. GPP = gross primary production;
NEP = net ecosystem production; DGVMs = dynamic global vegetation models.
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crops/agriculture in 2011 and 2012 associated with severe droughts (also see Figure 6b). The GPP reductions
in these two ecoregions dominate the negative anomalies of North American NEP. However, the
forests/wooded plays a positive role in the North American NEP anomalies, which was also reported by
Wolf et al. (2016).
3.1.2. Geographical Connection Between Carbon Flux Anomalies and Climatic Factors
To geographically attribute the carbon flux anomalies, we calculated the Pearson’s correlation coefficients
between monthly anomalies of carbon fluxes and meteorological or hydrological metrics over the period
2007–2014 at the grid scale (Figure 4) and at subregion and continental scales (Figure S2), respectively.

Pearson’s correlation coefficients between monthly anomalies of GPP estimated by different models and
meteorological or hydrological metrics are presented in Figure 4. Air temperature highly correlates to GPP,
especially in the boreal area, as estimated by FLUXCOM, DGVMs (taking the ensemble mean), and
SiBCASA. However, high air temperature anomalies could cause GPP reduction in the southern end area, such
as Texas, as indicated by FLUXCOM, DGVMs, and SiBCASA. In contrast, GPP in FLUXCOM, DGVMs, and
SiBCASA are positively correlated with hydrological indicators (precipitation, SM, and TWS) in the semiarid
Southwest and Great Plains, which are frequently hit by droughts, suggesting that these areas are mostly
responsible for carbon flux anomalies. In addition, indicated by the lagged months (time scales) of maximum
correlations between anomalies of GPP and hydrological indicators, the Southwest quickly responds to
hydrological anomalies, while the north (mostly the boreal area) responds slower, at about 8–10 months
on average. This indicates that the hydrological conditions in the Southwest have a strong impact on
North American carbon fluxes and different biomes respond to droughts with different time scales. We also
performed similar analysis for the estimated NEP from CTE2016 and CT2016 and found that they correlated

Figure 3. Annual anomalies of GPP, Reco, and NEP relative to the baseline period 2008–2010 from an ensemble of carbon cycle models (TRENDY DGVMs and
SiBCASA) for seven ecoregions in North America during 2007–2014. B. and T. are short for boreal and temperate, respectively. The numbers in subgraphs indicate
total flux anomalies in ecoregions. Largest anomalies of NEP took place in the temperate grass/shrubs and crops/agriculture, especially in 2011 and 2012. GPP = gross
primary production; NEP = net ecosystem production; DGVMs = dynamic global vegetation models.
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Figure 4. Pearson’s correlation coefficients between anomalies of GPP (estimated by FLUXCOM, DGVMs, and SiBCASA) and meteorological and hydrological metrics
(air temperature, air T; precipitation; soil moisture, SM; terrestrial total water storage, TWS) during the period 2007–2014. For air temperature, it was calculated in time
of the current month; for others, maximum correlation coefficient was calculated with consideration of lagged effect with up to 12 months. GPP = gross primary
production; DGVMs = dynamic global vegetation models.
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weakly with these metrics of meteorology and hydrology at grid scale (not shown). This is due to the fact that
the two data sets have limited spatial details since limited atmospheric CO2 observations were used for
constraining grid-scale carbon fluxes.

We further calculated correlations on the regional scale for GPP, Reco, and NEP fluxes that included the
two atmospheric inversions for the five subregions (Figure S2). SM and TWS show evidently positive cor-
relations with carbon fluxes in most regions. The results of FLUXCOM, DGVMs, and SiBCASA consistently
indicate that the increase of air temperature has larger influences on Reco than GPP and contribute to
negative correlations with NEP in all regions (especially in FLUXCOM data). Weak effects of air temperature
on regional carbon fluxes are indicated by CTE2016 and CT2016. Despite large discrepancy among differ-
ent models, air temperature has a stronger influence on Reco than GPP over North America. The NEP of
CTE2016 and CT2016 exhibit good correlations with precipitation and SM but do not correlate well with
TWS. On the whole, CTE2016 shows better correlation with these metrics than CT2016. On the regional
scale overall, carbon flux anomalies highly correlate to the hydrological anomalies. Compared to GPP
and Reco, NEP shows lower correlations with these EO, which might be explained by the relative larger
uncertainties in simulating NEP than GPP and Reco and mutual compensation of GPP and Reco (Jung
et al., 2017).

3.2. Process and Spatiotemporal Attribution of NEP Reductions in 2011 and 2012
3.2.1. Continental Scale
In 2011 and 2012, evident reductions of NEP with similar magnitudes (Table S1) but different underlying
mechanisms occurred (Table S2). The NEP reduction of �0.24 ± 0.17 Pg C/year (�0.20 ± 0.17 Pg C/year if
including two atmospheric inversions) in 2011 arises due to a moderate decrease of GPP
(�0.17 ± 0.18 Pg C/year) and a small increase of Reco (+0.07 ± 0.17 Pg C/year), while the NEP reduction of
�0.17 ± 0.25 Pg C/year (0.16 ± 0.23 Pg C/year if including two atmospheric inversions) in 2012 is owing to
a larger increase of Reco (+0.48 ± 0.27 Pg C/year) than that of GPP (+0.31 ± 0.29 Pg C/year).

Figure 5. Monthly (16-day for EVI) anomalies of carbon fluxes, air temperature, and hydrological and vegetation metrics
relative to the baseline period 2008–2010 in 2011 and 2012: (a) GPP, Reco, and NEP (Pg C/year) from an ensemble of
carbon cyclemodels. The numbers with positive or negative signs are increased or decreased fluxes for spring, summer, fall,
and annual total (with blue rectangles). MEAN is the mean of all used carbon models; (b) air temperature (air T, °C),
precipitation (mm), SM (m3/m3), TWS (mm), SIF (mW/m2/nm/sr), and EVI (unitless) during 2011–2012. EVI = enhanced
vegetation index; GPP = gross primary production; NEP = net ecosystem production SM = soil moisture; TWS = total water
storage; SIF = solar-induced chlorophyll fluorescence.
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Each drought year also had a unique pattern of seasonal anomalies (Figure 5a). In 2011, the ensemble mean
anomalies of monthly NEP were continuously negative during April–October, resulting in a reduction of
0.24 Pg C/year in annual NEP. In 2012, accumulated NEP was 0.10 Pg C/year above the baseline from
April to June and then was 0.25 Pg C/year smaller than the baseline from July to October, contributing
to the annual NEP decline of 0.17 Pg C/year. Despite the difference in magnitudes, FLUXCOM and TBMs
exhibit consistent signs of seasonal variations of GPP and Reco in 2011 and 2012. In general, the three cate-
gories of models exhibit consistent patterns in seasonal variations of NEP; however, the variation magni-
tude of FLUXCOM is least, while those of AIMs are largest. Also, clear differences of NEP anomalies
between AIMs and the others are observed, for example, in the 2011 summer and the late spring-early sum-
mer of 2012. For the former period, it is not certain whether this is mainly due to the uncertainty from
atmospheric inverse modeling or terrestrial biosphere modeling, but available evidences tend to support
the latter. That is because it is unlikely that Reco reduces much stronger than GPP (shows a reduction indi-
cated by SIF) over North America under drought and high-temperature conditions in summer if it is the
case indicated by AIMs. Meanwhile, it is possible that there are some CO2 emissions due to drought that
have not been well quantified in the inversions, and thus an enhanced net carbon uptake has been esti-
mated. The meteorological, hydrological, and vegetation metrics helped to track seasonal climate anoma-
lies and to attribute NEP reductions (Figure 5b). The anomalies of precipitation, SM, and TWS coincide with
each other, especially during the drought periods of 2011 and 2012. The anomalies of SIF and EVI agree
well with each other and GPP over time, clearly identifying the vegetation responses to summer droughts
and spring temperature anomalies.

In the two drought years, the model ensemble indicates that GPP reduced but Reco increased during both
summers on the continental scale. The summer drought in 2012 negatively affected carbon sequestration as
GPP decreased more so than Reco. NEP was obviously lower than the baseline period during July–October
of 2012. Starting from July, GPP declined sharply (about 0.24 Pg C/year) owing to the drought, while Reco
decreased less (about 0.08 Pg C/year) and later. This is a typical pattern during droughts (Schwalm et al.,
2010; von Buttlar et al., 2018). The ensemble mean of FLUXCOM and TBMs indicates that the response of
Reco to drought was lagged and lasted longer in comparison with that of GPP. The largest reduction of
NEP occurred in July when high temperature and drought co-occurred, since GPP sharply declined while
Reco kept increasing suggested by the ensemble mean of TBMs. In 2011, the largest NEP reduction also
occurred in July which mostly contributed by positive Reco anomaly. Compared to the drought effect in

Figure 6. Spatial distribution of spring (March–May) temperature anomalies and summer (June–August) droughts and vegetation responses in 2011 and 2012.

10.1029/2018JG004520Journal of Geophysical Research: Biogeosciences

HE ET AL. 2063



2012, the 2011 summer drought caused much smaller flux seasonal anomalies of GPP and NEP, which could
be explained by a smaller influence extent.

The spring warming in 2012 enhanced carbon sequestration, which partly offset the negative impact of the
summer drought on annual NEP (see also Wolf et al. (2016)). In contrast, in 2011, abnormally lower air
temperature caused GPP and Reco to decrease considerably during April–June, the former at a larger mag-
nitude than the latter (see Table S2), resulting in the clear annual NEP reduction. Therefore, warmer spring
is beneficial to carbon sequestration by terrestrial ecosystems in North America. However, it should be noted
that possible negative effect of spring warming can jeopardize summer water availability (discussed in
section 4.1).

To further spatially attribute the carbon flux anomalies (refer to Figure S3), we mapped the anomalies of air
temperature, hydrology (SM and TWS), and vegetation activity (SIF and EVI) during the springs (March–May)
and summers (June–August) of 2011 and 2012 (Figure 6). Anomalies of hydrological and vegetation metrics
show consistent spatial patterns in 2011 and 2012, respectively. These metrics indicate that drought occurred
mainly in Texas and Mexico in 2011, while it mainly hit the central Great Plains in 2012 (consistent with
meteorological studies; see, e.g., Hoerling et al., 2014).

In terms of spring temperature, most of the boreal area experienced lower temperature anomaly while the
southern end area (e.g., Texas) experienced abnormal warmer temperature during the 2011 spring. This
explains the negative net carbon fluxes during that period, which is also indicated by the vegetation anomaly
signals from SIF and EVI. Contrastingly, during the 2012 spring, most temperate area centering at the Great
Plains experienced warming (maximum 4–5° above normal), which led to enhancements of vegetation activ-
ity. Such enhancements are observed in the northern and southern Great Plains, and the upper Midwest and
the southeast. To a certain extent, enhancement due to spring warming and weakening due to summer
drought in 2012 occurred at staggered places. The former took place mostly at the forests and crops areas,
while the latter located mostly at the grass and crops areas. This intuitively explains the migration effect of

Figure 7. Monthly (16-day for EVI) anomalies of air temperature, hydrological and vegetation metrics, and carbon fluxes for
Region 2 (grass/shrubs, southern) of North America in 2011 and 2012. (left column) Air temperature (air T, °C), precipitation
(mm), SM (m3/m3), TWS (cm), SIF (mW/m2/nm/sr), and EVI (unitless), and GPP, Reco and NEP from FLUXCOM (labeled
with FC), CTE2016 and CT2016; (right column) GPP, Reco, and NEP from an ensemble of DGVMs. The unit of carbon flux is
Pg C/year. EVI = enhanced vegetation index; SM = soil moisture; TWS = total water storage; SIF = solar-induced chlorophyll
fluorescence; GPP = gross primary production; NEP = net ecosystem production; DGVMs = dynamic global vegetation
models.
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forests (relatively larger volume on carbon sequestration to crops and grass) to carbon loss resulting from
drought impacts at semiarid areas, that is, the Great Plains.
3.2.2. Regional Scale
Considering the geographical distribution of the 2011 and 2012 drought events and ecoregion types, five
subregions (as shown in Figure 1) were selected to perform regional-scale analyses of droughts over
2011–2012. Monthly anomalies of air temperature, hydrological and vegetation metrics, and carbon fluxes
of three typical regions (grass/shrubs in the southern area, Region 2; crops/agriculture, Region 3; and
forests/wooded, Region 4) are shown in Figures 7–9, and two other regions (grass/shrubs in the northern
area, Region 1 and tundra/taiga, Region 5) are shown in Figures S4–S5.

Figure 8. As in Figure 7, but for Region 3 (crops/agriculture).

Figure 9. As in Figure 7, but for Region 4 (forests/wooded).
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In Region 2, dominated by grass/shrubs in the southern area (Figure 7), NEP declined sharply during the sum-
mers of 2011 and 2012 with the former larger in magnitude, which is consistently indicated by the model
ensemble and agrees with declines in SIF and EVI. Both GPP and Reco declined, with the former at a larger
magnitude, resulting in the negative NEP anomalies in both years. Compared to the grass/shrubs in the
northern area as Region 1 (Figure S3), the warmer spring in 2012 brings relatively less NEP enhancement.
This slight enhancement has been captured by CTE2016, CT2016, and most DGVMs but not by FLUXCOM.
The anomalies of precipitation, SM, and TWS indicate the longtime shortage of water over the whole period
in the study region, which contributed to the flux anomalies.

In Region 3, dominated by crops/agriculture (Figure 8), the magnitudes of NEP anomalies in 2012 are larger
than those in 2011, as this region was mostly impacted by the 2012 drought. On the whole, the hydrological
metrics consistently indicate the summer drought of 2012. Correspondingly, declines of vegetation activity
(SIF and EVI) are observed during those periods with concomitant declines in GPP and Reco. In addition, sub-
stantial discrepancies in NEP anomalies among these models are observed: CT2016 fails to capture the NEP
reduction in 2011 summer, and FLUXCOM fails to capture the NEP enhancement in 2012 spring, while most
models consistently capture the NEP reductions in summers of 2011 and 2012 and the enhancement in 2012
spring. Again, a clear increase in NEP during May–June 2012 is detected by DGVMs, CTE2016, and CT2016 but
not by FLUXCOM. FLUXCOM fails to capture the enhanced NEP in 2012 spring. Complemented by EO of
hydrology and vegetation activity, we found that the 2012 drought caused large decreases of NEP in
crops/agriculture, which cannot be compensated by the slight increase of NEP during warming spring.

In Region 4, dominated by forests/wooded (Figure 9), anomalies of GPP and Reco by FLUXCOM and anoma-
lies of NEP by CTE2016 and CT2016 are highly consistent with those from DGVMs and SiBCASA. However,
anomalies of NEP in FLUXCOM substantially deviate from those of the other models. On the whole, water
scarcities in summers of 2011 and 2012 are consistently indicated by hydrological and vegetation metrics,
and the drought impacts are consistently reflected in vegetation metrics and carbon models. A negative
NEP anomaly is induced by the drought in 2011, while a near-neutral NEP anomaly is observed as the result
of the spring warming and subsequent drought in 2012. Unlike grass/shrubs and crops/agriculture,
forests/wooded canceled out the impact of drought through enhancement of carbon uptake during warm
spring (Wolf et al., 2016). The two atmospheric inversions support the compensation effect of spring warming
to summer drought in the eastern forests/wooded region. Compared to the other regions, the enhancements
of GPP and Reco stimulated by spring warming aremuch larger. It should be noted that large discrepancies of
NEP anomalies simulated by different biosphere models are observed.

Among the five subregions, Region 3 (crops/agriculture), Region 2 (grass/shrubs, southern), and Region 1
(grass/shrubs, northern, Figure S4) experienced the largest anomalies of NEP in 2011 and 2012. Although
large anomalies of Reco and GPP exist in Region 4 (forests/wooded), the anomaly of NEP is moderate, imply-
ing that everything else held equal, the forests/wooded has a better coping capacity in the face of severe
droughts, possibly due to access to deeper soil water. In contrast, the crops/agriculture and the southern
grass/shrubs show larger NEP reductions associated with droughts.

4. Discussions
4.1. Crucial Role of the Timing and Seasonal Interactions of Climate Extremes in Ecosystem Impacts

This study highlights the crucial role of the timing and seasonal interactions of climate extremes on the
terrestrial carbon cycle. Sippel et al. (2016) argued that ecosystem impacts of climate extremes crucially
depend on the timing and impacts of climate extremes occurring during different periods of the year can
interact and counteract each other. Based on model simulation experiments, Sippel et al. (2017) pointed
out that GPP increases in spring compensate GPP reductions in summer in all tested regions in Europe over
the past 25 years.

The reaction of summer drought to spring warming occurred because of the tightly coupled process of car-
bon and water through vegetation stomata (Sippel et al., 2016). Higher spring carbon uptake induced by
warmingmight lead to an earlier depletion of water through increased evapotranspiration, thus exacerbating
water limitations in the summer (Sippel et al., 2016; Wolf et al., 2016). In our case, the examples in 2011 and
2012 are contrasting. The 2012 warming spring enhanced summer drought, which brought increased carbon
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losses despite increased carbon uptake during spring. Overall, the forests partially mitigated the impacts of
drought on crops and grass. However, the year of 2011 experienced an early-spring cold and smaller summer
drought at the continental scale. A lasting reduction of net carbon uptake from March to October was con-
sistently simulated by all models, except for AIMs. Compared to 2012 when the net carbon uptake switched
from evident increase to reduction, this fluctuation was much milder over the whole year. In order to inves-
tigate the effect of spring warming on earlier water depletion, we introduced GLEAM evapotranspiration (ET)
v3.1a data set that based on a modified Priestley–Taylor equation (Priestley & Taylor, 1972) for further analy-
sis. This data set has been widely applied in carbon and water cycle studies (Ahlström et al., 2017; Blunden
et al., 2017; Forzieri et al., 2017; Miralles et al., 2016; for more details, see the supporting information Text S1).
Our result supports that the positive temperature anomaly in 2012 spring enhanced the water depletion
through increased evapotranspiration and thus exacerbated the drought condition in summer, but the
two were not so strongly coupled in 2011 when the spring temperature was generally below normal
(Figures S6–S7). Overall, the interaction between spring warming and summer drought makes a closer to
neutral effect on net carbon uptake. Considering the timing and coupling effects of climate extremes would
be of great value for understanding the impacts of climate change on the terrestrial carbon cycle.

4.2. Semiarid Ecosystems’ Control on the IAV of Regional and Global NEP

Water is a key factor that regulates the IAV of regional and global carbon fluxes (Jung et al., 2017; Seddon
et al., 2016). Jung et al. (2017) pointed out that water availability manipulates the IAV of GPP and Reco locally,
and to a lesser extent it also holds true for Net ecosystem CO2 exchange (NEE) at the local scale while tem-
perature plays a dominant role in temporal NEE variations at the global scale. This is also consistent with
the conclusion that the semiarid areas control the IAV of terrestrial ecosystems (or NEP) reported by a variety
of studies (Ahlström et al., 2015; Fu et al., 2017; Haverd et al., 2016; Marcolla et al., 2017; Poulter et al., 2014;
Seddon et al., 2016). Here we show, in line with these studies, that the spatial contributions to changes in NEP
are dominated by the semiarid areas of the study domain (see Figure S1). A recent global study based on the
FLUXNET data by Schwalm et al. (2010) also reported that agricultural areas show the highest sensitivity of
terrestrial carbon sequestration to droughts. Additionally, we also confirmed that forests have an important
role in ecosystem service with climate responses different from grasslands, as suggested by Wolf et al. (2016).
In contrast with Wolf et al., we found a net carbon loss over North America in 2012 although the warming
spring offsets part carbon loss caused by the subsequent summer drought. We note that Wolf et al. (2016)
focus on the United States, while we focus on a larger domain, but the anomaly is mostly confined to the
U.S. region. The uncertainties from model choice (a single atmospheric inversion data set of NEP used in
Wolf et al. (2016)) likely contribute to this discrepancy. It can be found that the two atmospheric inversions
estimate clearly larger NEP anomalies in 2012 than the TBMs which our ensemble assessment heavily lies
on (see Figure 5). This uncertainty issue will be discussed in section 4.3.

4.3. Uncertainties in Carbon Cycle Models

The uncertainties in carbon fluxes greatly affect the reliabilities of carbon-climate analyses. By combining a
comprehensive ensemble of carbon flux products, we have gained more confidence on the analyses of car-
bon flux variability and drought impacts on carbon fluxes.

We found evident discrepancies in reflecting the seasonal and IAVs among FLUXCOM, TBMs, and AIMs (e.g.,
Figures 2d and 5a), sometimes disagreeing with those reflected in EO. The in situ flux upscaled product tends
to depend on the representativeness of tower sites. Based on our study (e.g., Figures 2 and 5), we highlight
that the current FLUXCOM product likely underestimates the IAVs of GPP, Reco, and NEP, and it is also poor at
capturing the effects of spring temperature anomalies. Although most TBMs have effectively captured the
drought anomalies, a large divergence exists in the estimation of both net and gross carbon fluxes, including
magnitudes and phases and thus variabilities and trends, which could bias the analysis of drought impact on
the terrestrial carbon cycle. As warned by a previous study, some TBMs have a tendency to overestimate
responses to drought (Huang et al., 2016).

AIMs provide a good way to constrain regional and global carbon flux estimates from TBMs with atmo-
spheric CO2 concentrations. However, the lack of CO2 observations from in situ or aircrafts limits our ability
to robustly constrain the terrestrial carbon flux estimates, especially at finer scales. In this study, AIMs gen-
erally captured seasonal anomalies of carbon fluxes in 2011 and 2012, but there are still large discrepancy
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on signs and magnitudes at the continental scale; however, they coincided with TBMs well in some regions.
Recent developments of estimating CO2 fluxes from satellite observations open a new window toward
improving this situation (Deng et al., 2014; Eldering et al., 2017). In addition, novel approaches that applied
atmospheric carbonyl sulfide or SIF to constrain GPP (He et al., 2016; Launois et al., 2015; MacBean et al.,
2018; Parazoo et al., 2014) could advance to address process attributions of carbon flux anomalies to
climate extremes.

Hence, we need to assimilate more available observations, including in situ flux data, atmospheric CO2 mea-
surements, and EO of terrestrial ecosystems (Scholze et al., 2017) to constrain carbon flux estimates over large
scales. Furthermore, to advance our understanding of the climate evolution processes, developing an expli-
citly characterized mechanism of droughts in process models is also very demanding.

4.4. Implications of EO to Future Carbon-Climate Studies

Diverse EO relevant to the terrestrial carbon cycle, including vegetation (SIF and EVI) and hydrological condi-
tions (SM and TWS), offered great help in attributing carbon cycle anomalies to climate change. In the context
of lacking reliable estimate of carbon fluxes for large scales, the use of EO is extremely important. EO can be
viewed as observations to complement carbon cycle models. With these satellite-based hydrological and
vegetation metrics, we identified if models well represent changes caused by extreme climates. However,
we also should notice that these EO metrics used also suffer some uncertainties from retrieving algorithms
or sensor performance, which could hamper us in achieving accurate climate change attributions. Hence,
developing solid retrieving algorithms and advancing sensor developments are quite important for the glo-
bal change science community. In the future, synergizing or assimilating EO data into the attribution of the
terrestrial carbon cycle anomaly induced by climate extremes is a promising direction.

5. Conclusions

In the present study, we conducted a comprehensive assessment and process attribution of net carbon
uptake reductions in North America in 2011 and 2012. Both years were affected by severe summer droughts.
In addition, we focused on seasonal components of carbon cycle anomalies, as spring conditions prior to
drought differed, with a cold spring in 2011 and an unusually warm spring in 2012. Lastly, we disentangled
contributions of different ecoregions to these carbon cycle anomalies. The analyses were based on a compre-
hensive ensemble of state-of-the-art carbon flux products, meteorological data, and emerging remote
sensing metrics.

Our study suggests the strong reductions of net carbon uptake in 2011 and 2012. However, the two years
differed in the processes leading up to the anomaly: In 2011, losses are attributed to decreased GPP with
increased Recomainly caused by summer drought, while in 2012 Reco increased stronger than GPP triggered
by an extra warmer spring. The warming spring compensated largely the negative carbon anomaly due to
the summer drought in 2012. We further identify that crops/agriculture and grass/shrubs in the temperate
area contributed the largest proportion of total annual carbon uptake reductions and also dominated the
IAVs of net carbon uptake during 2007–2014. Finally, the dominance of these ecoregions in driving carbon
cycle anomalies highlights that spring-summer compensatory dynamics can only be seen as an ecoregion-
specific phenomenon, rather than operating on continental scales.
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