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Abstract. We refer to a theoretical trait space (TTS) as an n-dimensional hypervolume (hypercube)
characterizing the range of values and covariations among multiple functional traits, in the absence of
explicit filtering mechanisms. We previously constructed a 32-dimensional TTS for North American
trees by fitting the Allometrically Constrained Growth and Carbon Allocation (ACGCA) model to
USFS Forest Inventory and Analysis (FIA) data. Here, we sampled traits from this TTS, representing
different individual “trees,” and subjected these trees to a series of gap dynamics simulations resulting
in different annual light levels to explore the impact of environmental filtering (light stress) on the trait
space. Variation in light limitation led to non-random mortality and a refinement of the TTS. We
investigated potential mechanisms underlying such filtering processes by exploring how traits and the
environment relate to mortality rates at the tree, phenotype (a specific set of trait values), and stand (a
specific gap scenario) levels. The average light level at the forest floor explained 42% of the stand-level
mortality, while phenotype- and tree-level mortality were best explained by six functional traits, espe-
cially radiation-use efficiency, maximum tree height, and xylem conducting area to sapwood area ratio
(cX). These six “mortality” traits and six traits related to the leaf and wood economics spectra were
used to construct trait hypercubes represented by trees that died or survived each gap scenario. For
trees that survived, the volume of their refined trait space decreased linearly with increasing stand-level
mortality (up to ~50% mortality); the location also shifted, as indicated by non-zero distances between
the hypercube centroids of surviving trees compared to dead trees and the original TTS. Overall, the
patterns were consistent with empirical studies of functional traits, in terms of which traits predict
mortality and the direction of the relationships. This work, however, also identified potentially impor-
tant functional traits that are not commonly measured in empirical studies, such as cX and senescence
rates of relatively long-lived tissues.

Key words: environmental filtering; functional traits; gap dynamics; hypercube; hypervolume; IBM; North
American trees; simulation experiment; trait space; trait spectra.

INTRODUCTION

Quantifying how plant functional traits can determine
individual success, and how traits interact with the environ-
ment to affect individual performance, is a challenging prob-
lem (McMahon et al. 2011, Stahl et al. 2013). Longstanding
and recent interest in functional traits encompasses many
research areas, including plant competition, community
assembly, species coexistence, demographics (Weiher et al.
1999, McGill et al. 2006, Westoby and Wright 2006, Clark
et al. 2010, McMahon et al. 2011), biogeography (Violle
et al. 2014), global vegetation models (Scheiter et al. 2013,
Fyllas et al. 2014, Van Bodegom et al. 2014), and conserva-
tion (Devictor et al. 2010). An exciting aspect of functional
traits research has been the discovery of correlations among
traits representing trade-offs at the global scale. Examples of
these include the leaf, wood, and fast-slow economics spectra
(Wright et al. 2004, Chave et al. 2009, Reich 2014), and more
recently, a global spectrum of plant form and function (D�ıaz
et al. 2016). These spectra are based on correlations found
through regression techniques, dimension reduction methods

(e.g., PCA), or other multivariate approaches such as the
estimation of convex hulls combined with PCA (D�ıaz et al.
2016). These approaches have advanced our understanding
of the interrelatedness of functional traits, but because they
use empirical or statistical models, it is challenging to extend
the observed patterns to novel conditions (Pearl and Reed
1920, Webb et al. 2010, Evans et al. 2011).
More robust predictions of plant performance (e.g., growth

and survival) in novel environments may be gained by linking
trait data to physiological mechanisms (e.g., carbon allocation
or plant hydraulics; Savage et al. 2007, Webb et al. 2010,
Evans et al. 2011, Scheiter et al. 2013). For example, func-
tional trait distributions are influenced by both environmental
and biotic filters that lead to non-random mortality, favoring
individuals that can survive in a given environment (Van der
Valk 1981, Woodward and Diament 1991, Weiher and Keddy
1999, Webb et al. 2010). The ways in which individuals
respond to these filters are limited by inherent mass balance
(e.g., the amount of a resource allocated to particular func-
tions cannot exceed what is available) and engineering con-
straints (e.g., plant architectures have to be mechanically
feasible; Scheiter et al. 2013). Environmental filters tend to
limit the range of trait distributions in a given environment;
these filters relate to limiting factors such as resources, tem-
perature, or soil characteristics (Van der Valk 1981,
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Woodward and Diament 1991, Weiher and Keddy 1999,
Webb et al. 2010), and variation in these factors tends to
select for plants that remain above their zero-net-growth iso-
clines (Tilman 1985). Biotic filters such as interspecific com-
petition can limit the similarity of the remaining species traits
in a community (Macarthur and Levins 1967, Stubbs and
Wilson 2004, Cornwell and Ackerly 2009). Thus, both envi-
ronmental and biotic filters can lead to non-random mortal-
ity, and one way to investigate how filtering influences the
trait space is to identify the traits that are the best predictors
of mortality in different environments.
This study focuses on tree functional traits affecting carbon

acquisition, allocation, and utilization, all of which are key to
understanding tree growth, mortality, and fitness (Poorter
1999, Poorter and Bongers 2006, Wright et al. 2010). For
many boreal and temperate forests, canopy gap dynamics can
produce widely varying environmental conditions, potentially
acting as an important filtering process leading to non-ran-
dom mortality (McCarthy 2001). For example, forest gap for-
mation and closure are important in determining community
dynamics (Runkle 1985, Runkle and Yetter 1987). Tree success
can depend on gap dynamics, which directly impacts light
availability and hence, carbon uptake; gap dynamics include
how often gaps form, how long the gap remains open, and
how long it takes for the forest canopy to close (Runkle 1985,
Valverde and Silvertown 1997, McCarthy 2001, Ogle and
Pacala 2009). Thus, we expect canopy gap dynamics to impact
the multidimensional trait space of trees through non-random
mortality. However, studying the impact of gap dynamics on
the trait space of trees growing in the field is challenging for at
least two reasons. The long time scales over which gap dynam-
ics operate and the long life span of trees makes it difficult to
follow such processes in the field. Secondly, it is possible that
key functional traits related to growth and mortality under
various gap dynamics may not be traits that are easily mea-
sured in the field.
The aforementioned issues point to the utility of using simu-

lation models. Thus, we draw upon the semi-mechanistic Allo-
metrically Constrained Growth and Carbon Allocation
(ACGCA) model developed by Ogle and Pacala (2009), which
predicts tree growth, carbon allocation, and survival status at
annual time-steps, given average, annual light levels above the
forest canopy. In particular, ACGCA encapsulates much of
our understanding of tree growth processes, including known
tree allometries (well-studied empirical relationships), along
with physiological and morphological traits (representing car-
bon-mass-balance mechanisms), which control carbon alloca-
tion from a transient (fast) pool to a storage (slow) pool and
structural compartments within an individual tree (Ogle and
Pacala 2009). Tree death occurs if the non-structural carbohy-
drate (slow and fast) pools are depleted (Ogle and Pacala
2009). The ACGCA model offers a tool for conducting simu-
lation experiments for which corresponding field experiments
cannot be implemented at a comparable scale; i.e., we must
follow a large number of trees over a sufficiently long time per-
iod to observe a sufficient number of mortality events. The
semi-mechanistic underpinnings of the ACGCA model and
the inclusion of traits that are rarely measured in the field
(e.g., xylem conducting area, senescence rates, construction
costs, and labile carbon storage capacity) provides additional
advantages of simulation experiments over field campaigns.

We integrated the ACGCA model with a simple gap
dynamics simulator to investigate if an individual tree,
defined by a specific set of functional trait values, is capable
of surviving a particular gap dynamics scenario. We imposed
a wide range of realistic gap scenarios leading to varying
levels of environmental stress (Ogle and Pacala 2009), to
investigate the relationship between selective mortality due to
environmental filtering (light stress) and tree traits (ACGCA
parameters). Through repeated simulation, we used the gap
dynamics scenarios to explore how the multidimensional trait
space changes with increasing stress (filtering), and to learn
which traits experience the greatest filtering and/or are the
best predictors of mortality.
In previous work, we used the ACGCA model to estimate

the theoretical trait space (TTS) for North American trees
(see Table 1 for a full list of traits; Fell et al. 2018). This was
done by fitting the ACGCA model to USFS Forest Inven-
tory and Analysis (FIA) data while restricting parameter
values to realistic ranges through the use of semi-informa-
tive, literature-based priors. The TTS represents the trait
space that is consistent with living trees in the FIA data,
regardless of species identity or site factors. In this study,
our objective was to assess how this TTS may be refined
when applying the ACGCA model to a range of gap dynam-
ics simulations that lead to some level of mortality (i.e., not
all simulated trees survive). In doing so, we address the fol-
lowing questions: (1) How do environmental factors, such as
time between gaps and average light level, relate to mortality
rates at different scales (stand, phenotype, tree)? (2) Which
functional traits are the best predictors of phenotype- and
tree-level mortality? (3) To what degree does environmental
filtering associated with the gap scenarios lead to a refine-
ment of the trait space relative to the original TTS? For the
latter question, we explore how the trait space differs
between trees that survived vs. those that died, or between
surviving and dead trees vs. the original TTS.

METHODS

Theoretical trait space

The ACGCA model involves 32 parameters (inputs)
representing physiological, morphological, and allometric
traits (see Table 1 for ACGCA parameter definitions, and
Appendix S1: Table S1 for TTS trait ranges). We used
parameter values (trait values) representative of the theoreti-
cal trait space (TTS) of North American trees based on pre-
vious work (Fell et al. 2018) that simulated 33,000
parameter sets, each representing a vector of 32 parameters
(traits), from the TTS. These parameter sets were found by
fitting the ACGCA model to U.S. Forest Service Forest
Inventory and Analysis (FIA) data, including remeasure-
ments of tree heights and diameters, and their estimated
annual rates of change (data available online).6 The model
was fit to the FIA data via a simple Bayesian framework
that employed a custom Metropolis-Hastings (MH) algo-
rithm to sample from the posterior of the parameters, which
was evaluated to explore the joint and marginal parameter
spaces for each trait in the ACGCA model. The likelihood

6 http://www.fia.fs.fed.us/
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of the modeled (ACGCA) outputs, annual heights, diame-
ters, and rates of change, was evaluated against a four-
dimensional histogram representing realistic tree growth
based on 1.27 million FIA remeasurements of height,
radius, change in height, and change in radius for living,
healthy trees (i.e., data for dead trees or trees associated with
no growth or negative growth were eliminated). The
ACGCA model parameters were further constrained by
informative prior distributions based on the TreeTraits liter-
ature database (Kattge et al. 2011, Ogle et al. 2013, 2014)
and/or values used to develop and test the ACGCA model
(Ogle and Pacala 2009), as described in Fell et al. (2018).
The final output from this analysis (posterior samples of the
parameters [or traits]) can be thought of as representing an
unfiltered trait space, or the TTS, that simultaneously agrees
with FIA data, the semi-informative priors, and the
ACGCA model structure.

Gap dynamics simulations

The overarching goal of the gap dynamics simulations was
to impose environmental (light) stress on the aforementioned

unfiltered trait space (the TTS). Though it could be argued
that gap dynamics simulations really impose a biotic
stress due to competition for light by surrounding trees, as
opposed to a strictly abiotic (i.e., environmental) stress
(Kraft et al. 2015), the sole effect of the gap formation and
closure process in our simulations is to increase light avail-
ability during the (short) open gap phase, and greatly reduce
light availability during the (relatively long) closed canopy
phase. Regardless of which perspective is employed (abiotic
vs. biotic stress), the gap dynamics scenarios are constructed
to explore how varying stress conditions may refine the TTS
by potentially eliminating sub-regions of the trait space,
associated with trees (or sets of trait values) that die during
the simulation. Our gap scenarios are based on those
described in Ogle and Pacala (2009); only details relevant to
our objectives and questions are provided here. The mortal-
ity output and TTS data are available via Dryad (see Data
Availability).
Gap simulations were conducted with three repeated

phases: open gap, gap closure, and closed canopy. Following
Ogle and Pacala (2009), three levels were used for the open
gap phase (gt = 4, 6, and 8 yr), five for the closure phase

TABLE 1. Descriptions of the 32 parameters (hk) in the ACGCA model that represent tree functional traits, including units of the
parameters.

Symbol Unit Description

Hmax m maximum tree height
φH slope at H vs. r curve at r = 0 m
g relative height at which trunk transitions from paraboloid to cone
SWmax m maximum sapwood width
kS proportionality between BT and BO for sapwood
kH proportionality between BT and BO for heartwood
q g dm/m3 wood density
f1 fine root area to leaf area ratio
f2 leaf area to xylem conducting area ratio
cC g gluc/m3 maximum storage capacity of living sapwood cells
cW m3/g dm (inverse) density of sapwood structural tissue
cX xylem conducting area to sapwood area ratio
CgL g gluc/g dm construction costs of producing leaves
CgR g gluc/g dm construction costs of producing fine roots
Cgw g gluc/g dm construction costs of producing sapwood
dL g gluc/g dm labile carbon storage capacity of leaves
dR g gluc/g dm labile carbon storage capacity of fine roots
SL yr�1 senescence rate of leaves
SLA m2/g dm specific leaf area
SR yr�1 senescence rate of fine roots
SO yr�1 senescence rate of coarse roots and branches
rR m average fine root radius
qR g dm/m3 tissue density of fine roots
RmL g gluc g�dm�1�yr�1 maintenance respiration rate of leaves
RmS g gluc g�dm�1�yr�1 maintenance respiration rate of sapwood
RmR g gluc g�dm�1�yr�1 maintenance respiration rate of fine roots
gB relative height at which trunk transitions from neiloid to paraboloid
k crown light extinction coefficient
e g gluc/MJ radiation-use efficiency
m maximum relative crown depth
a Crown curvature parameter
R0 m maximum potential crown radius of a tree with dbh of 0 m (i.e., for a tree that is exactly 1.37 m tall)
R40 m maximum potential crown radius of a tree with dbh of 0.4 m (40 cm)

Notes: Empty cells indicate unitless parameters. Abbreviations are dm, dry mass; gluc, glucose; dbh, diameter at breast height. Table fol-
lows from Ogle and Pacala (2009).
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(ct = 5, 10, 15, 25, and 45 yr), and five for the time between
gaps (tbg = 20, 35, 50, 100, and 200 yr). Some combinations
were removed due to inconsistences (e.g., a time between
gaps of 20 yr and a closure phase of 45 yr are inconsistent),
resulting in 62 unique simulation scenarios. Each scenario
was run for a 200-yr period, and the average light at the for-
est floor was calculated for this period based on supplemen-
tal material in Ogle and Pacala (2009), using a standard
Beer-Lambert light-extinction model, combined with mod-
eled variation in forest canopy leaf area index (LAIF) as
gaps form and close. Average light level at the forest floor
(PARavg) was found to be closely related to tbg and stand/
scenario-level mortality (see Results), and thus was used as a
continuous variable representative of the level of environ-
mental stress in a subset of regression analyses described
below.
The gap scenario simulations were kept simple by

employing an empirical model that described the LAIF of
the surrounding forest canopy, rather than modeling indi-
vidual trees in the surrounding forest. The ACGCA model,
however, was used to model growth and survival of the tar-
get tree defined by a particular set of parameters (traits),
under each gap scenario. The forest was prescribed a
canopy height (HF) and LAIF, both of which were zero
during the gap phase and both increase linearly during the
closure phase, until reaching their maximum values during
the closed phase (Ogle and Pacala 2009). The forest canopy
affects the modeled (target) tree through its effect on
annual photosynthetically active radiation (APAR) accord-
ing to the Beer-Lambert equation (Ogle and Pacala 2009).
The light environment experienced by the target tree is
determined by its crown height (H) relative to HF, yielding
three scenarios: (1) the tree is not limited by light
(H > HF), (2) its crown is partially exposed to full sunlight
(Hg < HF < H, where Hg is the height to the base of the
target tree’s crown), or (3) the tree can be completely over-
topped by the surrounding forest (HF > H; Ogle and
Pacala 2009).
Output from the gap dynamics simulations was used to

determine if a given parameter set led to a target tree that
survived or died over the 200-yr period, for each of the 62
gap scenarios. This yielded 2,046,000 (33,000 parameter
sets 9 62 gap scenarios) binary values, where 0 indicated
a tree that survived the 200-yr simulation, and 1 indicated
death during the simulation. These binary outputs were
summarized to quantify three types of mortality (Table 2).
For the first type of mortality, the individual binary values
are representative of tree-level mortality (mg,p) for gap
scenario g (g = 1, 2, . . ., 62) and parameter (trait) set p
(p = 1, 2, . . .., 33,000), which were used to evaluate how
environmental factors vs. functional traits explain mg,p

(addressing question 1 and 2). Two additional indices of
mortality, stand-level (denoted by mS

g ) and phenotype-
level (denoted by mh

p), summarize mortality rates for each
gap scenario (mS

g , for g = 1, 2,. . ., 62) or for an individual
set of parameters (mh

p, for p = 1, 2, . . ., 33,000), respec-
tively (Table 2).
Mortality associated with each gap scenario (mS

g ) can be
thought of as an index of stand- level mortality since each
set of traits was subjected to a fixed environment within
each gap scenario. In particular, for each gap scenario g

mS
g ¼

P33;000
p¼1 mg;p

33; 000
: (1)

Thus, there are 62 mS
g values of stand-level mortality, one

for each gap scenario; these mortality values were analyzed
to evaluate how environmental factors (e.g., time between
gaps or PARavg) relate to stand-level mortality (question 1).
Phenotype-level mortality (mh

p) was calculated for each
parameter set p drawn from the original (unfiltered) TTS
(Fell et al. 2018). Each unique parameter set can be viewed
as a phenotype since it represents a specific combination of
functional trait values within the TTS. Phenotype-level
mortality was calculated as

mh
p ¼

P62
g¼1 mg;p

62
: (2)

These mortality values were analyzed to evaluate if, and
which, functional traits can explain mh

p (question 2). Both ms

and mh describe the proportion of trees that died for each
gap scenario and phenotype (parameter set), respectively
(see Table 2).

Statistical analyses

Mortality regressions.—We conducted stepwise regression
analyses to evaluate the factors underlying tree-, stand-, and
phenotype-level mortality (to address questions 1 and 2). In
all cases, the Bayesian information criterion (BIC) was used
for the model section criterion because it has a greater pen-
alty term for each added variable and it tends to select more

TABLE 2. Methods of calculating mortality are shown relative to
the simulation design.

h (unique traits vector)
Stand-level
simulationh1 h2 . . . h33,000

Gap scenarios
1 1 0 . . . 1 mS

1

2 0 1 . . . 0 mS
2

3 1 1 . . . 0 mS
3

⁞ ⁞ ⁞ ⁞ ⁞
⁞ ⁞ ⁞ ⁞ ⁞
⁞ ⁞ ⁞ ⁞ ⁞

61 1 1 . . . 0 ⁞
62 0 1 . . . 1 mS

62

Phenotype level mh
1 mh

2 . . . mh
33;000

Notes: Each binary entry in the table represents a single instance
of a given vector of unique values for the 32 traits (h) listed in
Table 1, with each vector being subjected to a given gap dynamics
scenario (62 total scenarios); the binary entries indicate tree-level
mortality (mg,p; 1 = died, 0 = survived). The gap scenarios can be
thought of as representing different environments, with each denot-
ing an environment for a particular forest stand. Thus, stand-level
mortality (mS

g ) is found by averaging across all 33,000 columns
(across all trait vectors) for each row to obtain the proportion of
trees that died in each gap scenario (stand). Each unique vector of
h, representing a particular “phenotype,” is subjected to 62 gap sce-
narios. Thus, phenotype-level mortality (mh

p) is found by averaging
across all 62 rows within each column, giving the proportion of trees
that died across all 62 gap scenarios, for each unique combination
of h values.
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parsimonious models (Gelman et al. 2014). All stepwise
regressions used forward and backward selection.
We evaluated how well the environment and functional

traits explain tree-level mortality (questions 1 and 2), mg,p

(given by 0 [survived] or 1 [died]), by conducting three logistic,
stepwise regression analyses: (1) light + trait model, (2) trait-
only model, and (3) light-only model. Each model was fit to
one-half of the mg,p values (n = 1,023,000), chosen randomly
from the full data set. The remaining 50% of the mg,p values
(not selected above) were used as a test data set to assess the
extent to which mg,p could be correctly predicted by each
model. The light + trait model included each of the 32 func-
tional traits associated with each p and the average light level
(PARavg) for each gap scenario g as potential predictors
of mg,p. Two-way interactions between PARavg and each of
the 32 traits were included in the full model to account for dif-
fering effects of the traits depending on light level. The trait-
only model included only the functional trait values associ-
ated with each p, and the light-only model included PARavg

associated with each g as the sole explanatory variable.
The relationship of stand-level mortality (mS

g ) to environ-
mental factors (question 1) was addressed by regressing the
62 mS

g values on each of the gap dynamics variables (gt, ct,
and tbg) associated with each scenario g. We treated gt, ct,
and tbg as categorical factors in the regressions. Another
simple linear regression was carried out by regressing mS

g on
the PARavg of each scenario g. These regression models
allowed assessment of which aspect of the gap dynamics
process (environment) best explained mortality at the stand
level. This also allowed us to confirm that PARavg was an
effective composite variable representing the environment in
each simulation.
To evaluate the factors affecting phenotype-level mortal-

ity (mh
p; question 2), we conducted a stepwise regression

where each of the 33,000 mh
p values were regressed on the 32

trait values associated with parameter set p. Two regressions
were conducted; one with only main effects (main-effects-
only model) and another including main effects and all two-
way interactions among each of the 32 traits (interaction
model). Since mh

p averages across all gap scenarios, an index
of light availability is irrelevant to understanding variation
in mh

p. The relative importance of each parameter in the
main effects only model was determined using the relaimpo
package in R (Gr€omping 2006), which computes the propor-
tion of variation explained by each trait (independent vari-
able) relative to the total variation explained (R2) by the
model. This was only done for the main effects-only model;
the complexity of the interaction model and the sample size
led to computational challenges when trying to calculate the
relative importance (the computer’s memory was exceeded).
The results from an analysis using partial R2 values to iden-
tify the most important predictors (trait) of mortality are
given in Appendix S1: Fig. S1 for both the main effects-only
and the interaction model.

Hypercube trait space analysis.—We evaluated how the trait
space changed with the filtering introduced by the gap scenar-
ios (question 3). As a simple qualitative analysis, plots of kernel
density estimates for each trait were constructed for each
gap scenario for surviving and dead trees (32 traits 9 62 sce-
narios 9 2 types [dead or living]) to visualize the separation

in trait space between surviving and dead trees for individual
traits. A more rigorous evaluation of the emergent trait spaces
was achieved by using the hypercube package in R (Blonder
et al. 2014), which allowed us to quantitatively assess how the
multi-dimensional trait space (i.e., hypervolume) shifts as a
result of environmental stress. The hypercube package charac-
terizes high-dimensional spaces, and was used to estimate
hypercube volumes and centroid distances between two
hypercubes. We constructed hypercubes for the trees that sur-
vived and for those that died during each of the 62 gap sce-
narios. The number of parameter sets (trees) differed among
the surviving and dead groups due to differing mortality rates
in each gap scenario. For instance, while 33,000 trees were
simulated in each scenario, one-half of the trees may have
died in one scenario, while only a little over 3,000 died in
another, leading to different sample sizes for surviving and
dead trees. Thus, to construct hypercubes for each stand (gap
scenario) and each group of trees, 3,000 parameter sets were
randomly sampled from each group, without replacement, to
avoid potential problems due to differences in sample sizes.
To ensure that the above subsampling did not bias our

results, the analysis was repeated 100 times to assess the effect
of subsampling. Furthermore, we also randomly sampled
from the (unfiltered) TTS to construct a data structure simi-
lar to each gap scenario; for example, if ND

g trees died and
NS

g trees survived gap scenario g, we randomly drew, without
replacement, two groups of parameters sets from the TTS of
size ND

g and NS
g . These samples were then further subsam-

pled by randomly selecting 3,000 parameter sets from each
group, which were subsequently used to construct hypercubes
representative of the TTS and to evaluate the potential effect
of differential sample size on the hypercube results.
One limitation of the hypercube method is that the num-

ber of dimensions cannot exceed the natural log of the sam-
ple size (Blonder et al. 2014). In the case of our model
output, this allowed a maximum of eight dimensions (i.e.,
loge(3,000) = 8.01), though we only used six. For these anal-
yses, we used a quantile of 0.05 (95% included) and a band-
width of 0.4 (the lowest value that did not cause errors); the
bandwidth effects the smoothness of the fit to the data (see
Blonder et al. 2014, for additional details). With this in
mind, the six traits with the greatest relative importance (ac-
counting for over 90% of the R2) in explaining mh

p were
included (i.e., Hmax, e, cX, SO, RmL, and R0; see Fig. 1, and
Table 1 for a description of the traits); hereafter referred to
as the “mortality traits.” We also constructed hypercubes
based on six traits related to the leaf economics spectrum
(LES) and wood economics spectrum (WES; i.e., SLA, e,
RmL, SL, cX, and q); hereafter referred to as the “leaf/wood
traits.” For each group of traits (mortality traits and leaf/
wood traits), we used the aforementioned subsampling pro-
cedure to construct hypercubes for the surviving and dead
trees for each gap scenario, as well as for the original TTS,
which is independent of gap scenario.
Using the aforementioned (three) constructed hypercubes,

the traits of surviving and dead trees were compared to each
other as well as to the TTS, allowing us to assess if light
stress results in a refinement of the trait space. In particular,
comparisons of the trait spaces represented were made by
calculating the centroid distances and difference in volumes
between pairs of hypercubes. Centroid distances and volume
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differences were found between the TTS hypercube and the
surviving and dead hypercubes (TS is TTS vs. surviving
hypercubes, TD is TTS vs. dead hypercubes), and between
the surviving and dead hypercubes (SD is surviving vs. dead
hypercubes), for each of the 62 gap dynamics scenarios.
When calculating volume differences, surviving and dead
hypercube volumes were subtracted from the TTS hypercube
volume (TTS served as the reference). When comparing the
surviving and dead hypercubes, the surviving hypercube
served as the reference. For hypercubes representing both
mortality traits and leaf/wood traits, linear regressions were
used to evaluate how centroid distances and volume differ-
ences varied with stand-level mortality (mS

g ). This resulted in
12 regressions; three (TS, TD, SD) for centroid differences,
three (TS, TD, SD) for volume differences, with each
repeated for the two set of traits (mortality and leaf/wood).

RESULTS

Mortality regressions

Tree-level mortality.—The logistic regressions for tree-level
mortality (mg,p) show that the light + trait model correctly

predicted a tree’s live/dead status in 82% of the validation
cases (test sample), while the trait-only model had compara-
ble (80% correct) results. The light-only model was notably
inferior (42% correct; Fig. 2). The light-only model per-
formed poorly because it tended to predict that nearly all
trees died such that it correctly classified 95% of the dead
trees, but misclassified 90% of the surviving trees (Fig. 2).
By comparison, the traits-only and traits + light models pre-
dicted dead trees correctly in 67% and 72% of the test sam-
ples, respectively, and classified surviving trees correctly in
87% and 88% of the test samples, respectively.
Based on the stepwise regression models involving traits,

the specific traits that had the greatest effect sizes (all signifi-
cant at P < 0.01) on mg,p were, in order of decreasing impor-
tance, e (negative effect), Hmax (negative), cX (negative), SO

(positive), RmL (positive), and R0 (negative) for the traits-only
model (see Table 1 for definitions of the traits and
Appendix S1: Table S2 for effect sizes). For the light + traits
model, the traits or predictors with the largest effect sizes
were � (negative),Hmax (negative), cX (negative), PARavg (neg-
ative), SO (positive), and RmL (positive) (see Appendix S1:
Table S3); some of these traits overlap with the traits-only
model, but clearly light level is also an important predictor of

FIG. 1. Summary of traits (parameters) predictive of phenotype-level mortality (mh
p). (a) Variables on the x-axis are the traits (see

Table 1 for definitions) included in a stepwise regression for mh
p that only considered the main effects of each trait. The bars indicate the rela-

tive importance of each trait based on its R2 (coefficient of determination) contribution, as determined with the lmg method in R, which
averages over all possible orderings of variables in the model. The sum of the R2 proportions gives the overall R2 of 0.48. For the top three
traits in panel a, kernel density estimates are shown for normalized (b) log maximum tree height (Hmax), (c) log radiation-use efficiency (�),
and (d) log proportion of xylem conducting area (cX). In panels b–d, gray lines denote trees that died during the gap simulations and black
lines denote trees that survived; 62 lines are overlaid for each group (dead and live), one for each gap scenario.
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tree-level mortality. See Appendix S1: Tables S2–S4 for a
more detailed summary of the results (effects) from the three
logistic regression models.

Stand-level mortality.—Of the three gap phase variables,
time between gaps (tbg) was the best predictor (P < 0.05) of
stand-level mortality (mS

g ), and the model that only included
this factor (five levels) yielded R2 = 0.74 (Appendix S1:
Table S5 and Fig. 3a). Mortality increased with increasing
tbg in a non-linear fashion such that mg was less sensitive to
tbg at higher values. The regressions modeling mS

g as a func-
tion of either gap period (gt) or gap closure time (ct) yielded
worse fits (R2 = 0.002 and 0.052, respectively). Finally, when
mS

g was regressed on the average light level at the forest floor
(PARavg) over the 200-yr simulation, PARavg was a signifi-
cant predictor of mS

g (P < 0.05, R2 = 0.85, Fig. 3b).

Phenotype-level mortality.—The step-wise regression for
phenotype-level mortality (mh

p) that only involved main
effects of tree traits converged to a model involving 20 of the
original 32 traits (R2 = 0.48; Appendix S1: Table S6). The
model that included main effects and two-way interactions
included 72 effects, representing 22 main effects and 50
interaction terms (R2 = 0.62; Appendix S1: Table S7), indi-
cating that inclusion of trait interactions improves our abil-
ity to predict mortality. Based on the main effects only
model, the six traits with the greatest effect sizes were � (neg-
ative), Hmax (negative), cX (negative), SO (negative), RmL

(positive), and R0 (negative) (Appendix S1: Table S6), and
these traits accounted for over 93% the overall R2 (Fig. 1a).
Though the relative importance (R2 contribution) of each
term could not be calculated for the model including inter-
actions, of the main effects, these same six traits emerged
among the top nine with the greatest effect sizes, and they
maintained the same relationships to mortality (negative or
positive; see Appendix S1: Table S7).

The multi-dimensional trait space

A general shift was seen in the marginal distributions (i.e.,
kernel density estimates) for parameters (traits) with larger
effect sizes in the mortality regressions, as seen by a separa-
tion between the distributions of traits associated with trees
that survived a simulation vs. those that died (Fig. 1b–d).
However, such a separation is not apparent for traits that
were non-significant predictors of mortality.

Centroid differences.—The hypercube analysis for the top
six traits (�, Hmax, cX, SO, RmL, and R0) identified as the
most significant predictors of tree- and phenotype-level
mortality clearly indicated shifts in the trait spaces for the
surviving and dead trees in the context of the gap dynamics
simulations. Centroid differences between surviving trees vs.
the TTS (TS) had a significant positive relationship with
stand-level mortality (mS

g ; R
2 = 0.96, P < 0.01), indicating

greater divergence between the functional traits of surviving
trees relative to the TTS as mortality increases. Distances
ranged from 0.18 to 0.65 across the 62 gap scenarios (dis-
tances are unitless because trait values were normalized rela-
tive to their posterior standard deviations, Fig. 4a). This
range exceeds the mean and maximum centroid distances of
0.14 and 0.18, respectively, found by randomly sampling the
TTS (Fig. 4a). Distances between centroids for trees that
died vs. the TTS (TD) had a significant negative relationship
with mS

g (R2 = 0.95, P < 0.01) indicating that the trait space
of dead trees and the TTS are most dissimilar under low
mortality rates, with minimum and maximum distances of
0.54 and 1.02, respectively (Fig. 4b). Finally, distances
between centroids for surviving vs. dead (SD) trees had a
significant negative relationship with mS

g (R2 = 0.99,
P < 0.01), with a range from 0.15 to 0.79 (Fig. 4c). That is,
as mS

g increases, the centroids of the surviving and dead trees
converge to similar values (Fig. 4c). These results were
essentially the same when the analysis was repeated for six
leaf/wood traits related to the LES and WES (Appendix S1:
Fig. S2a–c), with comparable R2 values of 0.95, 0.94, and
0.99 for TS, TD, and SD, respectively.

Volume differences.—Differences between hypercube vol-
umes for both groups of traits (mortality and leaf/wood
traits) followed the same patterns as the centroid distances,
with all models being statistically significant (P < 0.01). Vol-
ume differences spanned a minimum and maximum of ~0 to
51.06, 24.01 to 98.20, and �14.65 to 81.64 for the TS, TD,
and SD comparisons of the mortality traits, respectively;
these differences demonstrate a restriction (shrinking) of the
trait space of both surviving and dead trees as mS

g increases
up to 50%. The volume differences between the three hyper-
cubes (TS, TD, and SD) exceeded the null model found by

FIG. 2. Percentage of trees correctly or incorrectly classified
(n = 1,023,000) as dead or surviving based on applying each of the
three stepwise, logistic regression models of tree-level mortality (mg,p)
to a hold-out (test) data set. Within each bar, the color (solid or
striped) indicates the true status of a tree in the hold-out data set,
with dark gray indicating surviving trees and light gray indicating
dead trees. The two boxes with solid shading, below each thick hori-
zontal line, indicate hold-out data that were correctly predicted by
the regression model, whereas striped boxes above the thick line indi-
cate incorrect predictions. The traits-only model included the main
effects of all 32 Allometrically Constrained Growth and Carbon
Allocation (ACGCA) traits, but excluded light; the traits + light
model included the 32 traits, the average light level (PARavg), and all
two-way interactions between PARavg and each trait; the light-only
model only included PARavg (no traits). Overall, the light-only model
was best at identifying trees that died, but it did very poorly at identi-
fying trees that survived. The models that included the traits pro-
duced similar results and successfully identified living trees far better
than when only PARavg was considered.
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FIG. 3. Linear models of stand-level mortality (mS
g ) as explained by (a) time between gaps (tbg) treated as a factor and (b) mean annual

light level at the forest floor (PARavg, continuous covariate). In panel a, black symbols are the average mortality across all gt (gap time) and
ct (closure time) levels within each tbg level; open circles are the mortality values for each combination of gt and ct. (a) Among the three gap
phase variables (tbg, gt, ct), tbg was the best predictor of mS

g (P < 0.05, R2 = 0.74) and (b) PARavg was the overall best predictor of mS
g

(P < 0.05, R2 = 0.85).

FIG. 4. Hypercube centroid distances and volume differences based on six-dimensional hypercubes constructed from the “mortality”
traits (Hmax, �, cX, SO, RmL, and R0; see Table 1 for definitions of the traits), as a function of stand-level mortality (mS

g ). TS compares hyper-
cubes representing the theoretical trait space (TTS) vs. surviving trees; TD compares the TTS vs. trees that died; SD compares surviving vs.
dead trees. In particular, centroid differences are shown for (a) TS, (b) TD, and (c) SD, and volume differences for (d) TS (i.e., TTS volume
� surviving volume), (e) TD (TTS – dead), and (f) SD (surviving � dead). Dark gray points show estimates for each gap scenario, with the
range of values obtained by randomly sampling 3,000 points from the TTS, surviving, and dead trait spaces, for each of the 62 gap dynamics
scenarios. Dashed black lines show the linear best fit of the distances or volume differences vs. mS

g (stand-level mortality). Light gray points
show results from performing the same analysis for data sampled at random from the TTS to ensure the resultant patterns were not an
artifact of the analysis structure.
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randomly sampling the TTS, which yielded mean and maxi-
mum volume differences of 0.006 and 0.021, respectively.
Though the trends in volume differences were in the same
direction as those for centroid distances, mortality (mS

g )
explained less of the variation in the volume differences;
R2 = 0.47, 0.78, and 0.84 for TS, TD, and SD, respectively
(Fig. 4d–f). Volume differences between surviving and dead
trees are greatest under lower stand-level mortality (mS

g ),
with dead trees associated with more restricted trait
spaces, but these differences disappear as mS

g approaches
50% (Fig. 4f). These results for the hypercube volumes are
essentially the same when repeated for the leaf/wood
traits; regressions of the volume differences vs. mS

g gave
R2 = 0.59, 0.82, and 0.90 for TS, TD, and SD, respectively
(Appendix S1: Fig. S2d–f).

DISCUSSION

Mortality and functional traits

We first discuss our results in the context of our first
research question focusing on how stand-level mortality is
related to environmental factors (average light at the forest
floor and gap simulation variables). Next, we discuss results
for both tree- and phenotype-level mortality simultaneously,
in the context of our first and second questions, addressing
how environment (light) vs. functional traits explain tree-
level mortality, and we identify which functional traits (pa-
rameters) predict phenotype-level mortality (question 2).
Then, we discuss how environmental filtering (light stress)
refined the trait space relative to the TTS, and how the trait
spaces differed among surviving and dead trees (question 3).
Finally, we follow this with an evaluation of how our results
compare to empirical trait-mortality patterns reported in
the literature.

Stand-level mortality.—Regarding the influence of environ-
mental factors on stand-level mortality (question 1), we
found that the average light level at the forest floor (PARavg)
was an excellent predictor of stand-level mortality (mS

g ;
Fig. 3b). While time between gaps (tbg) was also a good pre-
dictor of stand-level mortality (Fig. 3a), with longer times
leading to higher mortality rates, other indices of the gap
phase, such as the length of the forest gap (gt) during which
a tree could experience high light or the time it takes for the
forest canopy to close after a gap has formed (ct), offered lit-
tle insight into stand-level mortality. PARavg is ultimately a
function of the three gap phase variables (tbg, gt, and ct),
and thus, it is not surprising that PARavg was the best pre-
dictor of stand-level mortality. For example, of the three gap
phase variables, tbg most strongly influenced PARavg

(Appendix S1: Fig. S3a-c), especially for large tbg, in which
case the gap length (gt) and closure time (ct) were less
important. In the most extreme case, where tbg was equal to
the simulation length (200 yr), a gap was created at the
beginning of the simulation, followed by canopy closure and
an extended closed canopy phase, leading to comparatively
low PARavg and high mortality.
We note that, in our simulation study, functional traits

were irrelevant for understanding stand-level mortality since
we did not simulate communities of trees, but simply

evaluated the proportion of individually simulated trees that
died during each gap scenario (a “stand”). For modeling
approaches that consider an entire community of trees com-
peting explicitly for resources, such as the JABOWA (Botkin
et al. 1972, Bugmann 2001), SORTIE (Pacala et al. 1993,
1996), or Ecosystem Demography (Moorcroft et al. 2001)
models, one could compute community-weighted functional
traits to determine the importance of traits for predicting
stand-level mortality.

Tree- and phenotype-level mortality.—With respect to how
the environment (question 1) and functional traits (question
2) explain mortality, we found that simulated tree-level mor-
tality (mg,p) was better explained by functional traits rather
than by PARavg (environment; Fig. 3). This may not be sur-
prising given that PARavg served as the only environmental
predictor, while a total of 32 functional traits were consid-
ered. PARavg alone successfully predicted death for trees that
actually died, but it also predicted that most surviving trees
would have died during the 200-yr simulation. In cases
where simulated trees died, death was ultimately due to car-
bon starvation resulting from low light. However, the actual
light level experienced by the tree, which was not tracked as
such data would be difficult to obtain for real trees, over the
simulation period is mediated by the tree’s crown height rel-
ative to the forest canopy. Due to this, PARavg, the quantity
considered here, alone cannot discriminate between trees
that could succeed when overtopped (shade tolerators) vs.
trees that can grow above the forest canopy (shade avoiders;
e.g., Givnish 1988, Falster and Westoby 2005). Hence,
PARavg appears only informative for predicting mortality if
key functional traits are also considered.
Regarding mortality rates of specific phenotypes, we

found that functional traits in the TTS reasonably explained
variation in phenotype-level mortality (mh

p). In particular,
48% of the variation was explained by the independent
effects of 20 traits, and 62% explained by the independent
and interacting effects of a subset of traits (Appendix S1:
Table S7). The most important traits for predicting pheno-
type-level mortality were also the most important for pre-
dicting tree-level mortality. For example, mortality rates
were lower for trees and phenotypes with greater potential
to grow above the forest canopy (high Hmax), with higher
radiation-use efficiency (high �), and/or with stems support-
ing more conducting area (high cX), which would allow for
greater investment in height growth.
The tree- and phenotype-level mortality regressions are

generally consistent with empirical studies. For example,
maximum potential height of a mature tree (Hmax) often
emerges as a predictor of population- or species-level mor-
tality (e.g., Poorter et al. 2008, Wright et al. 2010, Ruger
et al. 2012); trees or phenotypes associated with high Hmax

are less likely to die during closed-canopy phases. This rela-
tionship may be expected if a tree with the potential for high
Hmax can also grow fast, allowing it to quickly position its
crown above the forest canopy. However, some studies show
that Hmax is only a weak predictor of mortality for species
associated with Hmax > 25 m (Ruger et al. 2012), or for
seedlings as seedling growth rates do not necessarily corre-
late with Hmax (Wright et al. 2010). Thus, it appears that the
degree to which Hmax can serve as a predictor of mortality
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may depend on species identity and the growth stage of the
tree.
In addition to Hmax, we also found that radiation-use effi-

ciency (�) was just as, or more, important for predicting
mortality. This trait is related to how efficiently light is used
to acquire carbon, with higher values being especially bene-
ficial in low light. Empirical studies indicate that � is related
to leaf nitrogen content (Sinclair and Horie 1989, Wang
et al. 1991, Martin and Jokela 2004), which in turn is related
to a number of other leaf traits, including specific leaf area
(SLA), leaf life span, and mass-based photosynthetic rate
(Wright et al. 2004). Thus, it is also possible that the impor-
tance of e could reflect the combined contribution of these
other, related traits for predicting tree-, phenotype-, popula-
tion-, and/or species-level mortality.
While we also found that the conducting area to sapwood

area ratio (cX) was an important predictor of mortality
under light stress, this trait is rarely measured in field studies
that attempt to link mortality to functional traits. While cX
can be measured (e.g., Hacke et al. 2001, Kaakinen et al.
2004, Lens et al. 2005, 2011), such measurements are time
consuming and potentially challenging, which likely explains
the reporting of limited data related to this trait. However,
our simulation experiments indicate that this may be an
important trait to target in mortality studies. In contrast,
many empirical studies have reported relationships between
wood density (q) and tree mortality, where lower q is typi-
cally related to higher mortality rates (Poorter et al. 2008,
Chave et al. 2009, Wright et al. 2010). But, q did not emerge
as a top predictor of mortality in our analyses. However, q in
the ACGCA model describes the density of wood formed
under “optimal” conditions. In reality, bulk q varies from
year to year (Bouriaud et al. 2005, Skomarkova et al. 2006),
and field-based measurements of q represent a composite
trait that reflects anatomical features, such as cX and cell
wall thickness. Thus, our finding that cX is a key predictor of
mortality is consistent with the observation that field-based
q is often predictive of mortality, but suggests that mortality
may be indirectly linked to q via its relationship to cX.
Finally, in the ACGCA model, tree death occurs when the

labile carbon pools have been depleted. Thus, parameters (or
traits) that are the best predictors of labile carbon dynamics
are expected to also be important for predicting mortality. In
previous work, we conducted a sensitivity analysis to identify
the traits to which changes in a tree’s relative labile carbon
pool are most sensitive (Fell et al. 2018). Labile carbon pools
in both young (simulation years 1–10) and mature (simula-
tion years 41–50) trees were found to be sensitive to traits
that also emerged as the best predictors of tree- and pheno-
type-level mortality in this study, such as Hmax and cX (Fell
et al. 2018). Similarly, both radial and height growth of
young trees were sensitive to � and R0, and mature trees were
also sensitive to SO (Fell et al. 2018). Thus, based on the
mechanisms captured in the ACGCA model, traits influenc-
ing mortality do so either through their influence on labile
carbon dynamics or radial and/or height growth.

The multi-dimensional trait space

Centroids and volumes.—Our third question asks how envi-
ronmental filtering can modify the trait space. We found

that the trait spaces (hypercubes) were altered by selective
mortality, supporting the concept that environmental filter-
ing restricts the functional trait space (Van der Valk 1981,
Webb et al. 2010). When comparing surviving trees to the
potential population of trees, as captured by the TTS, both
centroid distances and volume differences became greater as
mortality increased (e.g., Fig. 4a and 4d), implying a restric-
tion of the multidimensional trait space under light limita-
tion. This is in agreement with a recent empirical study,
using data from over 10,000 species, that found that plants
have a highly restricted trait space relative to what is theoret-
ically possible given the overall range of observed trait val-
ues (D�ıaz et al. 2016). Why does theory suggest that so
many combinations of traits are possible relative to what is
observed in the field or predicted under filtering processes?
A few potential explanations include mass conservation or
engineering trade-offs (Scheiter et al. 2013), competition, or
natural selection (Levine 2015). Our study suggests mass
conservation and engineering trade-offs are important in
that a restricted trait space emerged from an individual-
based model (ACGCA) subjected to only one environmental
limitation (light); such trade-offs are built into this model to
ensure carbon mass balance and realistic allometries (e.g.,
Ogle and Pacala 2009). However, this finding does not
exclude competition or natural selection as potentially
important since they were not explicitly assessed in this
study.

Trait variation.—For those traits that were the best predic-
tors of tree- and/or phenotype-level mortality, their distribu-
tions differed among the surviving and dead groups of trees
(for Hmax, e, and cX, see Fig. 1b–d). The location of each
univariate, marginal distribution clearly differed between
the two groups (e.g., the mean or mode of Hmax was lower
for dead compared to surviving trees; Fig. 1a), but the
spread or variance did not notably differ. The univariate
location differences agree with the hypercube results in that
the centroids (an index of location in multivariate space) sig-
nificantly differed between the two groups of trees, with dis-
tances being greatest under gap scenarios leading to low
stand-level mortality, but approaching zero as mortality
approached 50% (Fig. 4c and Appendix S1: Fig. S2c). The
similarity in spread among the univariate distributions
(Fig. 1b–d) seemingly conflicts with the hypercube volumes
(i.e., indices of “spread” in six dimensions). For example, as
for the centroid distances, volume differences were greatest
under low stand-level mortality, but disappeared as mortal-
ity rates approached 50% (Fig. 4f and Appendix S1:
Fig. S2f). Overall, the trait space of dead trees was narrower
(smaller volume) under low mortality conditions compared
to the surviving trees, indicating that very specific combina-
tions or ranges of traits were “selected against” under com-
paratively low light stress. As light stress increased, a larger
proportion of trees died, thus expanding the trait space
associated with the dead group of trees, while simultane-
ously shrinking the trait space associated with surviving
trees.
The apparent inconsistency between the marginal distri-

butions for individual traits and the hypercube characteris-
tics may be explained by the covariance structure of the
multidimensional trait space. This covariance structure
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implies that traits within the trait space may be correlated,
reflecting the possibility that a tree can respond to a given
stressor in different ways (i.e., via different combinations of
trait values). In support of this, a simulation that employed
a genetic algorithm to identify the trait values—for 34 func-
tional traits—that optimize seedling growth, survival, and
fitness produced multiple, essentially infinite, combinations
of “optimal” trait values that spanned up to two orders of
magnitude (Marks and Lechowicz 2006). This was attribu-
ted to the concept that even in a heterogeneous environ-
ment, it is possible to have many optimal solutions, provided
that some traits strongly covary with each other, potentially
reflecting important trait trade-offs (Marks and Lechowicz
2006). Similar results were also found in a laboratory study
of evolution in bacteria where uniform environments were
found to lead to similar levels of fitness even though genetic
divergence and changes in individual traits occurred over
1,000 generations (Korona 1996). Unfortunately, it would be
impractical to conduct an observational experiment of this
type for long-lived trees, pointing to the utility of simulation
experiments.
Though we do not explicitly model competition between

individuals, a recent study found that trait dissimilarity is
not critical for determining local competitive effects on
growth (Kunstler et al. 2016). For example, a trade-off in
performance could permit the coexistence of species with
diverse traits, when competition is present vs. when competi-
tion is absent, provided disturbance (such as gap formation)
creates an environment with multiple successional stages
(Kunstler et al. 2016). Our results support this in that they
generally show wide ranges of trait values can be present
in surviving individuals, even as stand-level mortality
approaches 50%. This implies multiple strategies exist, allow-
ing individuals to tolerate relatively inhospitable environ-
ments (here, low light). However, the trait space would likely
become highly restricted if stand-level mortality were to con-
tinue increasing, and as it approaches 100%, we would pre-
dict that the trait space describing trees capable of tolerating
increasingly lower light would become much less variable
(narrower [univariate] or smaller volume [multi-variate]).

Limitations and future directions

The creation of the TTS (Fell et al. 2018) and the evalua-
tion of filtering processes affecting the functional trait space
of trees was based on simulation experiments conducted
with an individual-based model of tree growth and mortality
(ACGCA; Ogle and Pacala 2009). The current version of
ACGCA is only driven by one environmental variable: light.
Given our overarching goal to assess the TTS for North
American trees and the effect of environmental stress (gap
dynamics) on refining this trait space, limiting the environ-
mental drivers to only light eased interpretation of the
results. However, the simplicity of the gap dynamics simula-
tions and the coarse physiology sub-model limit extension
of our results to other filtering processes and environmental
stressors. In reality, trees can experience a multitude of limi-
tations, leading to a wide variety of trait trade-offs (Wright
et al. 2004, Chave et al. 2009, Scheiter et al. 2013, D�ıaz
et al. 2016, Kunstler et al. 2016). Even with the limitations
implied by only considering one environmental variable,

meaningful changes in the trait space were identified, and
the presence of realistic, multidimensional relationships
between traits emerged. Including more physiological pro-
cesses and drivers in the ACGCA model would allow us to
explore the impacts of other stressors (e.g., drought) or
interacting stressors (e.g., drought and shading) on the trait
space. It is likely that the key traits predicting mortality
under different stressors (e.g., drought, nutrient limitation)
would likely differ from the important traits identified here
that relate to mortality under light limitation.
One of our goals is to integrate the ACGCA model with

more detailed physiological sub-models (e.g., photosynthesis
[Farquhar et al. 1980], stomatal conductance [Ball et al.
1987, Medlyn et al. 2011], hydraulics [Sperry et al. 1998,
Tuzet et al. 2003]), allowing the investigation of additional
stressors and associated physiological limitations. For
instance, incorporation of a sub-model for water uptake,
transport, and transpiration would permit the integration of
soil moisture availability, plant water relations, and photosyn-
thesis (Sperry et al. 1998, Tuzet et al. 2003). A second goal is
to integrate the ACGCA model with a forest stand model
that would enable explicit representation of competition
and community dynamics, such as the Perfect Plasticity
Approximation (PPA; Purves et al. 2008, Strigul et al. 2008),
SORTIE (Pacala et al. 1993, 1996), or the Ecosystem
Demography (ED; Moorcroft et al. 2001) models, thus allow-
ing for the evaluation of both biotic and environmental fil-
ters. There is the potential to simultaneously implement these
modifications, provided the computational challenges can be
overcome. This may be possible if the sub-models are chosen
carefully. Some guidance could come from work on dynamic
global vegetation models (DGVMs) that integrate functional
traits and individual-level processes in a computationally
tractable way (Scheiter et al. 2013, Fyllas et al. 2014).

CONCLUSIONS

Through a series of simulation experiments with a semi-
mechanistic model of tree growth and carbon allocation, we
found that non-random mortality induced by light limita-
tion led to a refinement of the functional trait space occu-
pied by trees. This was demonstrated through changes in the
hypercube characteristics that define the multidimensional
trait spaces occupied by surviving trees and dead trees
compared to the theoretical trait space (TTS). Moreover,
while average light level was a good predictor of stand-level
mortality, tree- and phenotype-level mortality were best
explained by a subset of the 32 traits in the TTS. For exam-
ple, maximum height (Hmax), radiation use efficiency (�),
and the conducting area to sapwood area ratio (cX) were
consistently identified as important predictors of mortality.
Given that only a few (about six) traits were strong predic-
tors of mortality, this supports assertions that there is an
upper limit to the number of traits needed to explain ecolog-
ical processes such as community assembly (Laughlin 2014).
Finally, many of the trait-mortality relationships that
emerged from the relatively simple gap dynamics simulations
were generally in agreement with empirical studies, sug-
gesting that model-based approaches, as described here,
may be helpful in understanding relationships that may
not be evident or practical to investigate through empirical
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approaches. Model-based approaches may also be useful for
understanding how trees respond to novel environmental
conditions, especially if the models include additional envi-
ronmental constraints such as temperature and precipitation
and their impacts on carbon balance and mortality.
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