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Abstract

Plant diversity can increase biomass production in plot-scale studies, but applying these results to
ecosystem carbon (C) storage at larger spatial and temporal scales remains problematic. Other
ecosystem controls interact with diversity and plant production, and may influence soil pools differ-
ently from plant pools. We integrated diversity with the state-factor framework, which identifies key
controls, or ‘state factors’, over ecosystem properties and services such as C storage. We used this
framework to assess the effects of diversity, plant traits and state factors (climate, topography, time)
on live tree, standing dead, organic horizon and total C in Qu�ebec forests. Four patterns emerged:
(1) while state factors were usually the most important model predictors, models with both state
and biotic factors (mean plant traits and diversity) better predicted C pools; (2) mean plant traits
were better predictors than diversity; (3) diversity increased live tree C but reduced organic horizon
C; (4) different C pools responded to different traits and diversity metrics. These results suggest
that, where ecosystem properties result from multiple processes, no simple relationship may exist
with any one organismal factor. Integrating biodiversity into ecosystem ecology and assessing both
traits and diversity improves our mechanistic understanding of biotic effects on ecosystems.
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INTRODUCTION

Decades of research have established that biodiversity influ-
ences ecosystem properties (Schulze & Mooney 1993; Chapin
et al. 2000; Tilman et al. 2014) and services1 (Naeem et al.
2009; Cardinale et al. 2012; Isbell et al. 2017b). This research
generated its own subdiscipline – biodiversity and ecosystem
functioning (BEF). To isolate the influence of diversity from
co-varying factors, much BEF research has occurred at small
scales in communities where biodiversity is manipulated exper-
imentally (Hooper et al. 2005; Cardinale et al. 2012). While
this work provides strong evidence for isolated effects of
altered species richness, genetic diversity and functional diver-
sity, interactions with other drivers may confound extrapolat-
ing these effects to landscape scales (Srivastava & Vellend

2005; Wardle et al. 2011; Wardle 2016). A more recent
approach explores diversity effects across broad geographic
gradients, controlling for environmental variation through
multiple regression or structural equation modeling. To date,
few studies (but see, D�ıaz et al. 2007; Poorter et al. 2017)
have integrated diversity with all the ecosystem drivers,
known as ‘state factors’ in ecosystem ecology (Vitousek 2004;
Chapin et al. 2011), typically used to model ecosystem pro-
cesses at large scales. However, this progress suggests BEF is
ripe for more complete integration with ecosystem ecology
(Chapin et al. 2000).
Integrating plant diversity with other ecosystem drivers will

help merge biodiversity research with ecosystem ecology and
clarify diversity effects at large spatial scales. Organisms are
an integral component of ecosystem ecology’s state-factor
framework (Jenny 1980; Vitousek 2004; Chapin et al. 2011),
but it has focused on dominant species or mean plant traits
(Grime 1998), rather than diversity (but see Chapin et al.
2000). In the state-factor framework, climate, organisms (re-
gional species pool), topography, geological substrate and
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time since disturbance are independent state factors driving all
ecosystem properties (Fig. 1). These distal drivers interact to
influence proximal drivers (‘interactive factors’): microclimate,
resource availability, organismal functional traits and distur-
bance regimes (Chapin et al. 2011). Although the relative
strengths of plant functional traits and diversity as biotic dri-
vers affecting ecosystem properties have been compared and
contrasted (Grime 1998; Winfree et al. 2015; Finerty et al.
2016), an alternative approach integrates both, recognising the
different axes of influence by which organisms affect ecosys-
tem properties (see also, D�ıaz et al. 2007). In that spirit, we
suggest incorporating diversity into the state-factor paradigm
by broadening the interactive ‘organismal functional traits’
factor to ‘interactive biotic factors’, within which both mean
traits and diversity warrant consideration (Fig. 1 and
Fig. S1).
Although integrating diversity with environmental drivers

has progressed in the past several years, the development and
use of a cohesive theoretical framework is needed. The major
ecosystem models (e.g. CENTURY, TEM, BIOME-BGC)
currently do not incorporate diversity as a driver of carbon
and nitrogen cycling, perhaps because of the lack of informa-
tion on how diversity effects and interactions play out at land-
scape scales. Recent studies assessing diversity effects in
combination with different environmental factors have found

significant influences at broad geographic scales, including on
algal biomass (Zimmerman & Cardinale 2014), primary pro-
duction (Paquette & Messier 2011; Cavanaugh et al. 2014;
Poorter et al. 2017), or multifunctionality in ecosystem prop-
erties (Maestre et al. 2012) or services (Gamfeldt et al. 2013;
Liang et al. 2016; Duffy et al. 2017; Oehri et al. 2017). One
study even structured some analyses on the state-factor frame-
work, but their interpretations instead focused on diversity
effects (Jing et al. 2015). Most, however, have assessed diver-
sity as the only biotic predictor, ignoring concurrent impacts
of important plant traits (but see Poorter et al. 2017). Fewer
still also structured their analyses to reflect the key relation-
ships among state factors, interactive factors and the processes
of interest. A key component of the state-factor framework is
whether ecosystem drivers are functionally outside (state fac-
tors) or inside (interactive factors) the realm of internal
ecosystem feedbacks (Chapin et al. 2011). This distinction
helps direct the structure of measurements and analyses
assessing effects of different ecosystem drivers (Fig. 1 and
Fig. S1).
What is the strength of plant traits and diversity, as interac-

tive factors, on landscape-scale ecosystem properties and ser-
vices after accounting for state factors? Mean functional traits
and organismal diversity both have demonstrable mechanisms
that should influence ecosystem properties at the landscape

Fig. 1 Relationship among state factors, interactive factors, and ecosystem carbon pools. Diversity, in bold, and the arrows emanating from it, show our

proposed modification of the state factor approach. The circle indicates whether ecosystem drivers are functionally outside (state factors; outside the circle)

or inside (interactive factors; inside the circle) the realm of internal ecosystem feedbacks. Grey text indicates lack of data in this study to include these

factors. We aimed to determine the impact of biotic factors on C pools, so we did not include feedbacks from C pools to biotic factors. Variables used for

different state factors are in parentheses (MAT = mean annual temperature, MAP = mean annual precipitation). Dashed arrows indicate fluxes between

different ecosystem C pools and atmospheric CO2 to emphasise that these components of total ecosystem C storage respond differently to the different

ecosystem state and interactive factors. Dark blue arrows indicate that interactive factors result from interactions among state factors. Light blue arrows

are positive relationships, and red arrows are negative relationships of biotic factors on ecosystem C pools. Adapted from Chapin et al. 2011.
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scale. For example, mean traits along the leaf economic spec-
trum affect productivity (D�ıaz et al. 1999; Wright et al. 2004;
Reich 2014), litter quality, decomposition and plant-soil pro-
ductivity feedbacks (van der Putten et al. 2013; Hobbie 2015).
Trait diversity can increase resource capture and productivity
via complementarity or facilitation (Vandermeer et al. 2002;
Cardinale et al. 2011; Tilman et al. 2014). Diversity may also
stabilise services by incorporating environmentally tolerant
species or allowing asynchronous responses to environmental
fluctuations (Walker et al. 1999; Yachi & Loreau 1999; Bal-
vanera et al. 2006; Isbell et al. 2009; Cardinale et al. 2013;
Wang & Loreau 2016). We argue that studies should incorpo-
rate both mean traits and diversity as biotic drivers to better
understand when and where they have strong impacts.
Many ecosystem services are combinations of properties

(Cardinale et al. 2012) that may respond independently to
altered diversity. Thus, understanding mechanisms will require
considering the component properties rather than the single
aggregated service. For example, total ecosystem C storage
reflects imbalances between C inputs from primary production
and losses from decomposition (Fig. 1). Decomposition is typ-
ically more sensitive to temperature and high soil moisture
than production, so that soil C increases at colder, higher lati-
tudes (D�ıaz et al. 2009a) and in waterlogged soils (Schuur
et al. 2001; Mack et al. 2008; Grosse et al. 2011). At the same
time, production and decomposition are maximised by high
nitrogen, low lignin leaves (Hobbie 1992; Wright et al. 2004;
Reich 2014; Hobbie 2015; Cornelissen et al. 1999), and shifts
in these traits may have little net effect on soil C.
Production appears to be more sensitive to changes in diver-

sity than decomposition (Srivastava et al. 2009; Hooper et al.
2012; Jewell et al. 2017), but whether this translates into
greater ecosystem C storage remains unclear. Generally, diver-
sity increases plant production and plant C (e.g. Cardinale
et al. 2011; Paquette & Messier 2011; Gamfeldt et al. 2013;
Ruiz-Benito et al. 2014; Liang et al. 2016; Duffy et al. 2017;
Poorter et al. 2017), but diversity effects on decomposition
and soil C show mixed effects (Hattenschwiler et al. 2005;
Fornara & Tilman 2008; Srivastava et al. 2009; Reid et al.
2012; Gamfeldt et al. 2013; Hungate et al. 2017). Greater
plant and detritivore diversity can accelerate decomposition
(Nielsen et al. 2011; Handa et al. 2014), which should
decrease C storage. Thus, C storage is an aggregate property
of production, decomposition and disturbance – processes
that respond independently to environmental and biotic
changes, including changes in diversity. The state-factor
framework offers structure for evaluating these interacting
influences simultaneously.
We investigated diversity effects on ecosystem C storage

using the state-factor framework with climate, topography
and stand age, and the interactive factor of mean organismal
traits. We selected variables representative of these state fac-
tors based on well-supported ecosystem science (e.g. Chapin
et al. 2011) and recent studies in our focal ecosystem (Paque-
tte & Messier 2011). Our goal was to illustrate how integrat-
ing biodiversity with other ecosystem controls leads to
mechanistic insights that may be lost when this framework is
not used, when key drivers are not accounted for, or when
emphasis is solely on whether biodiversity is significant or

not. We used Qu�ebec Forest Survey data to evaluate these
effects on C in live trees, standing dead trees, the soil organic
horizon, and their sum, total ecosystem C. We asked: 1. How
does geographic variation in interactive biotic factors (plant
traits and diversity) affect C storage when accounting for vari-
ation in state factors across broad geographic regions? What
are the relative strengths of mean traits and diversity effects?
We used structural equation modeling (SEM) to reflect direct
effects of state factors (those outside the realm of internal
ecosystem feedbacks) on C storage, as well as indirect effects
via interactive biotic factors (mean plant traits and diversity),
consistent with the state-factor framework (Fig. 1 and
Fig. S1). This structure also allowed us to compare relative
effects of mean traits and diversity. Debate continues about
which functional traits and diversity components (phyloge-
netic diversity, functional diversity, or species richness) have
greatest effects on ecosystem properties (e.g. Cadotte 2015;
Cardinale et al. 2015; Venail et al. 2015; Naeem et al. 2016).
We therefore evaluated a variety of traits and diversity metrics
to better understand which provide the most explanatory
power when combined with state factors in this framework. 2.
Is there evidence that different biotic mechanisms control vari-
ous C pools? Ecosystem theory and evidence suggest this like-
lihood (Chapin et al. 2011), with production traits driving live
tree C and decomposition traits driving organic horizon C.
We hypothesised that explaining variation in landscape C
storage requires mechanistic linkages among C pools and dif-
ferent functional traits or diversity metrics. Because we
expected that state and interactive biotic factors would affect
C pools with varying strengths (D�ıaz et al. 2009b), we
assessed whether models of total C would perform as well as
those investigating individual pools: is it sufficient to lump
contributing properties into a single ecosystem service, or
should they be separate? Although we focused on ecosystem
C, we anticipate this approach will clarify organismal effects
on other ecosystem services as well.

METHODS

Datasets and carbon pools

We used three state factors – climate, topography and time
since disturbance – plus mean plant traits and diversity as
facets of the interactive biotic factor (Table 1 and Table S1;
Fig. 1 and Fig. S1; Appendix 2) to assess ecosystem controls
on C pools in temperate and boreal forests of Qu�ebec (Fig. 2;
Paquette & Messier 2011): live tree, standing dead, soil
organic horizon, and total C (their sum). Data at each site
were collected in 400 m2 circular plots as part of the Qu�ebec
Forest Survey (MRNFQ 2006; summarised by Paquette &
Messier 2011, Appendix 1; Table S1). Sites were sampled
every decade; we selected the most recent measurement for
sites with a recorded age. Data were insufficient to estimate
coarse woody debris C and did not include mineral soil C or
measurements of nutrient availability.
We expected effects of topography (drainage) on C pools

would overwhelm other factors in fast (dry) and slow (wet)
draining sites, so we performed analyses on full (n = 2624)
and moderately drained datasets (drainage rating 2–4,
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n = 2323), where we expected biotic factors would play a
stronger role in C accumulation. Temperate forests were
restricted to a relatively limited climatic range that may not
represent the breadth of environmental conditions in this
biome, challenging our ability to test for distinct relationships
in temperate vs. boreal systems; we therefore grouped these
forests together for analyses.
At each site, all trees > 9.1 cm DBH were measured, identi-

fied, and counted. Live tree biomass was the sum of stem
wood, bark, branches, leaves and roots using species-specific
allometric equations for aboveground pools (Lambert et al.
2005) and coarser deciduous and conifer allometries for roots
(Li et al. 2003). Dead tree biomass was the sum of dead
wood, bark, branches and roots. Live and standing dead bio-
mass were converted to carbon (C) content using C = 0.5 *
biomass. Although the C content of conifer and hardwood
temperate trees ranges from 43 to 55% C (Lamlom & Savidge
2003; Thomas & Martin 2012), we chose 50% as a mid-point
value because we did not have data on all species encoun-
tered. We estimated organic horizon C using site measure-
ments of soil group and organic layer depth, combined with
soil great group bulk density and C content (Shaw et al.
2008): Organic horizon C = bulk density * organic layer depth
* %C. Total C was the sum of live, standing dead and
organic horizon C. All values are Mg C ha�1.

Plant traits and diversity metrics

Site-level species richness was assessed for each 400 m2 site.
We assembled trait data for the species in the dataset from
published sources (Tables 1, S1, S2) (Paquette & Messier
2011), focusing on traits we hypothesised would affect C pool
sizes either via trait means or diversity. To represent the tradi-
tional ecosystem approach, we calculated community-weighted
means (CWM) for each functional trait at each site, per
Lavorel et al. (2008), weighted by species basal area. For
ordered traits, CWM calculations return the value of the domi-
nant class (Tables S1, S2). We investigated three types of

diversity metrics: species richness, functional diversity and phy-
logenetic diversity. We used species richness (SR) to represent
the dominant BEF approach. We computed functional disper-
sion (FDis), which provides the average multivariate distance
of individual species from the centroid of all species in func-
tional trait space, weighted by basal area (Lalibert�e & Legen-
dre 2010; Paquette & Messier 2011) (Table 1). We calculated
twelve FDis metrics, using either single or multiple traits, for
traits we hypothesised could influence C pools via diversity
(Tables 1 and S1). While many studies using FDis include a
wide variety of traits, we were concerned that, in such an
approach, variation in less relevant traits could obscure effects
of more relevant traits (Bernhardt-R€omermann et al. 2008).
Our limited number of multiple trait FDis metrics were
intended to capture a variety of explicit mechanisms by which
species might contribute to complementary resource use or tol-
erance to abiotic conditions (Table 1). We chose FDis as a
measure of functional diversity because it computes for plots
with only two species (FDis = 0 when SR = 1) and is not
strongly correlated with SR for theoretical communities (Lalib-
ert�e & Legendre 2010). In practice, SR and FDis metrics were
moderately correlated across our datasets (Pearson’s r = 0.39–
0.70), but were never used together to predict C pools. For
phylogenetic diversity, we calculated Phylogenetic Species
Variability (PSV), using a molecular phylogeny of our species
based on chloroplast genes (Paquette & Messier 2011). PSV
quantifies how phylogenetic relatedness decreases variance of a
hypothetical trait shared by species in a community and is
mathematically independent of SR (Helmus et al. 2007).
Although PSV was moderately correlated with SR across the
dataset (r = 0.51), they were never used together to predict C
pools. We computed CWM and FDis using the ‘FD’ package
(Lalibert�e & Shipley 2011) and PSV using the ‘picante’ pack-
age for R (Kembel et al. 2010; R Core Team 2011).
All metrics were calculated using a priori species traits

rather than plot-based measurements. While this certainly
missed some within-species variability resulting from genetic
effects and phenotypic plasticity, it is a common approach in

Table 1 Biotic measures of functional traits and diversity. Definitions and units of functional traits are given in Table S2

Functional traits:

Community Weighted Mean Diversity metrics

GR Growth rate SR Tree species richness

LL Leaf longevity PSV Phylogenetic species variability

LMA Leaf mass per area FDis Functional Dispersion for

LS Leaf size Single traits Drought tolerance

MaxH Average maximum height Leaf mass per area

N N mass per leaf mass Average maximum height

SM Seed Mass N mass per leaf mass

TolD Drought tolerance Seed Mass

TolS Shade tolerance Shade tolerance

TolW Waterlogging tolerance Waterlogging tolerance

Veg Vegetative reproduction Wood density

WDR Wood decay resistance Three traits

WD Wood density 3a Wood density, seed mass, max height

3b Shade tol, seed mass, max height

3c Shade tol, drought tol, max height

Five traits

5 Max height, shade tol, drought tol, waterlogging tol, N mass
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broad-scale geographic studies, was essential given our large
number of sites, and avoided circular logic for some func-
tional traits. For example, maximum tree height was an a pri-
ori species trait taken from the literature and was not also
used to calculate live tree C in individual plots. Thus, correla-
tion between maximum height and plot-based measurements
such as basal area was very low (r = 0.05).

Statistical analyses

Strategy and conceptual framework
Our primary goal was to build on the wealth of the knowl-
edge from ecosystem and community ecology about drivers of
C storage and biotic composition to develop ecologically rele-
vant SEMs, based on the state-factor framework (Fig. 1), that
would evaluate the role of both plant functional traits and
diversity at landscape extents. To this end, we developed full
and simplified meta-models (Grace et al. 2016) to guide our
analysis (Fig. S1). However, given the large range of theoreti-
cally and empirically supported potential relationships among
state and interactive factors and of potential relationships

between these factors and different C pools, we first aimed to
find the best descriptors for each state and interactive factor
using multi-model inference and a priori ecological knowledge.
The goal for this step was to minimise the likelihood of dis-
missing conceptually important explanatory variables solely
because we had not used an appropriate statistical relation-
ship or had arbitrarily used a particular metric that strongly
covaried with another metric. Based on our simplified meta-
model (Fig. S1), we then selected variables to build SEMs.
We describe these steps in more detail below and in Appen-
dix 2.

Multi-model inference: state and biotic interactive factor
selection
We first identified the best variables or function shape for
effects on different C pools for each state factor: climate,
topography and time since disturbance. Because previous
studies found strong correlations among various temperature
and precipitation predictors at these sites, we used the sim-
plest estimators: mean annual temperature (MAT) and mean
annual precipitation (MAP) (Paquette & Messier 2011). Based

Fig. 2 Distribution of sites across temperate and boreal forest biomes of Qu�ebec. Full dataset: n = 2624; moderately-drained dataset: n = 2323; temperate

forests: n = 948; boreal forests: n = 1676. Fast draining sites are drainage classes 0–1.5, moderate are 2–4, and slow are 4.5–6. Geographic gaps in coverage

likely resulted from using only sites with measurements of stand age. However, distribution of all datasets cover the E-W and N-S breadth of both biomes

in Qu�ebec.

© 2018 John Wiley & Sons Ltd/CNRS

1608 E. Carol Adair et al. Idea and Perspective



on those results and abundant previous research on ecosystem
C controls (e.g. Chapin et al. 2011; Taylor et al. 2017), we
expected MAT, MAP, and their interaction would affect all
pools, so we included them in all state factor models. Plot
coordinates and elevation were used to compute MAT and
MAP using interpolation of 30-year normals from all avail-
able weather stations (as in Paquette & Messier 2011).
Drainage represented the topography state factor, and ran-

ged from 0 to 6 in 0.5 increments: 0-1.5 are rapidly draining,
dry soils; 2–4 are moderately draining soils; 4.5–6 are slowly
draining, wet soils. We tested for linear, exponential, or uni-
modal relationships between C pools and drainage. Stand age,
representing time since disturbance, was estimated by coring
from the five trees with the largest DBH at each site (MRNFQ
2006). We tested for linear, exponential, unimodal or lognormal
(saturating) relationships between C pools and age. We used
multi-model inference (MMI), including model averaged
parameters, sums of weights (SW; Burnham & Anderson 2002),
and standardised effect sizes (Galipaud et al. 2014; Galipaud
et al. 2017; Cade 2015), to select the best relationships between
each variable and C pool combination (Table 2; see Appendix 2
and Tables S3 and S4 for detailed methods and results).
We then selected variables for the interactive biotic factors

using MMI to identify the trait mean and diversity metric that
added the most explanatory power to the selected state factor
models for each C pool. We did so by including only a single
trait mean or diversity metric at a time, or one trait mean plus
a diversity metric, in addition to the state factors. Selection of
biotic factors was almost fully balanced across the candidate
models; correcting for potential bias caused by the slight
imbalance did not alter results (Appendix 2; Fig. S2). We
chose this approach, rather than examining the effects of bio-
tic factors on C pools in a fully factorial model set with abi-
otic factors, because the latter would allow models consisting
of only biotic factors - not ecologically realistic given known
drivers of C pools (Chapin et al. 2011; Liang et al. 2016;
Oehri et al. 2017). Even so, we repeated the above analysis

including models that contained only biotic factors (one trait,
one diversity, or one trait + one diversity), but selected metrics
were identical (Appendix 2). For live tree C, MMI clearly
selected potential maximum height and PSV as the best predic-
tors for CWM and diversity metrics in both datasets (Table 2,
Fig. S3). Leaf mass per area was the clear selection for the
CWM variable for organic horizon C. Diversity of LMA was
the best predictor of organic horizon C, though more strongly
in the moderately drained than full dataset. MaxH and FDis of
wood density were the strongest biotic predictors for total C,
though with less clear predominance than in the individual C
pools (Table 2, Fig. S3). See Appendix 2 for detailed methods
and Tables S5 and S6 for detailed results. Before constructing
the SEMs, we used MMI to identify the shape of the relation-
ships among state factors and the selected trait mean and diver-
sity metrics for each C pool in each dataset, using the same
process described above for the selection of state and interactive
factors (Appendix 2; Tables S7-S8).

Structural equation model
For each C pool within each dataset, we constructed SEMs
based on our simplified meta-model (Fig. S1, Appendix 2)
using the selected state and interactive biotic factors for that
pool (package ‘lavaan’ in R) (Rosseel 2012). Each SEM
accounted for the direct state and interactive biotic factor
effects on a given C pool and indirect state factor effects via
diversity and mean plant traits. Each also allowed for poten-
tial correlations among state factors (not shown) and between
mean trait and diversity metrics. Because the impact of diver-
sity on ecosystem properties often saturates at high diversities,
we used AICc to compare SEMs with untransformed and ln-
transformed diversity. If there was no best model, the simpler
linear model was selected. To understand the predictive
impact of including plant traits and diversity with state fac-
tors, we compared the C pool R2 from the complete SEM to
the R2s from an SEM without plant traits (state and diversity
factors only) and one with only state factors.

RESULTS

Pool size distributions

Across all sites, the distribution of total C was skewed. On
average, sites contained 150 Mg C ha�1 (median = 130 Mg C
ha�1), but the distribution tail reached 766 Mg C ha�1

(Fig. 3, Table S2). The tail was largely driven by organic hori-
zon C (OHC), which increased exponentially with drainage
(Fig. 3c); OHC as a percentage of total C increased with drai-
nage from fast (< 2, 15–30%) to slow (>4, 70–90%; Fig. 3g).
Live tree C, as a percent of total C, followed the opposite pat-
tern (Fig. 3e). While standing dead C reached 25–35% of
total C in some sites, in most it was <5% (median = 0.73%;
Fig. 3b and f).

Structural equation models: integrating state and interactive biotic

factors

For all C pools, including biotic interactive factors with state
factors in the SEMs better predicted forest C pools,

Table 2 Selected state factor relationships for each dataset and C pool.

Full = all sites (n = 2624). Mod. Drain = Moderately drained sites, drai-

nage classes 2–4 (n = 2323)

Dataset C pool

State factor Interactive factors

Topography Time

Trait

means Diversity

Full LTC Unimodal

Drain

Unimodal Age MaxH PSV

SDC exp (Drain) Unimodal Age WDR FDis.TolS

OHC exp (Drain) Age LMA FDis.LMA

TC exp (Drain) Unimodal Age MaxH FDis.WD

Mod.

Drain.

LTC Unimodal

Drain

Unimodal Age MaxH PSV

SDC Drain Unimodal Age WDR FDis.TolS

OHC Unimodal

Drain

Age LMA FDis.LMA

TC Unimodal

Drain

Unimodal Age MaxH FDis.WD

LTC = Live Tree Carbon. SDC = Standing Dead Carbon. OHC =
Organic Horizon Carbon. TC = Total Carbon. Trait mean and diversity

metrics are as defined in Tables 1 and S1.
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particularly for live tree C (Table 3). In most models, abiotic
state factors were the most important factors with the largest
impacts on C pools (Table 4). The exception was for live tree
C, where interactive biotic variables had equally large impacts
compared to state factors (Table 4; Fig. 4–6). For all pools
except organic horizon and total C in the full dataset, diver-
sity effects did not saturate; the best SEMs used untrans-
formed diversity (Figs 4–6; Tables 3, S9).
Temperature and age had the greatest effects of individual

state factors on live tree C, with similar effects in both data-
sets (Fig. 4). Across both datasets, the strongest individual
direct effect on live tree C was from a biotic factor, the CWM
of maximum potential tree height (MaxH; Fig. 4; Table 4).

However, variation in state factors drove up to 40% of the
variation in MaxH (Fig. 4), indicating substantial species
turnover responding to environmental conditions. After
accounting for indirect and direct state factor effects, the
effect of MaxH on live tree C was comparable to effects of
temperature and age. Increasing temperature and MaxH from
their minimum to maximum value across each dataset
increased live tree C by 80 Mg C ha�1 in both datasets.
Increasing age, holding other factors constant, initially
increased live tree C to a maximum at c. 150 years, but
decreased it by 15–19 Mg C ha�1 in the oldest sites (unimodal
relationship; Fig. 4; Table 4). PSV responded less strongly to
environmental variation and had smaller impacts on live tree
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Fig. 3 Carbon pool sizes (a–d) and percent of total C (e–g) for live tree C (a and e), standing dead C (b and f), organic horizon C (c and g), and total C

(d) for the full dataset. N = 2624 sites, with 149 sites poorly drained (D>4). Lines are loess smoothers with 95% confidence intervals (shaded areas).

Table 3 Comparison of the full SEM containing state factors, best community-weighted mean plant trait (CWM) and best diversity (Div) metric, with the

state-factor-only and state factor plus diversity SEMs

Full SEM R2

C pool Dataset CWM Diversity Best Div

dAICc

(between

best and

next best

full SEM)

Full SEM

CFI CWM Div C pool

State factor

SEM R2,

C pool

State Factor +
Diversity SEM R2,

C pool

LTC Full MaxH PSV Linear 16.9 1.000 0.3969 0.1968 0.4419 0.3370 0.3503

Mod Drain MaxH PSV Linear 4.7 1.000 0.3766 0.1440 0.4139 0.3034 0.3160

SDC Full WDR FDis.TolS Linear 26.8 0.993 0.0667 0.1458 0.0249 0.0163 0.0194

Mod Drain WDR FDis.TolS Linear 42.0 1.000 0.0614 0.1045 0.0224 0.0126 0.0153

OHC Full LMA FDis.LMA Nonlinear 5.6 0.989 0.5027 0.1608 0.6712 0.6634 0.6647

Mod Drain LMA FDis.LMA Linear 24.5 1.000 0.4650 0.0313 0.2354 0.1922 0.1956

TC Full MaxH lnFDis.WD Nonlinear 2.8 0.993 0.3969 0.2667 0.6011 0.5989 0.5996

Mod Drain MaxH FDis.WD Linear 3.0 1.000 0.3766 0.2236 0.1177 0.1009 0.1055

CWM and diversity metric abbreviations as in Table 1. Full = all sites (n = 2624). Mod. Drain = Moderately drained sites, drainage classes 2–4 (n = 2323).

LTC = Live Tree Carbon. SDC = Standing Dead Carbon. OHC = Organic Horizon Carbon. TC = Total Carbon. A comparative fit index (CFI) > 0.9 indi-

cates a good fit. dAICc was used to compare SEMs with linear and nonlinear diversity.
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C than mean traits: increasing from minimum to maximum
diversity in both datasets increased live tree C by
16 Mg C ha�1 (Fig. 4; Table 4).
Neither state nor interactive factors explained much varia-

tion in standing dead C. The state factor SEMs explained
≤ 2.5% of the variation in standing dead C and adding mean
trait and diversity indices increased R2 by < 1% (Tables 3,
S10; Fig. S4).
Drainage dominated direct effects on organic horizon C in

the full dataset, with organic horizon C increasing exponen-
tially as sites became poorly drained (Fig. 3; Table 4). Moving
from fast to slow drainage increased that C pool by
435 Mg C ha�1 (Fig. 5; Table 4). In the moderately drained
dataset, the restricted range of site drainages reduced the
impact of state factors (Tables 3 and 4). Drainage also indi-
rectly increased organic horizon C by increasing mean LMA
in both datasets (Fig. 5). Climate variables had no or only

weak direct effects on organic horizon C in the full and mod-
erately drained datasets respectively. After accounting for
indirect temperature and precipitation effects on organic hori-
zon C via interactive biotic factors, the temperature by precip-
itation interaction remained significant only in the moderately
drained sites (Fig. 5). For the full set, direct climate effects
disappeared; they were mediated through biotic factors, with
strong negative temperature effects on mean LMA. Similarly,
direct age effects on organic horizon C were minor in the
moderately drained or insignificant in the full datasets
(Table 3, Fig. 5). Again, age effects were moderated by inter-
active biotic factors, resulting in positive indirect age effects in
both datasets (Fig. 5).
Biotic factors had significant but smaller effects on organic

horizon C than live tree C. Increasing LMA across the range
of values in both datasets increased organic horizon C by 30-
35 Mg C ha�1, but in the moderate drainage dataset, this was

Table 4 Standardised (Std) total (direct + indirect) and partial (direct only) effect sizes, unstandardised (Unstd) total effect sizes, and net C gain/loss (in

Mg C ha�1) across the range of values for each state or interactive factor for live tree C (LTC), organic horizon C (OHC) and total C (TC; standing dead

values in Table S10). Factor effects are ranked by standardised total effect magnitude. Unstandardised partial estimates are shown in Figs 4–6. Ranges of

values for each state and interactive factor are shown in Table S2

Full Moderate drainage

Effect

Std

Total (SE)

Std

Partial (SE)

Unstd

Total (SE)

C

gain Effect Total (SE) Partial (SE)

Unstd

Total (SE)

C

gain

T ? LTC 0.47 (0.015) 0.23 (0.019) 9.00 (0.322) 81 T ? LTC 0.49 (0.015) 0.24 (0.02) 9.24 (0.345) 83

CWM

MaxH ? LTC

0.39 (0.018) 0.39 (0.018) 3.31 (0.160) 78 CWM MaxH ? LTC 0.40 (0.019) 0.40 (0.019) 3.33 (0.169) 79

Age ? LTC 0.36 (0.025) 0.29 (0.024) 0.26 (0.019) 71 Age ? LTC 0.35 (0.026) 0.27 (0.024) 0.26 (0.020) 70

Age2 ? LTC �0.27 (0.025) �0.20 (0.023) �1.99 (0.183) �85 Age2 ? LTC �0.26 (0.026) �0.18 (0.024) �2.07 (0.208) �89

Drain2 ? LTC �0.15 (0.019) �0.10 (0.018) �2.55 (0.330) �24 PSV ? LTC 0.14 (0.017) 0.14 (0.017) 16.0 (2.011) 16

PSV ? LTC 0.15 (0.016) 0.15 (0.016) 16.64 (1.852) 17 Drain ? LTC �0.11 (0.019) �0.03 (0.018) �5.75 (0.959) �11

Drain ? LTC �0.14 (0.019) �0.05 (0.018) �4.35 (0.618) �26 Drain2 ? LTC �0.09 (0.018) �0.04 (0.017) �5.96 (1.191) �7

Ppt ? LTC 0.06 (0.017) 0.01 (0.016) 0.02 (0.004) 13 T x PPt ? LTC 0.06 (0.018) 0.07 (0.017) 0.01 (0.003) 18

T x PPt ? LTC 0.06 (0.017) 0.06 (0.016) 0.01 (0.003) 16 Ppt ? LTC 0.05 (0.018) 0.00 (0.017) 0.01 (0.005) 11

Total Age ? LTC �15 Total Age ? LTC �19

Total Drain ? LTC �50 Total Drain ? LTC �18

eDrain ? OHC 0.77 (0.008) 0.77 (0.008) 1.08 (0.018) 436 CWM LMA ? OHC 0.27 (0.024) 0.27 (0.024) 0.13 (0.012) 34

CWM

LMA ? OHC

0.10 (0.016) 0.10 (0.016) 0.13 (0.021) 34 Drain ? OHC 0.25 (0.020) 0.21 (0.020) 16.11 (1.292) 32

T ? OHC �0.05 (0.012) 0.02 (0.015) �3.12 (0.773) �28 T ? OHC �0.23 (0.019) �0.07 (0.024) �5.50 (0.464) �50

ln(FDis

LMA) ? OHC

�0.03 (0.012) �0.03 (0.012) �1.29 (0.519) �12 Drain2 ? OHC 0.16 (0.020) 0.13 (0.019) 13.27 (1.602) 15

Ppt ? OHC �0.03 (0.012) �0.02 (0.012) �0.02 (0.010) �20 T x Ppt ? OHC 0.11 (0.020) 0.09 (0.020) 0.02 (0.004) 40

T x Ppt ? OHC 0.02 (0.012) 0.01 (0.012) 0.01 (0.006) 16 Ppt ? OHC �0.1 (0.019) �0.07 (0.019) �0.03 (0.006) �24

Age ? OHC 0.02 (0.012) 0.02 (0.012) 0.04 (0.030) 11 FDis LMA ? OHC �0.08 (0.019) �0.08 (0.019) �8.68 (1.942) �13

Age ? OHC 0.08 (0.020) 0.09 (0.019) 0.08 (0.019) 21

Total Drain ? OHC 47

eDrain ? TC 0.77 (0.009) 0.77 (0.009) 1.04 (0.018) 420 Age ? TC 0.35 (0.029) 0.32 (0.030) 0.36 (0.031) 98

Age ? TC 0.14 (0.020) 0.13 (0.020) 0.33 (0.047) 91 Age2 ? TC �0.19 (0.030) �0.17 (0.030) �2.14 (0.330) �92

Age2 ? TC �0.10 (0.020) �0.09 (0.020) �2.27 (0.468) �97 Drain ? TC 0.15 (0.021) 0.17 (0.021) 10.54 (1.518) 21

T ? TC 0.09 (0.013) 0.07 (0.016) 5.80 (0.812) 52 CWM Max H ? TC 0.14 (0.025) 0.14 (0.025) 1.64 (0.289) 39

CWM Max H ? TC 0.06 (0.016) 0.06 (0.016) 1.63 (0.442) 39 T ? TC 0.14 (0.021) 0.10 (0.026) 3.63 (0.547) 33

ln(FDis WD) ? TC �0.03 (0.014) �0.03 (0.014) �1.24 (0.578) �12 T x Ppt ? TC 0.12 (0.021) 0.11 (0.021) 0.03 (0.004) 48

T x Ppt ? TC 0.03 (0.013) 0.02 (0.013) 0.01 (0.007) 24 Drain2 ? TC 0.09 (0.021) 0.10 (0.021) 8.02 (1.886) 9

Ppt ? TC 0.00 (0.013) �0.01 (0.013) 0.00 (0.011) �1 FDis WD ? TC �0.08 (0.022) �0.08 (0.022) �11.35 (3.329) �15

Total Age ? TC �6 Ppt ? TC �0.03 (0.020) �0.04 (0.021) �0.01 (0.007) �8

Total Age ? TC 6

Total Drain ? TC 30
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one of the dominant effects, on par with the magnitude of
temperature and drainage impacts (Table 4). Again, plant
trait effects were stronger than those of diversity. Although
mean LMA increased organic horizon C, FDis of LMA de-
creased organic horizon C by a maximum of 12–
13 Mg C ha�1 (Table 4).
Drivers of total C reflected the most important variables

affecting live tree and organic horizon C. As with organic
horizon C, drainage had the largest effect in the full dataset:
reducing drainage from fast to slow increased total C by
420 Mg C ha�1 (Fig. 6; Table 4). It had a smaller impact in
the moderately drained sites, increasing total C by only
30 Mg C ha�1. Climate, age and mean plant trait (MaxH)
effects on total C were similar in direction to live tree C.
However, path coefficients were muted compared to live tree
C (Figs 4–6): increasing maximum tree height from its mini-
mum to maximum value increased total C by 39 Mg C ha�1

in both datasets, roughly half of the increase for live tree C.
Diversity effects – both variables and direction – differed
between live tree C and total C. In full and moderately
drained sites, increasing the FDis of wood density across the
full range of values decreased total C by 12 and
15 Mg C ha�1 respectively (Fig. 6), similar to negative diver-
sity effects on organic horizon C.

DISCUSSION

Overview

The state-factor paradigm provided a clear conceptual frame-
work to integrate BEF with ecosystem ecology. Our intent
was to integrate diversity with known controls on ecosystem

properties by asking: what does including diversity as a con-
trol add to our knowledge of ecosystem C storage? Our
results suggest that diversity effects on ecosystem processes
are an important second dimension of organismal traits as an
interactive factor (Fig. 1) (D�ıaz et al. 2007; Chapin et al.
2011). Diversity and mean traits both responded to external
state factors and directly influenced C pools in SEMs. That
said, diversity per se (richness, phylogenetic, or functional)
generally had substantially less impact on C pools than mean
traits, and state factors together had a similar or stronger
impact than interactive biotic factors. Our conclusions differ
somewhat from recent studies (Liang et al. 2016; Duffy et al.
2017; Oehri et al. 2017): while those studies emphasised signif-
icant diversity effects and similar ranking to some individual
abiotic variables in landscape-scale studies, we found that
diversity had significant, but small, impacts on forest C stor-
age. Our approach is conceptually consistent with recent stud-
ies of diversity effects on ecosystem properties at landscape
scales (Grace et al. 2007; Grace et al. 2016; Cavanaugh et al.
2014; Poorter et al. 2017), but explicitly differentiated between
state and interactive factors, included mean traits and diver-
sity as drivers, and included both live and detrital C storage.
Our findings are also consistent with studies that found diver-
sity to have relatively small impacts on ecosystem processes
across broad geographic gradients in dryland (Maestre 2012),
tropical (Poorter et al. 2017), and grassland (Grace et al.
2007) ecosystems. However, we do not propose that this will
always hold, either across ecosystems or across processes,
depending both on ecological differences among ecosystems
(see, for example, Paquette & Messier 2011; Liang et al. 2016)
and the range of variability in key drivers within any given
study (as we saw in comparing our two datasets). Within
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tropical forests, some studies show stronger effects of diversity
than mean traits and environmental variables (e.g. Cavanaugh
et al. 2014) and others show the opposite (Poorter et al.
2017). More importantly, we argue that evaluating drivers
together using common metrics (e.g. actual changes in ecosys-
tem services) and integrating them within the state-factor
framework will paint a more complete picture of mecha-
nisms affecting C storage, or other ecosystem services, than
opportunistic subsets of drivers alone. The approach we
advocate will also guide consistent data collection for future
studies aiming to refine and test within- and cross-system
comparisons.
Our results emphasise the importance of modeling pro-

cesses independently when assessing complex ecosystem ser-
vices. When we assessed total C, rather than independent
pools, biotic effects were masked, obscuring underlying
mechanisms. While some complex processes (Caliman et al.
2013) or suites of positively correlated processes (Maestre
et al. 2012) may show stronger diversity effects, the pattern
we saw is likely whenever contributing processes exhibit dif-
ferent responses to environmental drivers. Furthermore,
quantifying responses of individual processes to diversity
allowed us to compare positive and negative diversity effects
on a similar scale (i.e. Mg C ha�1) and to evaluate the net
impact on the ecosystem service of C storage. This has not
been possible with previous multifunctionality studies (Zava-
leta et al. 2010; Maestre et al. 2012; Byrnes et al. 2014).
Understanding how complex ‘bundles’ of ecosystem services
will respond to changing environmental conditions and man-
agement (Raudsepp-Hearne et al. 2010; Balvanera et al.
2014; Cavender-Bares et al. 2015) will require understanding
the relationships among state and interactive factors – both

abiotic and biotic – and the processes that contribute to
specific ecosystem services.

Relative impacts of mean traits and diversity on C storage at

landscape extents

Across C pools, interactive biotic factors had the strongest
effect on live tree C. Increasing from minimum to maximum
diversity and plant trait values added 16 and 78 Mg live tree
C ha�1 respectively, an amount comparable to the direct
increase in live tree C across the full range of temperatures.
The consistently positive diversity effects on live tree C agree
with other studies that assessed diversity effects on live tree
biomass and productivity (e.g. Paquette & Messier 2011;
Gamfeldt et al. 2013; Liang et al. 2016; Oehri et al. 2017).
Our results further suggest that mean plant traits and diversity
influenced C pools independently. Plot experiments frequently
show diversity effects on plant biomass via complementarity,
facilitation and insurance effects (Cardinale et al. 2011; Til-
man et al. 2014), in addition to the effects of particular spe-
cies (sampling effects) (Loreau & Hector 2001). Similarly, the
consistent significance of both mean traits and diversity in our
models suggests that some diversity effects occur orthogonally
to mean traits (Cavanaugh et al. 2014; Ruiz-Benito et al.
2014; Poorter et al. 2017).
For organic horizon C, drainage was the dominant driver.

Despite this, total biotic effects across the range of values in
these sites were still half the size of their effects on live tree C.
Mean functional traits increased organic horizon C by a maxi-
mum of 34 Mg C ha�1 and diversity decreased it by a maxi-
mum of 12–13 Mg C ha�1. Negative effects of FDis of LMA
on organic horizon C stocks in our dataset align with recent
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estimates of positive effects of litter mixing on decomposition
rates (e.g. Handa et al. 2014), which leads to smaller soil C
pools. As discussed below, however, among-study variability
indicates that we still have much to learn about the mecha-
nisms driving such responses (Gessner et al. 2010).
Despite the importance and independence of diversity in

our results, it ranked well below mean functional traits as a
biotic predictor of C storage (Table 4, Figs 4–6). D�ıaz et al.
(2007) also found stronger mean trait than diversity influ-
ences for various ecosystem services. In our study, diversity
always had low standardised effect sizes (< 0.15) and
accounted for C gains or losses of ≤ 16 Mg C ha�1. These
effects were lowest for non-living pools, where C stored
often greatly exceeded that in live trees. These findings con-
trast with recent analyses that found diversity effects to be
as strong as the most important abiotic variables across
landscapes (Liang et al. 2016; Duffy et al. 2017; Oehri et al.
2017). Few other studies have assessed plant diversity effects
on non-living pools at these scales, but those that have also
found weak (although positive) effects of tree richness on
soil C pools (Gamfeldt et al. 2013) and other belowground
properties (Maestre et al. 2012). Additional analyses that
explicitly incorporate the state-factor framework will help
assess whether our results about the relative effect sizes of
diversity on C storage are general.

Impacts of different state and interactive biotic factor controls on

C pools

Direct and indirect state factor controls
The strength and direction of state factors and interactive
biotic drivers varied by C pool. State factor SEMs explained

30–34% of variation in live tree C, 19–66% in organic hori-
zon C, and 10–60% in total C, but very little variation in
standing dead C (≤ 2%). Live tree C responses to state fac-
tors were consistent with known biogeochemical and succes-
sional drivers of plant production and biomass, such as
positive interactions between temperature and precipitation
(Fig. S5), unimodal effects of drainage, and unimodal rela-
tionships with age (D�ıaz et al. 2009a; Chapin et al. 2011).
Similarly, responses for organic horizon C were consistent
with the positive effects of temperature and precipitation on
decomposition rates (Fig. S5), negative effects of anaerobic
conditions on decomposition, and accumulation of C in soil
and litter layers over successional time (D�ıaz et al. 2009a;
Chapin et al. 2011).
However, substantial effects of abiotic state factors on C

pools also occurred as indirect effects via interactive biotic
factors. For example, MaxH increased with stand age, tem-
perature, and precipitation, and diversity increased with tem-
perature, while also having positive direct effects on live
tree C. Such interactive effects are well known in ecosystem
ecology, when indirect abiotic effects via plant traits can
outweigh direct abiotic effects on decomposition (e.g. Van
Cleve et al. 1991; Vitousek et al. 1994) and production (e.g.
Lauenroth & Sala 1992; Hooper & Johnson 1999). In our
datasets, changes in mean functional traits across sites
resulted from changing relative abundances and species turn-
over due to changing abiotic conditions. The strength of
these effects, particularly for live tree C, suggests that spe-
cies turnover across sites (beta diversity) may be more
important in driving ecosystem properties across broad geo-
graphic extents than alpha diversity within sites (e.g. Win-
free et al. 2015).
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Different interactive biotic factor controls on component C
pools
Mean functional traits differentially affected the various
pools, with strongest effects on live tree C. MaxH had the
strongest direct effects on live tree C and was correlated with
several other traits (positive with leaf N, wood density, and
leaf size; negative with leaf longevity and LMA; Table S11).
These traits are consistent with late successional forest
growth, light-competitive life history traits (Grime 2001), and
faster growth on the leaf economic spectrum (Hobbie 1992;
Wright et al. 2004; Reich 2014), which predominate in loca-
tions with high resource availability and long disturbance
intervals. Therefore, the strong effects of maximum height
may reflect species’ natural associations with soil fertility (i.e.
larger species in high fertility sites), for which we did not have
a direct measure.
Mean functional traits had weaker effects on organic hori-

zon C than live tree C. The principal trait affecting this pool
reflected previous understanding from ecosystem ecology: pos-
itive correlation of LMA with organic horizon C, consistent
with its negative effects on decomposition rates (Table 4,
Fig. 5; D�ıaz et al. 2009a). LMA was also negatively correlated
with leaf N (Table S11), which could further explain the
impact of LMA on organic horizon C, as declining N content
reduces decomposition rates (Hobbie 2015) and increases
landscape-scale soil C (D�ıaz et al. 2007; Gamfeldt et al. 2013).
Diversity had its strongest impact on live tree C via PSV.

The independence of this effect from trait means suggests
diversity increased resource uptake or environmental toler-
ances of the entire community, increasing productivity and
live tree C. The importance of PSV over functional diversity
metrics suggests that the diversity of unmeasured traits
affected this pool, though which and how requires further
study (Paquette et al. 2015). On the other hand, where diver-
sity was significant for organic horizon C, its effects were neg-
ative. Increasing FDis of LMA decreased organic horizon C.
Mechanisms driving this relationship remain unclear, as
decomposition rates show variable responses to aboveground
diversity: litter mixtures can show increases, decreases, or no
effects on decomposition compared to single-species litter (Sri-
vastava et al. 2009; Handa et al. 2014; Jewell et al. 2015,
2017) and sparse literature shows inconsistent diversity effects
on soil and litter pools (D�ıaz et al. 2007; Fornara & Tilman
2008; Gamfeldt et al. 2013; Lange et al. 2015; Isbell et al.
2017a). However, observations from forests generally support
increased decomposition with increasing diversity (Nadrowski
et al. 2010), potentially via priming effects or decomposer
composition and diversity (Srivastava et al. 2009; Gessner
et al. 2010; Hooper et al. 2012). Manipulative experiments
and assessing the generality of our results across other ecosys-
tems will provide tests of the diversity mechanisms hypothe-
sised here.
Our results raise two related questions about diversity met-

rics. First, which is best to use: species richness, phylogenetic
diversity, or functional diversity (e.g. Cadotte et al. 2009;
Cadotte 2015; Cardinale et al. 2015; Venail et al. 2015) - or
all of them (Vill�eger et al. 2008; Naeem et al. 2016)? Second,
if functional diversity, which traits should be included?
Because we did not use multiple diversity metrics in the same

model, our results best answer the question, ‘Which single
diversity metric was the strongest driver of C pools, within
the state-factor framework?’ Of metrics tested, richness was
never foremost at predicting C pools. PSV had the strongest
positive effects on live tree C; FDis of LMA had weaker
effects on organic horizon C. Although we expected func-
tional trait diversity to outperform other metrics because of
its more direct links to processes than species richness or phy-
logenetic diversity (Vill�eger et al. 2008), this varied by C pool.
When FDis was a strong driver in our models, it typically
used single traits related to known ecosystem mechanisms,
consistent with diversity effects in plot-scale studies, such as
complementarity, facilitation, and decomposer interactions
(Gessner et al. 2010; Cardinale et al. 2011). We found com-
paratively poor performance of FDis combinations of multi-
ple traits. Our results suggest that combining many functional
traits into one metric may obscure mechanisms affecting C
pools (Bernhardt-R€omermann et al. 2008). In addition, while
we have confidence in the traits selected by our statistical pro-
cedures, selecting a priori among many potential traits for use
in functional diversity metrics remains a vexing problem
(Petchey & Gaston 2006; Lalibert�e & Legendre 2010; Mouchet
et al. 2010).

Assessing total C pools: relationship to complex ecosystem services

Combining C pools reduced the predictive power of state and
interactive biotic factors. Responses of total C to drainage fol-
lowed relationships found for soil organic horizon C, but the
remaining abiotic state factors followed patterns found in live
tree C. Combining component pools into total C greatly
reduced the importance of biotic variables. For example, max-
imum tree height was among the strongest effects on live tree
C, and diversity (PSV) also made significant contributions.
However, when assessing total C, mean trait and diversity
effects greatly decreased. This suggests that combining pools
into total C obscured the importance of biotic variables and
the underlying mechanisms driving C accumulation (see also
Gamfeldt et al. 2013).
Diversity did not simultaneously maximise all C pools.

Indeed, assessing diversity effects only on live tree C would
have missed contrasting effects on organic horizon C, one of
the largest ecosystem carbon pools. Similar cancelling effects
muted responses of forest C dynamics to diversity in the trop-
ics: tree species richness increased both growth of surviving
trees and biomass loss by mortality, with no significant effect
on net change in aboveground biomass (Poorter et al. 2017).
Multifunctionality studies indicate that such tradeoffs are
common (Zavaleta et al. 2010; Byrnes et al. 2014), such that
conditions that maximise one ecosystem service may not max-
imise others (e.g. the well-known tradeoffs between produc-
tion and regulation services; Cavender-Bares et al. 2015). On
the other hand, some ecosystem processes or services may be
positively associated with one another, or may depend on dif-
ferent traits of different species, leading, for example, to
greater effects of diversity on multiple or more complex func-
tions (e.g. Hooper & Vitousek 1998; Bracken & Stachowicz
2006; Isbell et al. 2011; Maestre et al. 2012; Caliman et al.
2013; Barnes et al. 2018). In our C storage example, however,
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contrasting effects of diversity and effects of different func-
tional traits on different C pools meant that explicitly model-
ing the drivers of each property provided the clearest path
toward understanding the underlying responses of C storage
(Gamfeldt et al. 2013; Ricketts et al. 2016).

Conclusions: The merger of BEF and ecosystem ecology?

Using the well-established state-factor framework of ecosystem
ecology provided insights into abiotic state factor and interac-
tive biotic controls of C storage and helped reveal underlying
mechanisms. We used SEMs to test this framework, but they
are not in themselves a panacea for merging BEF and ecosys-
tem ecology. First, SEMs can only assess effects of biotic vari-
ables if they have unshared variance with abiotic drivers. If
biotic factors are so highly correlated with abiotic state factors
that their effects are indistinguishable (e.g. MAP, taxon rich-
ness, and plant and soil nutrient content across precipitation
gradients in dryland ecosystems; Jing et al. 2015), only experi-
mental approaches can tease apart interactive effects (e.g. Van
Cleve et al. 1983; Lauenroth & Sala 1992; Hooper & Johnson
1999). However, the state-factor framework can and should
inform interpretation of covariance among abiotic factors,
diversity, functional traits, and ecosystem properties, rather
than attributing the effects of shared variance to diversity
alone (e.g. Jing et al. 2015). Thus, there is a need for comple-
mentary experimental approaches for better understanding
how ecosystem properties might change with species gain or
loss at multiple sites across environmental gradients (Wardle
et al. 2011; Hooper et al. 2012; Craven et al. 2016).
Because of strong collinearity among potential biotic predic-

tors, we restricted our work to identifying the best single pre-
dictors among mean trait and diversity metrics. Greater
predictability may be achieved using multiple traits or diver-
sity metrics (D�ıaz et al. 2007; Vill�eger et al. 2008; Naeem
et al. 2016), incorporating individual species or functional
type effects (Nadrowski et al. 2010; Gamfeldt et al. 2013), or
assessing interactions and feedbacks among traits, diversity
and abiotic variables (Grace et al. 2016). For example, we did
not include non-recursive SEM feedbacks of C storage (bio-
mass) on diversity, as in Grace et al. (2016). While a feedback
from biomass to diversity is plausible in temperate and boreal
forests, its influence is likely small, as diversity typically
responds to changes in broad climatic and topographic gradi-
ents and successional status (Mittelbach et al. 2001), as cap-
tured in our analyses. While our results provide clues about C
storage mechanisms, they should be tested directly and mech-
anisms driving the strong relationship with PSV determined.
Our approach emphasises a shift in perspective when apply-

ing BEF results at the landscape scale for ecosystem manage-
ment. The catchall term ‘biodiversity’ continues to cause
confusion (Hooper et al. 2005). Often, ‘biodiversity effects’
are cited when what is meant is ‘the effects of traits, or pres-
ence/absence of particular species,’ rather than effects of
diversity per se, as clarified by Cardinale et al. (2012). It
makes more sense – and would cause less confusion – to refer
to diversity as a subset of interactive biotic factors. Doing so
more explicitly integrates BEF studies into the powerful state-
factor paradigm of ecosystem ecology. Rather than merely

assessing diversity effects to assert that ‘diversity matters,’ this
perspective emphasises mechanistic understanding of when,
where, why and how much it matters, in combination with
other known state and interactive (e.g. mean plant traits) fac-
tors. These questions are much more relevant to ecosystem
services management than such vague (and common) state-
ments as ‘biodiversity increases ecosystem functioning’. The
ecosystem perspective argues that, rather than existing as its
own subdiscipline, BEF becomes more relevant by explicitly
integrating diversity with other controls on ecosystem proper-
ties in the state-factor framework.
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