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Abstract
1. Phenology is a first-order control on productivity and mediates the biophysical en-

vironment by altering albedo, surface roughness length and evapotranspiration. 
Accurate and transparent modelling of vegetation phenology is therefore key in 
understanding feedbacks between the biosphere and the climate system.

2. Here, we present the phenor r package and modelling framework. The framework 
leverages measurements of vegetation phenology from four common phenology 
observation datasets, the PhenoCam network, the USA National Phenology 
Network (USA-NPN), the Pan European Phenology Project (PEP725), MODIS phe-
nology (MCD12Q2) combined with (global) retrospective and projected climate 
data.

3. We show an example analysis, using the phenor modelling framework, which quickly 
and easily compares 20 included spring phenology models for three plant func-
tional types. An analysis of model skill using the root mean squared (RMSE) error 
shows little or no difference regardless of model structure, corroborating previous 
studies. We argue that addressing this issue will require novel model development 
combined with easy data assimilation as facilitated by our framework.

4. In conclusion, we hope the phenor phenology modelling framework in the r lan-
guage and environment for statistical computing will facilitate reproducibility and 
community driven phenology model development, in order to increase their overall 
predictive power, and leverage an ever growing number of phenology data 
products.
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1  | INTRODUCTION

Seasonal leaf development, or vegetation phenology, is strongly linked 
to seasonal changes in temperature and considered an indicator of 
climate change. Currently, rising temperatures due to climate change 
have moved spring forward in time by 2.3 days per decade since the 

1970s (Rosenzweig et al., 2007). Vegetation phenology hereby does 
not only disproportionately influence ecosystem productivity by ad-
vancing and delaying the season (Richardson et al., 2010, 2013), it also 
changes canopy properties such as albedo and atmospheric bound-
ary layer properties (Hollinger et al., 1999; Sakai, Fitzjarrald, & Moore, 
1997). As such, models of seasonal leaf development, rigorously 
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validated against in situ observations, are key to understanding how 
climate change will affect ecosystem productivity and biophysical veg-
etation properties.

Luckily, phenology has been recorded by amateurs and pro-
fessionals, such as national meteorological institutions, supporting 
contemporary analysis of past or ongoing climate change (Chuine 
et al., 2004). Recently, individual observations have been formalized 
into rigorous citizen science efforts through, for example, the USA 
National Phenology Network (USA- NPN; https://www.usanpn.org/; 
Betancourt et al., 2005) and Project Budburst (http://budburst.org/). 
In addition, automated camera networks (i.e. the PhenoCam network, 
https://phenocam.sr.unh.edu/; (Richardson et al., 2018)) or remote 
sensing (Zhang et al., 2003) provide a canopy wide continuous way of 
evaluating the development of vegetation across larger areas in a con-
sistent and continuous fashion (Melaas, Friedl, & Richardson, 2016; 
White et al., 2009). Numerous studies have demonstrated the value 
of the PhenoCam- derived Gcc index, a measure of vegetation green-
ness as percentage green within a digital image, for characterizing the 
seasonal trajectory of vegetation color and activity (Hufkens et al., 
2016; Keenan et al., 2014; Klosterman et al., 2014; Toomey et al., 
2015). Similarly, the MODIS MCD12Q2 phenology product has been 
a proven source of phenological data (Chen, Melaas, Gray, Friedl, & 
Richardson, 2016).

These observations of vegetation phenology allow us to esti-
mate changes in the timing of vegetation development in response 
year to year variation in weather, climate change and climate variabil-
ity (Chuine et al., 2004; Melaas et al., 2016; Vitasse, Porté, Kremer, 
Michalet, & Delzon, 2009). Most process- based models try to simulate 
various internal and environmental influences, such as whole plant 
physiological status (paradormancy), internal factors of developing bud 
(endodormancy) and external factors driving or suppressing seasonal 
development (ecodormancy) (Lang, Early, Martin, & Darnell, 1987).

One of the first such ecodormancy models was the growing degree 
day model as proposed by De Reaumur dating back to 1735. Although 
vegetation phenology is often driven by temperature multiple addi-
tional constraints have been proposed including daylength, chilling 
degrees, precipitation, relative humidity or vapour pressure deficit 
(Chuine & Cour, 1999; García- Mozo et al., 2009; Hunter & Lechowicz, 
1992; Laube, Sparks, Estrella, & Menzel, 2014; Laube et al., 2013; Xin, 
Broich, Zhu, & Gong, 2015). Similarly, fall senescence has been mod-
elled, using chilling degree days with additional constraints such as 
daylength (Archetti, Richardson, O’Keefe, & Delpierre, 2013; Gill et al., 
2015; Jeong & Medvigy, 2014). These various models are either used 
in isolation to address particular physiological questions or included 
in land surface models to scale phenological processes (Richardson 
et al., 2011). Model development, in isolation or coupled to larger land 
surface models, often integrate multiple environmental drivers, which 
increases model complexity (Chen et al., 2016; Jeong & Medvigy, 
2014). Yet, models which include more complex concepts, based 
upon growing degree days, do not necessarily perform better than a 
simple regression- based approach. As such, model structures still ex-
plain a limited amount of the year- to- year variability, and fail to gen-
eralize well (Basler, 2016; Clark, Salk, Melillo, & Mohan, 2014; Fisher, 

Richardson, & Mustard, 2007; Linkosalo, Häkkinen, & Hänninen, 2006; 
Schaber & Badeck, 2003). For example, model studies have shown 
that biologically “incorrect” models can be parameterized to provide 
good predictions but lacking any biological representation (Hunter 
& Lechowicz, 1992). A study by Migliavacca et al. (2012) has shown 
that between- model differences by the end of the century are almost 
as large as differences between- climate scenario values. As a conse-
quence, different model assumptions will behave disproportionately 
different under future scenarios affecting their potential impacts and 
uncertainties (Migliavacca et al., 2012).

With vegetation phenology as a first- order control on ecosystem 
productivity, accurate and transparent model predictions of vegeta-
tion phenology in a changing climate are key. In order to facilitate easy 
model comparison and future development of new models, we devel-
oped the phenor model framework for the r language and environment 
for statistical computing (R Core Team 2016). The phenor r package 
assimilates four important phenological records across a variety of 
ecosystem, plant functional types and scales. The assimilated datasets 
provide extensive coverage in the US and Europe and results can be 
easily scaled globally using various gridded data products made acces-
sible through the software. Here, we provide a worked example for 
the phenor r package using the recent standardized PhenoCam dataset 
(Richardson et al. 2018; http://phenocam.us ) to demonstrate the ease 
with which a suite of phenological models (Table 1) can be evaluated 
and scaled up from sites to regions and biomes, and extrapolated in 
both forecast and hindcast modes.

2  | MATERIALS AND METHODS

2.1 | The phenor r package

The phenor r package assimilates four important phenological records 
of either observational, near- surface and satellite remote sensing- 
based records across a variety of ecosystem and plant functional types. 
The phenor r package combines data from near- surface remote sens-
ing through the PhenoCam network using phenoCamr and daymetr r 
packages into a phenology modelling framework, which covers data 
preparation, model optimization and model visualization and consists 
of a number of key functions. In addition, data from the USA National 
Phenology Network (USA- NPN), the Pan European Phenology Project 
(PEP725) and the MODIS land surface phenology product (MCD12Q2) 
can be ingested. In the interest of brevity both phenoCamr, daymetr r 
packages and the PhenoCam source data are described in Appendix S1.

The format_phenocam() phenor function combines phenophases 
(also called transition dates) generated by the phenoCamr r package, with 
the climate data downloaded, using the daymetr r package. The function 
requires the location (path) of the generated phenophase output files, 
together with parameters specifying the phenophase (direction = rising; 
with rising for spring or falling for autumn) and the threshold value used 
(threshold = 25), the Gcc percentile to use (gcc_value = 90, Sonnentag 
et al. 2012) and the offset as a day- of- year value. The offset is the day- 
of- year in the previous year on which to start reporting climate data, 
running until this day in the subsequent year. The function returns 
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http://budburst.org/
https://phenocam.sr.unh.edu/
http://phenocam.us


1278  |    Methods in Ecology and Evoluon HUFKENS Et al.

model calibration/validation and driver data a nested list of data frames, 
used in subsequent model optimization (df, see description of optimize_
parameters() and model_calibration() below).

Similarly, the format_pep725() function uses PEP725 observational 
data together with European E- OBS climate data (Haylock et al., 2008) 
to compile a consistent calibration/validation dataset for European ob-
servational records (e.g. Basler, 2016). Data can be downloaded using 
the download_pep725() function. We provide similar functionality for 
the USA- NPN data. Data can be downloaded through the USA- NPN 
application programming interface, using download_npn() and correctly 
formatted with format_npn(). Furthermore, the format_modis() function 
correctly formats a directory of MODIS MCD12Q2 land surface phenol-
ogy data (i.e. phenophases, Zhang et al., 2003) as downloaded with the 
MODISTools r package (Tuck et al., 2014).

Spatially scaling of model results is facilitated through a number of 
functions. The format_daymet() function uses gridded pre- processed 
Daymet tiles to generate spatially explicit driver data (download_day-
met_tiles() and daymet_tmean() functions of daymetr, Appendix S1). The 
format_eobs() function provides the same functionality for the  E- OBS 
climate data. Yet another source of hindcast data is compiled using the 
format_berkeley_earth() function, which allows the user to subset 1 × 1 
degree global historical climate data for any year since 1850 through 
the Berkeley Earth project (Rohde et al., 2012). Similarly, the format_
cmip5() function formats 1/4th degree NASA Earth Exchange (NEX) 
global gridded Coupled Model Intercomparison Project (CMIP5) data of 
historical reanalysis and representative  concentration pathway (RCP 4.5 
and RCP8.5) projections. Unlike  format_phenocam() or format_modis() 
no calibration/validation data is included in the gridded spatial data.

The resulting dataset of all formatting functions is a nested list 
with the following layout:

Within the phenor data structure, the top level is a particular site. For 
each site, critical parameters such as the day- of- year range (doy, as speci-
fied by the offset), the geographic location (or georeferencing) and matri-
ces holding, minimum temperature (Tmini), maximum temperature (Tmaxi) 
and mean daily temperature (Ti), precipitation (Pi), vapour pressure deficit 
(VPDi), daylength in hours (Li) and calibration/validation transition date 
(transition_dates) data are provided. Matrices are organized with columns 
representing a given year, and rows representing a given day- of- year. 

Other data are represented as vectors matching the number of columns 
present in the climate data matrices. Where necessary, data are truncated 
to match the available climate data. When certain data sources are miss-
ing the content of a field is set to NULL.

The optimize_parameters() function allows for the easy optimization 
of model parameters. This function uses two common optimizers, GenSA 
(Xiang, Gubian, Suomela, & Hoeng, 2013) and rgenoud (Mebane & Sekhon, 
2011). The GenSA algorithm combines both the Boltzmann machine and 
faster Cauchy machine simulated annealing approaches for fast optimi-
zations (Tsallis & Stariolo, 1996), while the genoud routine combines an 
evolutionary algorithm with a derivative- based (quasi- Newton) method to 
solve difficult optimization problems (Mebane & Sekhon, 2011). To opti-
mize a calibration/validation dataset (df), one specifies a particular model 
(e.g. the Thermal Time model, TT), a defined optimizer (e.g. GenSA), an 
objective function such the root mean squared error (RMSE), upper- lower 
parameter limits and parameter starting values, when required. Additional 
control parameters, such as the maximum number or iterations (e.g. max.
call), can be provided using a list of options to the control parameter. An 
example function call to optimize a the TT model is provided below.

Final predicted values for the optimized parameters can be retrieved 
by running the estimate_phenology() function with the optimized 
parameters.

df = format_phenocam(path = “/path/to/phenocamr/phenophases/”,
direc	on = “rising”,
gcc_value =  “gcc_90”,
threshold = 25,
offset = 264)

phenor_data_structure
└─── doy (vector)
└─── site (vector, NULL for spa�al data)
└─── loca�on (matrix, la�tude and longitude by row)
└─── ltm (vector, value: degrees C)
└─── Ti (matrix, columns: years, rows: doy, value: degrees C)
└─── Tmaxi (matrix, columns: years, rows: doy, value: degrees C)
└─── Tmini (matrix, columns: years, rows: doy, value: degrees C)
└─── Li (matrix, columns: years, rows: doy, value: hours/day)
└─── VPDi (matrix, columns: years, rows: doy, value: Pa)
└─── Pi (matrix, columns: years, rows: doy, value: mm/day)
└─── transi�on_dates (vector, NULL for spa�al data)
└─── georeferencing (NULL for PhenoCam, MODIS, USA-NPN or PEP725 data)

└─── size (size of the spa�al data)
└─── extent (extent of the spa�al data)
└─── projec�on (projec�on of the spa�al data)

op�mal_par = op�mize_parameters(par = NULL,
data = df,
cost = rmse,
model = “TT”,
method = “GenSA”,
lower = c(1,-5,0), 
upper = c(365,10,2000), 
control = list(max.call = 40000))

results = es�mate_phenology(par = op�mal_par$par,
data = df,
model = “TT”)

F IGURE  1 Output of the model_calibration() function in the 
phenor r package which produces a scatter plot of measured and 
modelled budburst dates. In this case an optimization was run for the 
deciduous broadleaf data on a Thermal Time model, using 40,000 
iterations of the generalized simulated annealing routine, the package 
default optimizer. Model fit statistics such as the RMSE and AIC are 
provided in the top right and bottom left corner of the graph and on 
the command line output. RMSE NULL is the RMSE assuming the 
mean of the measured values as the optimal model output. RMSE, 
root mean squared error; AIC, akaike information criterion 
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The output will automatically be formatted as a map of phenology 
dates or a vector, depending on the input data class. However, running 
models across all grid cells of spatial data would provide a naively broad 

representation of land surface phenology. For example, only a small sub-
set of the US is dominated by any particular plant functional type (PFT), 
such as deciduous broadleaf forests. In order to better differentiate be-
tween different dominant PFT, we include a function land_cover_den-
sity() which calculates the percentage coverage of a particular MODIS 
MCD12Q1 IGBP land cover class (Friedl et al., 2010) within a given ras-
ter cell for a given location (i.e. CMIP5 data, see Figure 5a,b).

A wrapper function, model_calibration(), is provided for both the 
optimize_parameters() and estimate_phenology() functions which in-
tegrates the previously described steps providing both summary sta-
tistics (RMSE and AICc) and a plot (Figure 1) of the model fit. Likewise, 
the model_comparison() function serves as a wrapper for multi- model 
parameter optimization runs. For a visual comparison limited to two 
model runs we provide an arrow plot function, arrow_plot(), displaying 
directional changes in the modelled values between the model out-
puts (Figure 2).

2.2 | A worked example: a quick model comparison

As a worked example we partially recreate the spring phenology 
model comparison by Basler (2016), using PhenoCam data. However, 
we note that a similar exercise could be executed with any of the 
other phenology data sources available through phenor. The model 
structures included in this worked example can be described by the 

F IGURE  2 Output of the arrow_plot() function in the phenor r 
package which produces a scatter plot of measured and modelled 
budburst dates showing directional changes between model runs 
of the thermal time and photo thermal time models. The direction 
and magnitude of the change is indicated by arrow’s colour and the 
length, respectively. When changes delay phenological development 
arrows are coloured orange, when phenological development is 
advanced arrows are coloured blue. Values unchanged between 
models structures are indicated by small black dots
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TABLE  1 Adapted from Basler (2016) Table 1)

Model Name Drivers # Parameters References/comments

NULL 1 Mean date of leaf unfolding

LIN F 2 Linear regression against spring temperatures

Ecodormancy release only

Thermal Timea (TT, TTs) F 3 (4) (Cannell & Smith, 1983; Chuine, Cour, & Rousseau, 1999; De Reaumur, 
1735; Hänninen, 1990; Hunter & Lechowicz, 1992; Kramer, 1994; 
Leinonen, Repo, & Hänninen, 1997; Wang, 1960)

Chilling Degree Day (CDD) C 3 (Jeong & Medvigy, 2014)

Photothermal- timea (PTT, PTTs) PF 3 (4) (Črepinšek, Kajfež- Bogataj, & Bergant, 2006; Masle, Doussinault, 
Farquhar, & Sun, 1989)

M1a (M1s) PF 4 (5) (Blümel & Chmielewski, 2012)

Endo-  and ecodormancy releases

Alternating (AT) CF 5 (Cannell & Smith, 1983; Murray, Cannell, & Smith, 1989)

Sequentialb (SQ, SQb) CF 8 (Hänninen, 1990; Kramer, 1994)

Parallel (PA, PAb) CF 9 (Hänninen, 1990; Kramer, 1994; Landsberg, 1974)

Unified (UN) CF 9 (Chuine, 2000)

Sequential M1b (SM1, SM1b) CPF 9 Combination with the M1 model

Parallel M1b (PM1, PM1b) CPF 10 Combination with the M1 model

Unified M1 (UM1) CPF 10 Combination with the M1 model

Growing Season Indexc (SGSI, AGSI) FPV 7 (Xin et al., 2015)

Grassland Pollen model (GRP) FR 5 (García- Mozo et al., 2009)

Overview of the phenological models for leaf unfolding and leaf senescence, and pollen release included in this study. The models are grouped by imple-
mented processes and drivers: chilling temperatures (C), forcing temperatures (F), photoperiod (P), precipitation (R), and vapour pressure deficit (V). 
Function names in round brackets while full model structures are listed in Appendix S2 of Table 1.
aAlso calibrated using a sigmoid temperature response (Hänninen, 1990; Kramer, 1994), adding one parameter.
bAlso calibrated using a bell- shaped chilling response (Chuine, 2000).
cCalibrated using a cummulative response rather than the rolling mean.
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three broad categories: (1) as simple linear regression to spring tem-
perature, (2) models explaining ecodormancy release only, (3) models 
explaining the release of endo-  and ecodormancy. A reference NULL 
model assumes a fixed mean date of leaf unfolding.

A total of 22 phenology models are included in the package 
(Table 1). These include 20 spring phenology models including precip-
itation driven models, one fall senescence chilling degree day model 
and one grassland pollen release model. In our worked example of the 
phenor r package, we will focus only on the 20 spring phenology mod-
els. A full list of the model structures and parameter ranges for the 
models are provided in Table 2 of Appendix S2 and included in the 
phenor library https://github.com/khufkens/phenor/blob/master/inst/
extdata/parameter_ranges.csv.

For this study, we combined spring phenology dates based on 
PhenoCam 3- day summary data from the standardized PhenoCam 

Dataset (Richardson et al. 2018) with Daymet data (Thornton et al., 
2017) for three common PFTs, deciduous broadleaf forests, evergreen 
needleleaf forest and grasslands. A total of 102 sites and 508 site years 
were included in our calibration/validation dataset, of which 63 were 
deciduous broadleaf forest sites (358 site years), 18 were evergreen 
needleleaf forest sites (63 site years) and 21 were grasslands (88 site 
years). Deciduous broadleaf sites which are moisture limited, and all 
sites outside Daymet coverage, were excluded from our analysis. The 
final selected sites span a large geographic area ranging from New 
Mexico to Southern Alaska, and Maine to California (Figure 3a).

We acknowledge that phenological development as measured, 
using PhenoCam data represent different physiological processes for 
different PFTs. For example, the phenology of deciduous forests or 
grasslands is closely linked to the development of new leaf tissues 
(Hufkens et al., 2016; Keenan et al., 2014) where evergreen forest 

F IGURE  3 Various data products which the phenor r package can query for model calibration/validation, and their respective demonstration 
dataset locations. (see demo_data.r to compile this dataset) (a) All locations of the selected 104 PhenoCam Dataset V1.0 sites as used in the 
worked example. (b) Example locations of all Acer rubrum locations for which “Breaking Leaf Buds” observations were made within the USA 
National Phenology Network. (c) Example locations of MODIS MCD12Q2 grassland phenology colocated with the PhenoCam grassland sites. (d) 
All Fagus Sylvatica ssp. observations of BBCH code 11 or “first true leaf” for sites where at least 60 observation exist. The three plant functional 
types diplayed, deciduous broadleaf forests, evergreen needleleaf forests and grasslands, are marked with open yellow squares, green circles and 
blue triangles respectively
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phenology is determined by dehardening of existing needles at the 
end of the winter season. Thus, optimized model parameters and their 
interpretation are specific to each PFT.

For all PFTs, model optimization was executed using the default 
generalized simulated annealing (GenSA) package and algorithm min-
imizing the RMSE between the greenness rising PhenoCam pheno-
phase estimations and model predictions (see Appendix S1). The 
optimizer was run for 40,000 iterations with a starting temperature 
of 10,000. To determine the influence of locations at the margin of 
the forest biome on model optimizations, a subset of sites centrally 
located within the deciduous forest biome was created (Melaas et al., 
2016, Appendix S2 Table 2). This subset was optimized separately and 
compared to results for the complete deciduous broadleaf dataset. We 
assess proper convergence of the optimized parameters by initializing 
the optimizer, using 12 random sets of parameters. We report mean 
and standard deviations of the RMSE between observations and pre-
dictions on the optimized parameter values for all datasets. We com-
pare model performance with a log transformed ANOVA, combined 
with a post hoc Tukey HSD test. Model errors are evaluated for nor-
mality, using a Shapiro–Wilk test.

For illustrative purposes, we produce overview maps (Figure 5) of 
spatial patterns both in hindcast and forecast mode. In hindcast mode, 
we use 1 × 1 km Daymet gridded data across New England, while we 
present the difference in predicted spring phenology (ΔDOY) between 

years 2099 and 2011 for forecast CMIP5 IPSL- CM5A- MR (Mid- 
Resolution Institut Pierre Simon Laplace Climate Model 5) model runs, 
across the contiguous US. The Thermal Time (TT) and Accumulated 
Growing Season Index models were optimized for deciduous broadleaf 
and grassland PhenoCam data, respectively. For forecast data only pix-
els dominated by their particular PFT (>50% coverage) are  displayed, 
limiting a naively broad interpretation of the results.

Our comparison of 20 spring phenology models across three 
PFTs showed that most models were significantly different from the 
NULL model, with the exception of the SGSI model in the evergreen 
PFT (post hoc Tukey HSD test, p < .001, Figure 4). The model perfor-
mance of the centrally located deciduous broadleaf sites was mar-
ginally greater (RMSE: c. 7.6 ± 0.7 days) compared to the complete 
deciduous broadleaf dataset (RMSE: c.7.9 ± 1.2 days). This difference 
between the full deciduous broadleaf forest dataset and a subset of 
more centrally located sites within the biome suggests an influence of 
geographic location on model error.

The influence of different model structures on individual values 
was visualized using the arrow plot (Figure 3) between two model runs. 
When visually comparing the Thermal Time (TT) and the Photothermal 
Time (PTT) models small changes are noted (Figure 3). Both models 
accumulate growing degree days where the PTT model adds a pho-
toperiod component to the original TT model. In the PTT model, leaf 
unfolding is therefore in part dependent on a daylength requirement in 

F I G U R E  4 Model comparison for 20 
spring phenology models and three main 
plant functional types in the PhenoCam 
Dataset V1.0 (deciduous broadleaf, 
evergreen needleleaf and grassland). 
An additional subset of the deciduous 
broadleaf dataset is created, matching the 
PhenoCam locations used in Melaas et al., 
(2016). All panels show boxplots of the root 
mean squared error of measured versus 
predicted budburst dates (in days) for 
the 20 models used in this study. Models 
accounting for ecodormancy influences 
are marked in orange. Models accounting 
for endo-  and ecodormancy are marked in 
blue. The linear model is marked in black, 
while the NULL model is represented by 
the dashed horizontal line
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addition to thermal forcing. In our example, the addition of a daylength 
requirement shifts model results for early and late developing plants 
toward earlier leaf out dates, while at the same time, shifting mid- 
season developing plants towards later leaf out dates. Despite these 
changes, the overall model accuracy remains the same. A description 
of all statistical results is provided in Appendix S1, Section 5.

3  | DISCUSSION

Here, we have demonstrated how the phenor r package and its in-
cluded “model zoo”, together with consistent estimates of vegetation 
phenology through PhenoCam network (e.g. phenoCamr, Appendix 
S1) or other phenology data sources can be leveraged for a fast and 

transparent model comparisons. More so, easy access to various grid-
ded data sources allows for quick spatial scaling of optimized models 
in both hindcast and forecast mode (Figure 5). For example, the code 
required to partially reproduce a study by Basler (2016) relied on a 
mere 15 r commands (see run_model_comparison.r in the phenor man-
uscript github repository), while the models used are easily readable 
and well documented. Furthermore, adding model structures is easy 
compared to other frameworks which rely on either low level lan-
guages, are closed source or do not work cross- platform (Brown et al., 
2014; Chuine, Garcia Cortazar Atauri, Kramer, & Hänninen, 2013; 
Hänninen & Kramer, 2007). More so, to execute our complete case 
study, reasonable processing times were recorded (c.48 CPU hours on 
a recent desktop workstation) although relying on a slower scripting 
language. Computational loads for data generation and processing at a 

F I G U R E  5 Overview map comparing various spatial outputs of the TT and AGSI model optimized to the deciduous broadleaf and grassland 
PhenoCam data respectively. (a) phenor model output of the difference in estimates of spring phenology between the year 2100 and 2011 
for 1/4th degree NASA Earth Exchange (NEX) global gridded CMIP5 Mid- Resolution Institut Pierre Simon Laplace Climate Model 5 (IPSL- 
CM5A- MR) model runs, using the TT model parameterized on deciduous forest PhenoCam sites. Only pixels with more than 50% deciduous 
broadleaf or mixed forest cover per 1/4th degree pixel, using MODIS MCD12Q1 land cover data, are shown; (b) phenor model output of the 
difference in estimates of spring phenology between the year 2099 and 2011 for NEX CMIP5 IPSL- CM5A- MR model runs using the AGSI 
model parameterized on grassland PhenoCam sites. Only pixels with more than 50% grassland coverage per 1/4th degree pixel, using MODIS 
MCD12Q1 land cover data, are shown; (c) phenor model output for 11 Daymet gridded datasets (tiles) for the year 2011. TT, Thermal Time; 
AGSI, Accumulated Growing Season Index, CMIP5, Coupled Model Intercomparison Project 5
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global scale remained marginal. The case study demonstrates the ease 
with which we executed our model comparisons in phenor, corrobo-
rating previous studies and once more highlighting the limitations of 
current model structures in explaining year- to- year variability (Basler, 
2016; Clark et al., 2014; Fisher et al., 2007; Linkosalo et al., 2006). 
This result therefore underscores the need for tools such as phenor 
to facilitate easy and transparent model development and compari-
son. Furthermore, new visualization methods such as the arrow plot 
might help in this process. The arrow plot (Figure 2) suggests that the 
assessment of model skill through summarizing values such as the 
RMSE seem suboptimal, hiding structural differences in model perfor-
mance. The non- normal distribution of model errors within all models 
(p < .001) suggests as much.

4  | KNOWN LIMITATIONS

We acknowledge that previous efforts have been made to provide 
phenology model frameworks (Brown et al., 2014; Chuine et al., 
2013; Hänninen & Kramer, 2007). Yet, their use and interoperability 
and scaleability is limited due to platform restrictions or their closed 
source nature. We recognize that the models as currently presented 
are by no means an exhaustive list of all model structures found in 
literature. However, the phenor r package is open source and adding 
model structures is easy compared to other low level languages (e.g. 
C/Fortran) and is actively encouraged. We are aware that the phenor 
r package does not include all possible phenological climatological 
drivers or phenological calibration/validation data either, although 
we stress that access to four larger freely available phenological data 
sources is provided by the phenor r package. Similarly, other sources 
of climate data, such as the ERA- interim reanalysis data (Dee et al., 
2011), could be integrated as long as the described data structure is 
followed.

5  | CONCLUSION

Accurately representing vegetation phenology, a first- order control 
on ecosystem productivity, under future conditions is key in under-
standing feedback between the climate and the biosphere. Here, we 
demonstrated the advantages of the phenor r package and modelling 
framework, through a worked example, by quickly and easily com-
paring 20 spring phenology models and their model skill for three 
plant functional types. Our results corroborate previous analysis, 
showing little or no difference in predictive power between models, 
which suggest convenient tools for further analysis or novel model 
development are needed to capture current and future phenologi-
cal changes as well as their underlying physiological processes. We 
hope the phenor phenology modelling framework in r will allow for a 
better integration of observational and experimental data providing 
opportunities to better understand the environmental factors driving 
seasonality, and past and future responses of vegetation to climate 
change and variability.
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