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Abstract

Climate warming and drying is associated with increased wildfire disturbance and the

emergence of megafires in North American boreal forests. Changes to the fire regime

are expected to strongly increase combustion emissions of carbon (C) which could

alter regional C balance and positively feedback to climate warming. In order to accu-

rately estimate C emissions and thereby better predict future climate feedbacks,

there is a need to understand the major sources of heterogeneity that impact C emis-

sions at different scales. Here, we examined 211 field plots in boreal forests domi-

nated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest

Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We

assessed both aboveground and soil organic layer (SOL) combustion, with the goal of

determining the major drivers in total C emissions, as well as to develop a high spatial

resolution model to scale emissions in a relatively understudied region of the boreal

forest. On average, 3.35 kg C m�2 was combusted and almost 90% of this was from

SOL combustion. Our results indicate that black spruce stands located at landscape

positions with intermediate drainage contribute the most to C emissions. Indices

associated with fire weather and date of burn did not impact emissions, which we

attribute to the extreme fire weather over a short period of time. Using these results,

we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the

entire 2014 NWT fire complex, which offsets almost 50% of mean annual net

ecosystem production in terrestrial ecosystems of Canada. Our study also highlights

the need for fine-scale estimates of burned area that represent small water bodies

and regionally specific calibrations of combustion that account for spatial hetero-

geneity in order to accurately model emissions at the continental scale.
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1 | INTRODUCTION

As global environmental change intensifies, there is an increasing

need to predict ecological responses to these changes at scales that

are larger than the plot, landscape, or even ecoregion—hereafter

macroscales (Heffernan et al., 2014). One macroscale feedback

mechanism of increasing importance to the climate-carbon cycle is

wildfire in carbon-rich areas such as the boreal biome. Globally, the
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boreal forest stores approximately 40% of terrestrial carbon (C) and

has historically been considered a C sink (Bradshaw & Warkentin,

2015; Pan et al., 2011). However, recent climate warming and drying

has led to an intensification of large wildfires, particularly in the bor-

eal forests of northwestern North America (Kasischke et al., 2010).

Increased combustion associated with this changing fire regime could

shift this region of the boreal forest from a C sink to a C source

(Bond-Lamberty, Peckham, Ahl, & Gower, 2007), which would act as

a positive feedback to climate warming (Li, Lawrence, & Bond-Lamb-

erty, 2017; Randerson et al., 2006). Understanding the processes

that determine C emissions at different scales would indicate where

and when such changes from sink to source may occur, and enable

more refined estimates of C emissions, thereby improving climate

change forecasts.

Increases in area burned are largely attributed to an increased

frequency of fires that burn over 10,000 ha; termed megafires (Ste-

phens et al., 2014). It is generally expected that as area burned

increases so will total C emissions (Bond-Lamberty et al., 2007;

Turetsky et al., 2011). However, C emissions from boreal wildfires

are strongly impacted by extensive spatial heterogeneity in ecologi-

cal patterns and wildfire disturbance characteristics within individual

fires. Therefore, fine-scale measurements do not contain all of the

information needed to extrapolate to the total area burned and to

estimate global-scale feedbacks (Peters & Herrick, 2004). A macroe-

cological approach, that accounts for heterogeneities at one scale

leading to nonlinear dynamics and the emergence of unpredictable

patterns at other scales (Hamil, Huang, Fei, & Zhang, 2016; Heffer-

nan et al., 2014; Peters, Bestelmeyer, & Turner, 2007), is required to

estimate C emissions, determine the contribution of boreal wildfires

to the global C cycle, and evaluate feedbacks to future climate.

The large areas covered by megafires have made it challenging

to understand the major sources of heterogeneity in C emissions

and thus accurately predict C emissions at macroscales. Emissions

from wildfires are generally calculated as the product of mean fuel

consumption, C concentrations per unit area, and the total burned

area (Seiler & Crutzen, 1980). However, such direct extrapolations of

plot-scale estimates of emissions (e.g., Mack et al., 2011) are likely

to overestimate total emissions, due to biases of field measurements

excluding low severity patches, unburned patches, and hydrological

features (Hoy, Turetsky, & Kasischke, 2016; Veraverbeke, Rogers, &

Randerson, 2015). Furthermore, plot-scale estimates of emissions are

unlikely to be characteristic of macroscale emissions due to complex

ecological patterns and spatial heterogeneity of fire severity associ-

ated with fuels, fire weather, and topography within fire perimeters

(Falk, Miller, McKenzie, & Black, 2007; Peters et al., 2004; Turner,

2010). In particular, C emissions are impacted by both rapidly and

slowly changing factors. Rapid dynamics that affect emissions include

fire weather (Amiro, Stocks, Alexander, Flannigan, & Wotton, 2001;

Barrett, Kasischke, McGuire, Turetsky, & Kane, 2010; de Groot,

Pritchard, & Lynham, 2009) and seasonal changes in soil moisture

(Turetsky et al., 2011). Emissions are also affected by slowly chang-

ing factors such as vegetation (de Groot et al., 2009), stand age

(Brown & Johnstone, 2011; Hoy et al. 2016), and topographic

features (Turetsky et al., 2011). Spatial heterogeneity in fuel loads

and combustion can vary by roughly a factor of five at fine scales

(Boby, Schuur, Mack, Verbyla, & Johnstone, 2010; Rogers et al.,

2014) and are accordingly the largest source of uncertainty in emis-

sions models. The spatial resolution of predictive models has varied

from roughly 25 km in the case of a global model (van der Werf

et al., 2017) to a 500 m regional model for Alaska and northwest

Canada (Veraverbeke et al., 2017a). With increasing computing

power and access to high-resolution remote sensed imagery, there is

now an opportunity to provide emissions estimates at finer scales

(e.g., 30 m pixels from Landsat imagery). Fine-scale estimates have

the advantage of aligning better with the spatial resolution of ground

plots, and provide a more accurate accounting of landscape hetero-

geneity.

The average area burned in boreal regions of Alaska and western

Canada has substantially increased over recent decades (Gillett,

Weaver, Zwiers, & Flannigan, 2004; Kasischke & Turetsky, 2006),

and further increases by a factor of five are expected by the end of

the century (Balshi et al., 2009; Boulanger, Gauthier, & Burton,

2014). In 2014, boreal megafires in the Northwest Territories

(NWT), Canada burned a historically unprecedented 3.4 million hec-

tares, more than eight times greater than the annual mean over the

period of record (Canadian Interagency Forest Fire Center 2014).

These megafires present a unique opportunity to assess the degree

of spatial heterogeneity across a large fire complex, and whether the

relative importance of fire weather, stand characteristics, and plot

attributes on C emissions are different from past fire events, which

were considerably smaller in spatial scale. Using a macrosystem

approach we seek to identify the major sources of heterogeneity in

C emissions of megafires and develop tools to extrapolate the emis-

sions associated with such spatially extensive fire events.

Here, we develop a high spatial resolution model to scale emis-

sions from the NWT megafires. We assessed both above- and

below-ground C combustion in black spruce (Picea mariana) and jack

pine (Pinus banksiana)-dominated forest stands, by far the most com-

mon type of forest burned. Our study design, data analysis, and

extrapolation of emissions specifically account for spatial hetero-

geneity on the landscape by (i) randomly locating sites stratified by

land cover or prefire tree species and time since last burn, in addi-

tion to (ii) systematically sampling plots of differing moisture regime

within sites, (iii) using remote sensing imagery that aligns with the

spatial scale of ground plots, and (iv) using hierarchical linear mixed

effect models (Hamil et al., 2016). We expected that variables asso-

ciated with plot-level attributes, fire characteristics, and stand com-

position, or some combination thereof, would impact combustion. As

total C combustion (totalC) is not necessarily a complete metric of

fire severity, we also assessed variations in total C combusted rela-

tive to total prefire carbon (propC), and the proportion of soil carbon

combusted relative to total carbon combusted (propS). We hypothe-

sized that:

1. totalC would be greatest in landscape positions of intermediate

drainage, propC would decrease with increasing moisture, and
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propS would increase with increasing moisture. This is because

very dry sites have a shallow prefire soil organic layer (SOL) and

are therefore likely to be completely combusted, whereas moist

sites have a deep SOL, but the high moisture content is likely to

prevent deep burning.

2. totalC, propC, and propS would increase with prefire stand age,

as short fire return intervals do not allow sufficient time for the

accumulation of SOL and result in less biomass available for sev-

ere burning.

3. totalC, propC, and propS would increase with late season burning

and fire weather indices, as a result of the SOL drying out

throughout the season and burning occurring when active layers

have reached a maximum depth;

4. totalC, propC, and propS would increase with presence of black

spruce and decrease with the presence of jack pine as black

spruce stands have a thick, C-rich SOL available for combustion,

whereas the majority of C in jack pine stands is stored above-

ground in tree boles and is unavailable for combustion.

2 | MATERIALS AND METHODS

2.1 | Study area and site selection

This study took place near Yellowknife, Northwest Territories,

Canada (Figure 1), where mean annual temperature was �4.3°C and

mean annual precipitation was 290 mm from 1981 to 2010 (Envi-

ronment Canada, 2015). The study area covers portions of two eco-

zones, the Taiga Plains and Taiga Shield, which differ in their

geological history, soils development and parent materials (Ecosys-

tem Classification Group, 2008, 2009). The Taiga Plains lie in an area

of sedimentary geology while the Taiga Shield is dominated by

exposed granite bedrock. Black spruce forests dominate the fine-tex-

tured, glacio-lacustrine soils found in both ecozones, while jack pine

is dominant on the coarse, alluvial, and glacio-fluvial soils. Low-den-

sity black spruce and jack pine typically dominate the exposed bed-

rock characteristic of the Taiga Shield.

Between June and August of 2015, we conducted fieldwork in

seven spatially independent burn scars, four in the Taiga Plains eco-

zone and three in the Taiga Shield ecozone, which had burned

between June and August 2014 (Figure 1). See Supplementary

Methods for details on the selection procedure of random sampling

points. In the field, we located 3–12 random points (“A” plots) within

each conifer density stratum or leading tree species (black spruce or

jack pine) for each burn. We assessed moisture classes, based on

topography-controlled drainage and adjusted for soil texture and

presence of permafrost, for each random point on a six-point scale,

ranging from xeric to subhygric, using the method outlined by John-

stone, Hollingsworth, and Chapin (2008). We then found at least

one, but usually two, other points (“B” and “C” plots) that were of a

different moisture class and within 100–500 m of the random

point. We define a site as the combination of the random plot and

these additional plots. We sampled a total of 211 burned plots

nested within 78 randomly located sites. In June of 2016, we

conducted field work in three spatially independent areas of forest,

two in the Taiga Plains and one in the Taiga Shield (Figure 1), that

had no history of fire since records began in the NWT in 1965. See

Supplementary Methods for details on random selection procedure

for 36 unburned plots.

2.2 | Field methods

At each plot we recorded latitude, longitude, and elevation with a

GPS receiver, and slope and aspect with a clinometer and compass.

Each plot consisted of two 30 m parallel transects that were 2 m

apart. Transects ran due north.

Soil measurements were made along both transects within each

plot. In burned and unburned stands, we measured SOL depth every

6 m (10 points/plot). To assess soil C, we collected the top 15 cm of

the SOL profile in unburned plots or the entire residual SOL profile

in burned plots at five points per plot along one transect. An intact

sample of the SOL of approximately 5 cm 9 10 cm was collected

using a serrated knife and pruners. Dimensions of each SOL sample

were recorded in the field. Organic samples were immediately frozen

until they could be processed in the lab. In addition to the 10 SOL

depth measurements, we also measured SOL depth near the base of

ten trees per plot for burn depth calibrations. At these points, the

SOL depth was measured as close to the tree as possible. In associa-

tion with these points, we measured the depth from the top of the

green moss to the closest adventitious root on one to three adventi-

tious roots per tree in unburned stands, and the height from the

highest adventitious root height (ARH) to the top of the residual

SOL on one to three adventitious roots per tree in burned stands.

These measurements were used for burn depth calibrations (see Fig-

ure S1 and Walker et al., 2018a).

In each plot, we measured the diameter at breast height (dbh) at

the standard height of 1.3 m from the base, for all trees ≥1.3 m in
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height and the basal diameter of trees <1.3 m tall that were origi-

nally rooted within a 2 m 9 30 m belt transect. Fallen trees that

were killed by fire were included in this census. We also assessed

tree combustion, where each tree was ranked from 0 to 3; 0 = none,

alive and no biomass combusted; 1 = low, only needles/leaves con-

sumed; 2 = moderate, all foliage and majority of fine branches com-

busted; 3 = high, most of the aboveground canopy including foliage,

branches, and bark combusted. To estimate stand age, we collected

five basal tree discs in burned plots or five basal tree cores in

unburned plots from each of the dominant tree species, either black

spruce, jack pine, or both species.

2.3 | Laboratory methods

To assess soil bulk density and carbon (C) content in relation to depth,

we obtained 1,025 soil monoliths from 211 burned plots in the sum-

mer of 2015 and 180 soil monoliths from 36 unburned plots in the

summer of 2016. We processed (Figure S1) all monoliths from the 36

unburned plots and 350 monoliths from 134 burned plots. The subset

of burned plots was chosen to encompass the full moisture gradient

within all seven burns. In total, we analyzed 1,786 soil samples; 1,279

from burned sites and 507 from unburned sites. For subsequent analy-

ses we excluded organic samples in which the carbon content was less

than 20% as they likely contained mineral soil. This resulted in 507

samples from 137 monoliths collected in 36 unburned plots and 1,076

samples from 345 monoliths obtained from 134 burned plots.

Tree disks and cores were processed using standard den-

drochronology techniques (Cook & Kairiukstis, 1990) and tree rings

were counted as an estimate of time since last fire (see Walker

et al., 2018a for details).

2.4 | Statistical analysis

All data analyses were performed using R statistical software version

3.4.3 (R Core Development Team, 2017). To test whether our access

to sampling points introduced a bias in our field data, we used contin-

gency table analysis with a Chi-square test to assess if the distribution

of sampled plots (chosen in the field based on moisture regime) dif-

fered from the distribution across ecozones and moisture categories

of our original randomly located points. A similar analysis was used to

assess whether the distribution of sites among moisture categories

differed between ecozones.

Stem counts, dbh, measurements, and published allometric equa-

tions (Lambert, Ung, & Raulier, 2005) were used to calculate tree

density (number stems m�2), basal area (m2 ha�1), and aboveground

biomass (kg dry matter m�2) of the total tree, bark, main branches,

fine branches, and needles/leaves, for each tree species in each plot.

Total tree biomass combusted was calculated per tree from the

assigned combustion class and affected biomass components (fo-

liage, branches, and bark). We summed individual tree estimates and

divided by the sample area to estimate prefire biomass and biomass

combustion (kg dry matter m�2) per plot. We assumed a biomass C

content of 50%.

To calculate depth of burn in black spruce-dominated stands we

used the adventitious root method and calibrations described in

Walker et al. (2018a), in which burn depth is equivalent to the

height of adventitious roots (ARH) above the residual SOL plus an

ARH offset associated with SOL depth (Figure S1). Total depth of

prefire SOL was then reconstructed by adding the ARH and the

associated offset to the residual SOL depth. In jack pine-dominated

plots, where ARH measurements were not possible, we assessed

depth of SOL combustion by subtracting the residual SOL from the

unburned average SOL depth associated with each moisture cate-

gory (see Walker et al., 2018a).

To model soil carbon content as a function of depth we used soil

monoliths from unburned and burned plots. For each soil monolith

(n = 534), we calculated the cumulative sums of carbon content by

5 cm depth increments (n = 1,518) starting from the surface, which

was 0 cm in unburned plots, but was adjusted according to burn

depth in burned plots. We used monoliths from both burned and

unburned plots to ensure that the full range in SOL depths was cap-

tured. We fit linear mixed effects models with a hierarchical random

effects structure of soil monolith nested within plot, nested within

unburned area or burn scar, using the package “nlme” (Pinheiro et al.,

2017). The response variable was log transformed to ensure normal-

ity. The depth covariate was accordingly log transformed to con-

strain the functional response. We fit separate models for black

spruce (1,355 increments from 428 monoliths in 111 plots) and jack

pine (163 increments from 106 soil monoliths in 30 plots)-dominated

plots. The full models included covariates for depth, ecozone, and

moisture category, and their first order interactions. Model reduction

was completed through backward selection using likelihood ratio

tests of the full model against the reduced models. For the minimum

adequate model (Crawley, 2012) visual inspection of residual plots

were examined for homoscedasticity and normality. Marginal R2 (ac-

counting only for fixed effects) and conditional R2 values (accounting

for random and fixed effects) were calculated using the “r.squar-

edGLMM” function in the package “MuMIn” (Barton & Barton, 2012)

for this and all linear mixed effect models that follow.

We then used the models specific to each forest type to predict

the carbon content (kg C m�2) of both combusted (based on burn

depth) and residual SOL for 10 measurements per plot. To test the

accuracy of our models we compared the per monolith predicted

residual carbon pools with measured residual carbon pools with a

Student’s t test. Prefire SOL carbon pools were calculated by sum-

ming the residual and the combusted carbon pools, which were then

averaged per plot. For subsequent analysis we used the measured

residual SOL carbon pool from the 134 plots for which direct mea-

surements were made and the predicted SOL carbon pool from the

remaining 77 plots.

We calculated three measures of carbon combustion for each

plot (Table 1): (i) total carbon combusted (totalC) as the sum of

above and belowground C combustion, (ii) proportion of prefire C

combusted (propC) as totalC divided by the total prefire carbon, and

(iii) proportional of totalC attributed to the soil organic layer (propS)

as belowground C combustion divided by totalC. To assess which of
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our measured covariates were most closely related to totalC, propC,

and propS, we initially examined six plot attributes, seven prefire

stand composition variables, and six variables associated with fuel

and weather conditions on the day of burning (Tables S1 and S2). To

reduce collinearity, we derived a reduced set of covariates with no

significant pairwise correlations (Spearman’s p < .05) (Table 2). We

defined a set of candidate models representative of our hypotheses

regarding the factors affecting combustion (Table 2). Specifically, we

hypothesized that combustion might be most affected by plot-level

attributes, prefire stand composition, fire characteristics, or some

combination of these factors. We scaled and centered all continuous

covariates. The covariate for plot-level moisture category was

included as a six-level factor using treatment contrasts, with “xeric”

as the reference level. We log transformed total combustion to

ensure normality. For each indicator and each candidate model, we

fit a linear mixed effects model using the package “nlme” (Pinheiro

et al., 2017), with random effects for site nested within burn to

account for spatial dependencies. We calculated AICc (the sample

size corrected Akaike information criterion) for each candidate model

and ranked them by their Akaike weights using the R package

“AICcmodavg” (Mazerolle & Mazerolle, 2017). We examined residual

plots to test for heteroscedasticity and non-normality. We used

model-averaged estimates over all candidate models to reduce model

selection bias (Burnham & Anderson, 2002; Cade, 2015). We tested

for differences in effect-sizes among moisture categories using

Tukey–Kramer post hoc analysis for multiple comparisons in the R

package “lsmeans” (Lenth, 2016). All data for the above analysis are

available online (Walker et al., 2018b) and the R Code for the cur-

rent analyses is provided in Supplementary Material.

2.5 | Spatial modeling

In order to spatially extrapolate our estimates of total combustion,

we derived a similar model to that described above but using only

covariates obtainable from geospatial layers that covered the entire

spatial domain of interest. We initially considered 71 spatial layers

associated with topography, permafrost condition, fire severity, tree

cover, peatland cover, date of burn, fire weather, tree species bio-

mass and percent cover, and soil properties (Table S2). Values for

each plot were extracted using weighted averages of relevant pixels

covering our 2 9 30 m transects. We removed explanatory variables

that were significantly correlated with one another (Spearman’s

p < .05) within each predictor set. We then fit a multiple linear

regression model to determine how total combustion (log trans-

formed) was affected by the variables in each predictor set

(Table S2). We retained the variables that were significant (p < .05)

within each predictor set for inclusion in the final model. The final

model predicted log of total combustion as a function of topographic

wetness index, terrain ruggedness, differenced Normalized Burn

Ratio (dNBR), relative change in tree cover, percent black spruce,

TABLE 1 Summary of measured plot characteristics and estimated carbon pools and combustion for 211 burned plots

Variable Units Mean � SD Range

Black spruce density stems m�2 0.62 � 0.72 0.00–5.75

Black spruce basal area m2 ha�1 7.19 � 7.30 0.00–37.15

Jack pine density stems m�2 0.14 � 0.45 0.00–4.85

Jack pine basal area m2 ha�1 4.24 � 6.92 0.00–28.93

Black spruce proportion unitless 0.66 � 0.24 0–1

Prefire aboveground tree biomass kg dry matter m�2 3.10 � 2.64 0.004–18.14

Mean stand age years 103 � 45 19–232

Latitude radians 1.09 � 0.02 1.06–1.12

Moisture class unitless 3.24 � 1.76 1–6

Elevation m.a.s.l. 265.0 � 57.9 188.7–408.0

Slope radians 0.03 � 0.09 0–0.82

Aspect radians 3.12 � 1.73 0.00–6.16

Prefire organic layer depth cm 22.9 � 15.6 4.2–85.1

Burn depth cm 8.6 � 3.1 0.00–18.2

Prefire belowground carbon pool kg C m�2 11.0 � 11.4 0.4–75.2

Prefire aboveground carbon pool kg C m�2 1.5 � 1.3 1.8–9.1

Total prefire carbon pool (pre.totalC) kg C m�2 12.5 � 11.3 1.1–75.3

Belowground carbon combusted (bC) kg C m�2 3.0 � 1.9 0.3–9.1

Aboveground carbon combusted (aC) kg C m�2 0.4 � 0.3 0–1.8

Total carbon combusted totalC = aC + bC kg C m�2 3.4 � 2.0 0.3–9.3

Proportion of total prefire C combusted propC = totalC/pre.totalC unitless 0.36 � 0.22 0.04–0.92

Proportion of totalC from soil C combustion propS = bC/totalC unitless 0.87 � 0.12 0.30–1.00

Bolded variables are the three measures of carbon combustion we modeled.
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and percent sand in the top 15 cm of soil. Model reduction was

completed through backward stepwise selection using likelihood

ratio tests of the full model against the reduced models. We exam-

ined residual plots to test for heteroscedasticity and non-normality,

and conducted a 10-fold cross validation, repeated 100 times, to test

against overfitting. For prediction purposes, the model’s expected

values were back-transformed from a log to a natural scale assuming

a log-normal distribution (i.e., accounting for bias in the mean esti-

mate), resulting in a multiplicative nonlinear regression model with

similar structure to Veraverbeke et al. (2015).

We used this final model to estimate total C emissions at 30 m

resolution across all fires in the 2014 NWT fire complex. Burned

area was estimated based on past techniques using dNBR thresholds

but adopted for our 30 m imagery and grid (see Supplementary

Methods). Final model covariates were regridded to a common 30 m

grid and Canadian Albers Equal Area Conic projection (nearest neigh-

bor for datasets 30 m or finer and bilinear interpolation for data sets

coarser than 30 m), defined by 28 tiles within the ABoVE (Arctic

Boreal and Vulnerability Experiment) 30 m reference grid (Loboda,

Hoy, & Carroll, 2017). For consistency, our regression model was

rerun with these downscaled covariates. The regression model was

then applied to all pixels that were defined as burned and had valid

values for our final six covariates. To limit unreasonably high com-

bustion estimates resulting from our nonlinear model, we applied a

maximum cap on emissions, as in Rogers et al. (2014), of 1.2 times

the maximum combustion observed at our field sites (9.26 kg C m�2.

Note this only applied to 0.02% of pixels). To provide an estimate of

total emissions from the 2014 NWT complex, we scaled our esti-

mate of total emissions to the complex considering the fraction of

burned area not covered by our model (4%), assuming mean com-

bustion in the missing burned pixels. To quantitate uncertainty, we

adopted a Monte Carlo framework similar to Rogers et al. (2014)

and Veraverbeke et al. (2015) that generated (i) mean pixel-level

uncertainty, (ii) uncertainty in total emissions, and (iii) uncertainty in

mean combustion (see Supplementary Methods for details). Uncer-

tainty was assumed to arise from three major sources: measurement

errors in aboveground and belowground combustion, and errors

associated with landscape scaling arising from our geospatial layers

and imperfect model fits (i.e., prediction uncertainty). All data for the

spatial analysis are available online (Walker et al., 2018b) and the R

Code is provided in Supplementary Material.

3 | RESULTS

3.1 | Stand characteristics

We assessed both aboveground and SOL carbon combustion in 211

burned forest plots, capturing a broad gradient in environmental

characteristics and prefire stand composition (Table 1). Most plots

were black spruce dominated (171 of 211), but many of these plots

also had some jack pine trees present. Similarly, the 40 jack pine-

dominated plots often had some black spruce trees present. We

occasionally encountered other tree species such as white spruce

(Picea glauca), balsam poplar (Populus balsamifera), paper birch (Betula

papyrifera), trembling aspen (Populus tremuloides), and larch (Larix lar-

icina), but these were always a small component of stand composi-

tion (maximum = 20% of stems).

The distribution of randomly located burned plots (A plots) did

not differ from the distribution of the field-identified (B and C plots)

across ecozones or moisture categories (Χ2 = 11.578, df = 11,

p = .396). Of the 211 burned plots we examined, 128 were located

in the Taiga Plains and 83 were in the Taiga Shield ecozone. The dis-

tribution of these plots among moisture categories was significantly

different between ecozones (Χ2 = 13.196, df = 5, p = .02). On the

Taiga Plains, plots were relatively evenly distributed among most

moisture categories (17–31 plots in each category), aside from the

subhygric category which had only eight plots. On the Taiga Shield,

most plots were either classified as xeric (23 plots) or subhygric (20

plots), with the remainder being relatively evenly distributed (6–12

plots in each category).

3.2 | Pre- and postfire carbon pools and
combustion

The final minimum adequate model of the cumulative sum of SOL

carbon content (kg C m�2) for black spruce plots included fixed

effects of depth, ecozone, moisture, and all first-order interactions

between these variables (marginal R2 = .71, conditional R2 = .92;

Table S3). The minimum adequate model for jack pine plots included

fixed effects of depth and moisture (marginal R2 = .56, conditional

R2 = .66; Table S4). Using these models, the predicted residual SOL

carbon pools were slightly higher than the measured pools (means of

TABLE 2 Covariates included in each of the candidate models to
predict total carbon combusted (totalC), total carbon combusted
relative to total prefire carbon (propC), and the proportion of soil
carbon combusted relative to total carbon combusted (propS)

Model Variables

Null Model None

M1: Plot-level attributes Moisture class

Elevation

Stand age

Latitude

M2: Prefire Stand Composition Black spruce proportion

Total above ground biomass

M3: Fire Attributes Date of burn

Fine Fuel Moisture Code

Drought Moisture Code

M4: Plot-level attributes + Prefire

Stand Composition

M1 + M2

M5: Plot-level

attributes + Fire Attributes

M1 + M3

M6: Prefire Stand

Composition + Fire Attributes

M2 + M3

Full Model M1 + M2 + M3

6 | WALKER ET AL.



6.61 vs. 6.07 kg C m�2, respectively), but were not significantly dif-

ferent (Student’s t test; t = 0.936, df = 830.95, p = .349).

The mean prefire carbon pool across all sites was

13.81 kg C m�2 with a range spanning two orders of magnitude

from 0.5 to 86.67 kg C m�2. The vast majority of this pool was

from the SOL, with a mean of 11.95 kg C m�2 and a range of 0.31

to 86.52 kg C m�2 (Table 1). Mean total combustion across all sites

was 3.35 kg C m�2 and ranged from 0.29 to 9.26 kg C m�2

(Table 1). Mean total combustion in black spruce-dominated stands

was 3.90 kg C m�2 and ranged from 0.99 to 9.26 kg C m�2. In jack

pine-dominated stands, mean total carbon combustion was

0.70 kg C m�2 and ranged from 0.29 to 1.49 kg C m�2. Of the

mean total combustion, 90% or 3.00 kg C m�2 was attributed to

SOL combustion.

Model selection indicated that variables associated with fuel

conditions and weather at the time of fire were not important pre-

dictors of all three indicators of combustion. Of the tested

hypotheses, the best model predicting totalC, propC, and propS

was always M4, which included covariates for plot attributes and

prefire stand composition (Table 2). The full model was equally as

likely for predicting propS (Δ AICc <2; Table 3) and in all cases the

only models with any probability (wi > 0) were M4 and the full

model (Table 3). Moisture category was an important predictor of

all three response variables, while latitude (which covaries with eco-

zone), elevation, and covariates associated with fire were not

important (Table 4). totalC and propC also increased with the pro-

portion of black spruce trees in the prefire stand and stand age

(Table 4; Figures 2 and 3), and propC and propS decreased in asso-

ciation with increasing prefire tree biomass (Table 4; Figures 3 and

4).

3.3 | Spatial modeling

The final model used for spatial extrapolation of total combustion

performed adequately, although not as well as our site-level models

(adjusted R2 = .23, overall R2 = .30, and 10-fold cross validation

R2 = .26 for the logarithm of total combustion). This was despite

relatively similar types of predictors (e.g., topographic wetness, ter-

rain ruggedness, prefire species, and soil properties) as well as

remotely sensed measures of fire severity (dNBR and relative

change in tree cover). Nonetheless, this model resulted in substan-

tial variability within and across fire perimeters (Figure 5). Mean

combustion across all 2014 NWT fire pixels was 3.31 kg C m�2,

with a standard deviation of 1.14 kg C m�2, and ranged from 0.59

to 11.12 kg C m�2. Overall, the distribution of total combustion

from the spatial model was similar to that measured at field plots

(Table 1).

Our criteria for identifying burned pixels implied a total burned

area of 2.85 Mha, substantially less than the total area of

3.57 Mha within official fire perimeters. The reduction in burned

area resulted from accounting for small water bodies (reduction of

0.37 Mha) and applying our dNBR threshold identifying unburned

pixels (reduction of 0.35 Mha or 11% of land area within fire T
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perimeters). Total emissions over all fire perimeters were estimated

at 94.3 Tg C; 90.7 Tg C directly from the model and an added 3.5

Tg C when scaled by our estimate of 0.11 Mha burned area not cap-

tured due to missing satellite imagery. Our Monte Carlo simulations

resulted in a mean pixel-level uncertainty of 2.2 kg C m�2, with the

largest contribution from prediction uncertainty in our model fits.

Consistent with previous work (Rogers et al., 2014), these pixel-level

prediction uncertainties tended to average out across the landscape,

such that uncertainty in total domain-wide emissions was 7.9 Tg C,

or 0.30 kg C m�2 for mean domain-wide combustion.

4 | DISCUSSION

The combustion estimates we present in this study indicate that

total C combustion, the proportion of prefire C combusted, and the

proportion attributed to the SOL were affected by slowly changing

factors such as moisture class and the relative abundance of black

spruce in the prefire stand, but not rapid dynamics associated with

fire weather or date of burn. Our estimates of combustion suggest

that black spruce stands located at landscape positions with interme-

diate drainage contribute the greatest to C emissions relative to

other stands types and/or landscape positions. These variations in

combustion associated with slowly changing factors elucidate the

importance of using a macroscale approach to account for fine-scale

heterogeneities in extrapolating C combustion to a larger spatial

scale. Using these results, we estimated a total of 94.3 � 7.9 Tg C

emitted from 2.85 Mha of burned area across the entire 2014 NWT

fire complex. These C emissions offset almost 50% of mean annual

NEP in terrestrial ecosystems of Canada (197 Tg C year�1 over the

period 1990–2012; Chen, Hayes, & McGuire, 2017) and over ten

times the mean annual NEP of boreal forest ecosystems of Alaska

(8.3 Tg C year�1 over the period 1950–2009; McGuire et al., 2018).

4.1 | Factors impacting C emissions

Our combustion metrics (totalC, propC, and propS) were all affected

by slow changing factors and indicate that the greatest C combus-

tion occurred in mature black spruce forests at intermediately

drained landscape positions. As the vast majority (almost 90%) of

total C combustion is from the SOL, this suggests that SOL available

for combustion is largely limited by soil moisture, with near complete

combustion at the driest landscape positions, to relatively low pro-

portional combustion and the greatest proportion of combustion

attributed to the SOL at the wettest areas on the landscape. These

results support the hypothesized relationship that moisture and SOL

depth control the potential for severe burning through smoldering

combustion of the SOL and that the ecological effects of severe

burning are likely to be greatest at sites of intermediate drainage

(Johnstone & Chapin, 2006; Kane, Kasischke, Valentine, Turetsky, &

McGuire, 2007).

Combustion associated with landscape positions is also con-

founded by prefire tree species combustion, where positions of

intermediate drainage are often a mixture of jack pine and black

spruce trees in this region. Accordingly, the greatest range in propC

and propS occurred at the driest end of the gradient, which is likely

due to the inclusion of jack pine-dominated plots, where a large por-

tion of prefire C is stored aboveground in tree boles and is

TABLE 4 Unbiased model-averaged parameter estimates for the nine factors considered in predicting total carbon combusted (totalC), total
carbon combusted relative to total prefire carbon (propC), and the proportion of soil carbon combusted relative to total carbon combusted
(propS)

Variables
totalC propC propS

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Intercept (Moisture class: Xeric) 0.57 0.41 to 0.72 0.47 0.42 to 0.52 0.81 0.78 to 0.84

Latitude (radians) 0.04 �0.05 to 0.12 0.03 0 to 0.06 0.01 0 to 0.02

Elevation (m.a.s.l.) �0.02 �0.1 to 0.05 0.01 �0.02 to 0.03 0.02 �0.01 to 0.05

Stand age (years) 0.13 0.06 to 0.20 0.03 0.01 to 0.05 0.01 0 to 0.02

Black spruce proportion 0.34 0.25 to 0.43 0.07 0.05 to 0.10 0 �0.01 to 0.02

Total above ground biomass (kg dry matter m�2) �0.02 �0.10 to 0.06 �0.08 �0.08 to �0.03 �0.08 �0.09 to �0.06

Date of Burn �0.01 �0.06 to 0.04 0 �0.01 to 0.01 �0.01 �0.02 to 0.01

Fine Fuel Moisture Code 0 �0.03 to 0.04 0 �0.01 to 0.02 0 �0.01 to 0.02

Drought Moisture Code �0.01 �0.06 to 0.04 0 �0.01 to 0.01 �0.01 �0.02 to 0.01

Moisture class

Subxeric 0.23 0.01 to 0.45 0.05 �0.02 to 0.13 0.02 �0.02 to 0.06

Mesic–Subxeric 0.60 0.37 to 0.83 0 �0.08 to 0.07 0.09 0.05 to 0.13

Mesic 0.71 0.47 to 0.95 �0.10 �0.18 to �0.03 0.09 0.05 to 0.13

Mesic–Subhygric 0.82 0.57 to 1.07 �0.26 �0.34 to �0.18 0.09 0.05 to 0.14

Subhygric 0.28 0.02 to 0.54 �0.40 �0.48 to �0.32 0.06 0.01 to 0.10

Weights for model averaging are presented in Table 3. For each parameter the averaged model estimate (Estimate) and the 95% confidence intervals

(CI) are provided. Bold represent important variables based on CI not including zero.
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unavailable for combustion. de Groot et al. (2009) also reported dif-

ferences in emissions between jack pine and black spruce forests in

this region, due to lower prefire SOL depths found in jack pine for-

ests. The importance of prefire stand composition is also apparent

by the decrease in both propC and propS in relation to prefire tree

biomass, where increasing prefire tree biomass was generally an indi-

cation of jack pine presence.

Stand age in black spruce forests has also been shown to impact

combustion and the proportion of the SOL that is combusted, with

shorter fire return intervals resulting in lower postfire soil carbon

stocks compared to a longer fire return interval (Brown & Johnstone,

2011; Hoy et al., 2016). In agreement, we found that as stand age

increased, totalC and propC increased, but propS was not affected.

As total prefire C, prefire SOL depth, and burn depth were all posi-

tively related to stand age and total C emissions (data not shown),

this suggests that young stands, although contributing a relatively

small amount to total C emissions, will have very little C remaining

postfire and thus are more vulnerable to long-term changes in

ecosystem C storage.

The Canadian Fire Weather Index (FWI) system (Stocks et al.,

1998) has successfully been used to predict carbon emission in var-

ious fuel types throughout the boreal forest (Amiro et al., 2001;

Barrett et al., 2010; de Groot et al., 2009), and date of burn has

been shown to be one of the most important predictors of emis-

sion in black spruce forests in interior Alaska (Turetsky et al., 2011;

Veraverbeke et al., 2015). We had, therefore, expected to see

increased SOL combustion associated with late season burning, par-

ticularly for areas with deep organic layers, which is thought to be

a result of the SOL drying out throughout the season and burning

occurring when active layers have reached a maximum depth (Kasis-

chke & Johnstone, 2005; Turetsky et al., 2011). The observed lack

of relationship between combustion and date of burn in this study

might therefore be due to the inclusion of jack pine plots, which

have relatively little prefire SOL and no permafrost, and therefore

would not dry out as much throughout the summer. However, we

completed the same analyses examining black spruce and jack pine

plots separately (data not shown) and in neither case was fire

weather or date of burn important. Landscape position could also

confound the relationship between combustion and date of burn.

For example, mature black spruce forests in lowland positions

within Alaska were unaffected by season of burn (Kane et al.,

2007; Turetsky et al., 2011). However, we found no relationships

between combustion and date of burn regardless of moisture classi-

fication (data not shown).

The most likely reason for not observing a relationship

between combustion and date of burn or any FWIs is that all

seven of the fires we examined burned within a relatively short

period of time (July 2 to August 13), within one extreme fire sea-

son (2014), and within relatively close spatial proximity compared

to past studies. Similarly, the lack of relationship between burn

severity metrics and FWIs in the 2014 NWT fires was attributed

(a)

(b)

(c)

F IGURE 2 Total carbon combustion (totalC) as a function of (a)
moisture category, (b) stand age, and (c) the proportion of black
spruce stems relative to all stems in the plot. In (a) violin plots depict
the data distribution, points and error bars represent the mean and
standard error, and letters represent significant differences (p < .05)
between moisture classes based on Tukey–Kramer post hoc test of
multiple comparisons. Black lines in (b) and (c) represent simple
linear regressions between the two variables with shading over the
95% confidence interval. See Table 4 for parameter estimates from
fitted models and Figure S2 for plots of each model fitted covariate.
See Figure S5 for plots of above and belowground C combusted as
a function of age and black spruce proportion
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to the very severe fire weather of 2014 resulting in low variability

in FWIs (Whitman et al., 2018). In contrast, studies that included

fires spanning a wider range in space and time conclude that day

of burn (Turetsky et al., 2011; Veraverbeke et al., 2015) and FWIs

(Amiro et al., 2001; Barrett et al., 2010; de Groot et al., 2009) are

important predictors of emissions. Our assessment that C emis-

sions were not affected by date of burn or FWIs with the 2014

NWT megafires suggests that variability in fire conditions may be

confounded with spatial and temporal variability in other finer-scale

or slow-moving factors.

4.2 | Comparison to other boreal wildfire emission
estimates

Our mean combustion estimate of 3.35 kg C m�2, which takes into

account both black spruce and jack pine forest stands, is similar to

other field-based estimates throughout the boreal forest in Alaska,

but much higher than previous estimates in Canadian boreal forests

(see Table 3 in Rogers et al., 2014). In jack pine-dominated stands,

we found that mean total carbon combustion was 0.70 and

0.48 kg C m�2 was attributed to SOL combustion. Although field-

based estimates of wildfire combustion in jack pine-dominated for-

ests are rare, our results are within the range reported from experi-

mental burns in Canadian jack pine forests of 0.5 kg C m�2

(0.4 kg C m�2 from soil) (Stocks et al., 1998) and 1.7 kg C m�2 from

soil (de Groot et al., 2009). In black spruce-dominated plots, we

found that mean carbon combustion was 3.88 and 3.51 kg C m�2

was attributed to soil organic layer burning. These results are within

the range of combustion estimates reported for black spruce forest

in interior of Alaska of 4.3 kg C m�2 (3.4 kg C m�2 from soil) (Kasis-

chke et al., 2000) and 1.6 kg C m�2 (1.2 kg C m�2 from soil) (Neff,

Harden, & Gleixner, 2005).

As combustion can vary significantly among fire scars and

between years, we compared our combustion estimates to a simi-

larly extreme fire year in 2004 in interior Alaska (Boby et al.,

2010), which burned 2.4 million ha. Upon comparison, we found

smaller burn depths yet greater combustion in the 2014 NWT

fires. In our study, mean burn depth in black spruce-dominated

stands was 9.4 cm (Walker et al., 2018a). In interior Alaska, a

mean burn depth of 15.4 cm and combustion of 3.3, 2.9 kg C m�2

from soil, was reported (Boby et al., 2010). These differences are

likely due to regional differences in surface bulk density. Samples

from Alaska indicated a surface bulk density (green and brown

moss) of 0.03 g cm�3 and bulk density of the fibric layer (approxi-

mate depth of 5 to 15 cm) was 0.05 g cm�3 (Boby et al., 2010).

Although we did not divide our SOL samples into horizons, we

found that bulk density of the top 5 cm was 0.07 g cm�3 and

from 5 to 15 cm was 0.12 g cm�3. These regional differences in

bulk density, associated with soil development and the underlying

parent material, explains the discrepancy between burn depth and

combustion estimates between our study and previous studies

from other regions in similarly extreme fire years.

(a) (b)

(c) (d)

F IGURE 3 Proportion of total prefire
carbon (propC) combusted as a function of
(a) moisture category, (b) age, (c) the
proportion of black spruce stems relative
to all stems in the plot, and (d) prefire tree
biomass. In (a) violin plots depict the data
distribution, points and error bars
represent the mean and standard error,
and letters represent significant differences
(p < .05) between moisture classes based
on Tukey–Kramer post hoc test of multiple
comparisons. Black lines in (b), (c), and (d)
represent simple linear regressions
between the two variables with shading
over the 95% confidence interval. See
Table 4 for parameter estimates and
Figure S3 for plots of each model fitted
covariate. See Figure S6 for plots of
aboveground biomass prefire and
aboveground biomass combusted as a
function of black spruce proportion
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4.3 | Spatial modeling

The variance explained by our spatial model (overall R2 = .30 and

adjusted R2 = .23 for the logarithm of total combustion) was compa-

rable but slightly lower than previous efforts in Alaska. Veraverbeke

et al. (2015) used a similar regression model trained on 126 black

spruce plots in interior Alaska that spanned 21 fire complexes and

five fire years, with an adjusted R2 of .29 for belowground consump-

tion and 0.53 for aboveground. Nevertheless, our model resulted in

a median residual of 1.39 kg C m�2 for total combustion, which is

similar to the sum of Veraverbeke et al. (2015)’s median residuals of

1.18 and 0.12 kg C m�2 for belowground and aboveground combus-

tion, respectively. We hypothesize the slightly lower performance in

our model was due to several factors: (i) as explained above, we

sampled plots that spanned a narrower range in space and time, and

(ii) in contrast to the marked topography of interior Alaska, small

changes in elevation and landscape position in the NWT generate

significant differences in site moisture, species, and prefire SOL lay-

ers. It may, therefore, be considerably more difficult for geospatial

layers, such as DEM-derived topographic water indices, to capture

these gradients. Moreover, our study design of three plots in close

proximity with distinct moisture categories (i.e., one site) may have

presented additional challenges for spatial modeling using geospatial

layers with varying resolutions (Tables S2). Although we did not find

FWIs to provide much predictive power, we note that our model

performance is similar to de Groot et al. (2009) for soil consumption

in wildfires (R2 ≤ .25), who built models based on FWIs and fires

from multiple provinces and fire years. Finally, although machine

learning has generated markedly higher R2 values in Alaska (Barrett,

McGuire, Hoy, & Kasischke, 2011; Barrett et al., 2010), this modeling

technique has been shown to overfit when using only roughly 100–

200 observations, and is therefore less suited for extrapolation (Ver-

averbeke et al., 2015).

Our estimated burned area for the 2014 NWT fires (2.85 Mha)

was less than several previous estimates using coarser-scale MODIS

imagery, including a similar regional approach (3.41 Mha, Veraver-

beke et al., 2017b) and the Global Fire Emissions Database (GFED,

3.11 Mha, van der Werf et al., 2017). Our estimate is corroborated

by Canada’s National Burned Area Composite (NBAC, de Groot

et al., 2007), which reported 2.81 Mha of burned area in 2014

NWT fires. NBAC employs a multisensor approach to map most

fires since 2004 at a relatively high level of detail. We attribute

the differences to spatial scaling properties associated with small

water bodies in the NWT, many of which are smaller than a

500 m pixel (see example in Figure 5). As these inland water

bodies are extensive across much of the region (Carroll, Wooten,

DiMiceli, Sohlberg, & Kelly, 2016; Feng, Sexton, Channan, & Town-

shend, 2016), especially the Shield ecozone, we suggest burned

area estimates derived from moderate to coarse-scale imagery

should be adjusted for the inclusion of water bodies. In addition to

neglecting small water bodies, the Provincial/National fire perime-

ters include many unburned areas within fire scars, resulting in a

high estimate of total burned area (3.57 Mha). Users should be

aware of these issues when using the Canadian (and Alaskan)

National Fire Databases to analyze burned area dynamics in North

America’s boreal forests.

Uncertainties in burned area influence estimates of total C emis-

sions. For example, Veraverbeke et al. (2017b) estimated that the

2014 NWT fires emitted 164 � 32 Tg C. This is 74% higher than

our estimate (94.3 � 7.9 Tg C), a result of both higher burned area

and mean combustion (4.81 � 0.94 kg C m�2 vs. our estimate of

3.31 � 0.30 kg C m�2). Regarding the latter, it should be noted that

Veraverbeke et al. (2017b) trained their model on black spruce plots

in Alaska. Our study, therefore, adds to the argument that the

(a)

(b)

F IGURE 4 Proportion of carbon combustion attributed to the
soil organic layer (propS) as a function of (a) moisture category, and
(b) prefire tree biomass. In (a) violin plots depict the data
distribution, points and error bars represent the mean and standard
error, and letters represent significant differences (p < .05) between
moisture classes based on Tukey–Kramer post hoc test of multiple
comparisons. Black line in (b) represents a simple linear regression
between the two variables with shading over the 95% confidence
interval. See Table 4 for parameter estimates and Figure S4 for plots
of each model fitted covariate

WALKER ET AL. | 11



relationships between geospatial variables and ecosystem properties

that influence combustion differ significantly between regions in the

boreal forest, and can be accounted for by incorporating representa-

tive field observations. We also note that despite estimating slightly

more burned area, the GFED model estimated a similar amount of

total C emissions from the 2014 NWT fires (86.8 Tg C) due to

slightly lower mean combustion (2.79 kg C m�2).

A caveat with these comparisons is that our pixel-level uncer-

tainty was high (2.2 kg C m�2 or 66% of the mean). This was almost

entirely due to prediction error in our model fits. Because site mois-

ture and prefire tree species were the most important site-level pre-

dictors, we suggest that improved spatial layers related to these

properties would significantly improve regional models of combus-

tion, both in the NWT and throughout the boreal biome. Nonethe-

less, the distribution of domain-wide combustion values from our

spatial model was similar to that from field observations, albeit with

smaller variability. Uncertainties in estimated total emissions (7.9 Tg

C) and mean domain-wide combustion (0.30 kg C m�2) were also

considerably smaller than uncertainty at the pixel level. This supports

the use of our statistical model in the region, understanding that

combustion estimates at the landscape scale will be more robust

than at any one particular pixel or site. It also speaks to the repre-

sentativeness of our field sampling. Overall, our results provide sup-

port for developing 30 m fire C emissions estimates across large

domains in the boreal forest by integrating representative field

observations. Presumably, integrating sites from a wider array of

regions, environmental conditions, and fire years can improve these

models.

4.4 | Implications

In response to climate change the size, severity, and frequency of

boreal forest fires has been increasing, a trend that is expected to

continue. Such changes have the potential to alter the net ecosys-

tem C balance (Harden et al., 2000), catalyze shifts in postfire suc-

cessional trajectories (Johnstone & Chapin, 2006; Johnstone,

110°W

110°W

115°W

115°W

120°W

120°W

64°N
64°N

62°N
62°N

60°N
60°N

110°W

110°W

115°W

115°W

120°W

120°W

64°N
64°N

62°N
62°N

60°N
60°N

Combustion (kg C/m2)

0.5 42 6

Combustion
uncertainty (kg C/m2)

0.5 42 6

Combustion (kg C/m2)

0.5 42 6

km

0 5 10

(a) (b)

(c) (d)
Combustion

uncertainty (kg C/m2)

0.5 42 6

km

0 5 10

F IGURE 5 Maps of the 2014 NWT fire complex showing (a) estimated total combustion, (b) uncertainty in total combustion, and details of
landscape heterogeneity in (c) combustion and (d) uncertainty within one of the major fire scars. The maps are focused on the major fire
perimeters, although our spatial model includes some perimeters not shown (5% of total burned area). The extent of panels (c) and (d) are
shown as red boxes in panels (a) and (b)
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Hollingsworth, Chapin, & Mack, 2010), promote permafrost degrada-

tion (Nossov, Jorgenson, Kielland, & Kanevskiy, 2013; Shur & Jor-

genson, 2007), change soil moisture regimes (Schuur et al., 2008),

and decrease soil microbial biomass and respiration (Holden, Gutier-

rez, & Treseder, 2013). The unprecedentedly large area that burned

in the NWT in 2014 may become more common as the climate con-

tinues to warm and dry. Using a macroecological approach of ran-

domly locating sites, systematically sampling plots of different

moisture classes, and analyzing data with hierarchical linear mixed

models to account for fine-scale heterogeneities, we identified the

major sources of variation in C emissions and found that black

spruce forests in landscape positions of intermediate drainage are

most vulnerable to changes in C in both the Taiga Plains and Taiga

Shield ecozones. Furthermore, as fire frequency increases and imma-

ture stands burn, the total C storage in both aboveground and

belowground biomass will likely decrease. Increased combustion

associated with an intensifying fire regime could shift boreal ecosys-

tems from net accumulation of C from the atmosphere over multiple

fire cycles, to a net loss. In order for this shift to occur, fires would

have to release old carbon that escaped combustion in one or more

previous fires. Future research which examines the relationship

between burn depth, combustion, and the release of old C could

provide insight into whether or not this shift has or could occur in

boreal forest ecosystems after an extreme fire year. Our results

highlight the need for regionally specific calibrations that account for

spatial heterogeneity in order to accurately model emissions at a

continental scale. Our models and spatial extrapolation should also

allow future research to model emissions over larger temporal and

spatial scales, including the under-represented areas of the Taiga

Plains and Taiga Shield. Accurately estimating C emissions from fires

is critical for assessing the implications of changes in the fire regime

on successional trajectories, permafrost dynamics, carbon stocks, and

their associated feedbacks to longer term C storage and climate.
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