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Abstract The ability to forecast ecological carbon cycling is imperative to land management in a world
where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux
forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the
relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus
pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may
cause statistically detectable differences in those variables. We developed an online forecasting workflow
(Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration.
EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We
used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to
constrain the parameters in the Terrestrial EcosystemModel, forecast carbon cycle responses to elevated CO2

and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results
showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that
the stochasticity of future external forcing contributed more to the uncertainty of forecasting future
dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily
contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in
forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover
pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has
identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon
cycling forecasts in the future.

1. Introduction

Forecasting how increasing atmospheric CO2 and temperature will affect ecosystems in the future is a central
topic of global change ecology. An increasing number of climate change manipulative experiments have
been initiated to study how ecosystems response to rising CO2 and/or increasing temperature (Hanson
et al., 2016; Luo et al., 2001; Norby et al., 2005; Roy et al., 2016). The knowledge gained from these experi-
ments must be integrated into models to fill the gaps in understanding ecological processes under future
climate. In the past, many modeling exercises have been widely used to predict responses of ecosystems
to elevated atmospheric CO2 and global warming (Luo & Reynolds, 1999; Parton et al., 2007). However, large
uncertainties in the model predictions hindered our predictive understanding of land ecosystem responses
to global change (Cramer et al., 2001; De Kauwe et al., 2014; Sitch et al., 2008). Forecasting ecosystem
responses to climate change from a model using a particular set of parameters driven by a certain trajectory
of external forcing is uninformative without fully specified uncertainties, because model outputs will
differ with minor changes in parameters or external forcings (Dietze, 2017). Few modeling studies have
incorporated interactive model-data integration to produce near-time forecasts, especially for ongoing
manipulative experiments. However, such integration is vital to the improvement and advancement of
carbon cycle forecasting.

The uncertainty of carbon cycle model results stems from three fundamental components upon which all
models rely: model structure, parameterization, and external forcings (Luo et al., 2016). Terrestrial carbon
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cycle models simplify complex physical and biological processes. Different strategies to incorporate underre-
presented processes resulting from simplification could cause model structure uncertainty (Smith et al., 2013;
William et al., 2015). Manipulative ecosystem-scale experiments, by investigating ecosystem responses to
novel conditions, can provide insights into underrepresented processes. Unfortunately, the addition of more
detailed processes to models leads to an increase in forecasting uncertainty because of the increase in the
numbers of parameters and equifinality in data assimilation, which can be difficult to constrain (De Kauwe
et al., 2017; Luo et al., 2009; Luo, Keenan, & Smith, 2015).

While data assimilation that feeds empirical data into terrestrial carbon models can improve our understand-
ing of parameter uncertainties (Bloom & Williams, 2015; Clark et al., 2001; Dietze, 2014; Hararuk & Luo, 2014;
Keenan, Davidson, Moffat, et al., 2012), relative contributions of forcing uncertainty in carbon cycle forecast-
ing are less studied. On one hand, external forcing variables such as temperature, precipitation, and light
regulate various aspects of carbon cycle processes (e.g., plant photosynthesis, water use, and soil carbon
decomposition) and therefore influence ecosystem carbon pools (Becknell et al., 2015; Medvigy et al.,
2010; Seddon et al., 2016). On the other hand, parameters describing the functional properties of ecosystems
determine how ecosystems respond to external forcings. A challenge in precisely predicting the future state
of an ecosystem is partly due to the difficulty in constraining parameters of complex models and the low pre-
dictability of future trajectories of forcing variables. Some studies have used forcing variables from various
climate components of general circulation models to drive a specific land model at the global scale
(Ahlström et al., 2012, 2013; Berthelot et al., 2005). However, these studies have failed to consider parameter
uncertainty. It is clear that different data sets have information to constrain different subset of parameters.
For example, eddy flux data can only constrain a few flux-based parameters and need ancillary pool-based
data to constrain parameters such as plant carbon allocation and turnover rates (Du et al., 2015; Keenan,
Davidson, Munger, et al., 2012; Zhang et al., 2010). Conversely, it is unclear to what extent adding the varia-
tion of future forcing trajectories to a constrained model would increase forecasting uncertainty and what
response variables are most affected by forcing uncertainty.

Here we apply themodel-data fusion approach to a climate changemanipulative experiment, the Spruce and
Peatland Responses Under Changing Experiments (SPRUCE; Hanson et al., 2016), to investigate the relative
contribution of forcing and parameter uncertainties in the forecasting of terrestrial carbon cycles. The
decade-long SPRUCE experiment manipulates both deep soil and air temperature to produce whole ecosys-
tem warming treatments. Atmospheric CO2 is also elevated in half of the manipulated plots to assess
ecosystem-level biological responses to atmospheric changes that may realistically coincide with warming
in the future. Data assimilation (section 2.2) is used to estimate the posterior distribution of model parameters
based on pretreatment data sets (2011–2014) at SPRUCE. Parameter uncertainty was then analyzed by ran-
domly choosing sets of parameters from the posterior distributions. Forcing uncertainty was represented
by ensemble trajectories of a 10 year (2015–2024) stochastic weather generator (section 2.3). The decade-
long timescale was chosen to match planned experimental period in SPRUCE, which is also a reasonable
timescale to test changes of pool-based variables in response to climate change treatments. Using the
ensemble of parameters and forcings, we ran many simulations over the range of 2015–2024 for uncertainty
analysis under ambient conditions (section 2.4) and forecasted treatment effects under the experimental
treatments (section 2.5). In section 2.4, we designed full factorial simulation experiments that quantify
uncertainties in forecasting gross primary productivity (GPP), ecosystem respiration (ER), and carbon stocks
in foliage, wood, root, and soil pools. We then analyzed the relative contribution of stochasticity in forcings
and parameter uncertainties to the uncertainties in forecasting these flux-based and pool-based response
variables. In section 2.5, we predicted the responses of the northern peatland ecosystem to atmospheric
CO2 fertilization and a gradient of experimental warming over the next decade in SPRUCE with fully specified
uncertainties. We then evaluated how long the experiment would need to be conducted to observe ecosys-
tem changes of different response variables.

2. Method
2.1. Site Description and Operational Forecasting System

The SPRUCE experiment is conducted in a Picea mariana (black spruce)-Sphagnum spp. ombrotrophic
forested peatland located in the USDA Forest Service Marcell Experimental Forest (MEF) in Northern
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Minnesota, USA. The site (N47°30.4760, W93°27.1620, 418 m above mean sea level) is a potentially vulnerable
ecosystem located in the southern fringes of the extant boreal-peatland range. Significant impacts on peat-
land carbon cycle dynamics have been hypothesized due to climate change. The historical mean annual air
temperature is 3.3°C, with extremes of�46°C (2 February 1996) and 38°C (19 August 1976, 6 July 1988, and 27
July 1988), and the mean annual precipitation is 785 mm (Sebestyen et al., 2011).

The 8.1 ha experimental site (S1-Bog) regenerated from tree removal experiments 40 years ago. The SPRUCE
experiment is being operated as the first whole-ecosystem, forest-scale experiment to increase temperature
from deep soil to the top of tree canopies and includes exposure to elevated atmospheric CO2. The design
includes 10 plots of 12 m diameter by 8 m high open-top enclosures and two additional designated ambient
observation plots. The warming treatments vary from controls (+0°C) to +2.25°C, +4.5°C, +6.75°C, and +9°C.
Deep peat heating was initialed in June 2014, and whole-ecosystem warming began in August 2015.
Elevated CO2 (800–900 ppm) was introduced to some plots in June 2016.

The SPRUCE experiment provides a platform to integrate modeling and experimental activities for the benefit
of both. Via data assimilation, we translated the variation of pretreatment data into parameter uncertainty.
Using historical climate data from a MEF station (Sebestyen et al., 2011), we generated stochastic future tra-
jectories of forcing variables. When new data from the ongoing field campaigns and associated measured
environmental data are available, we can update parameter uncertainty and make new projections. To make
the workflow interactive and automated, we developed a Web-based application called Ecological Platform
for Assimilation of Data (EcoPAD), which is available at http://ecolab.cybercommons.org/ecopad_portal/. All
the source code and the Terrestrial ECOsystem Model SPRUCE 1.0 are also available online at https://github.
com/ou-ecolab/teco_spruce. Forecasting data are automated and archived monthly in a server located at the
University of Oklahoma Supercomputing Center for Education and Research. In this study, we were interested
in the relative contribution of parameter and forcing uncertainties to the range of forecasts. Thus, we used
EcoPAD to assimilate pretreatment data of 2011–2014 and to forecast carbon dynamics for 2015–2024.

2.2. Data Assimilation

While many studies focus on parameter optimization of complex carbon cycle models containing hundreds
of parameters, quantifying fully specified uncertainties of the parameters is not feasible due to computational
cost and the lack of multistream data sets. Most data assimilation studies have shown that the number of
parameters constrained by observational data is limited, typically from several parameters to less than 20
parameters (Braswell et al., 2005; Xu et al., 2006; Zhou et al., 2015). We used the Terrestrial ECOsystem
(TECO) model to predict carbon dynamics in SPRUCE. TECO simulates processes of canopy photosynthesis,
plant growth, carbon transfer among pools, and soil water dynamics. The full TECO model has not been used
before in data assimilation due to the computational cost. However, an emulator of the TECO model, which
can fully reproduce TECO using a matrix approach, has been widely used for data assimilation (Shi et al., 2015;
Weng et al., 2011; Xu et al., 2006; Zhou et al., 2010). The photosynthesis module in the full TECO model is
represented as input data in the emulator, while carbon transfer among plant and soil pools is modeled in
a matrix. External forcing variables were represented by scalars influencing turnover rates of each carbon
pool. Using the TECO emulator, Xu et al. (2006) constrained residence times of various plant and soil carbon
pools. However, the simplified emulator does not simulate photosynthesis and plant growth. Thus, para-
meters like specific leaf area (SLA), maximum rate of carboxylation, aboveground and belowground plant
growth rates, and growing degree-days cannot be constrained. Here we used the full TECOmodel to simulate
carbon dynamics at SPRUCE, representing a northern peatland.

We compiled 11 pretreatment data sets from 2011 to 2014, three of which included community-scale flux
measurements (GPP, NEE, and ER) in 1.2 m internal diameter chambers, six data sets of plant biomass growth
and carbon content (foliage, stem, and root), one data set of carbon in peat soil, and leaf phenological data.
During 2011–2014, CO2 flux observations were collected monthly during the growing season at ambient
plots in the S1-Bog. A total of 30 data measurements were collected in August, September, and October
2011; May through November 2012; July, September, and October 2013; and June and July 2014 (Hanson
et al., 2016). The flux data from pseudo-nighttime observations under a temporary black plastic cover were
estimated as ER. Uncovered measurements were used to estimate net ecosystem exchange. More details
on the design of collar chamber and measurements can be found in Hanson et al. (2016). NEE is defined as
the difference between GPP and ER. Thus, we calculated GPP by summing NEE and ER. We collected three
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annual data points from 2012 to 2014 for plant foliage, woody biomass, and aboveground net primary
production. Biomass data were compiled by combining allometric data for shrubs (Ledum, Chamaedaphne,
and Vaccinium), all ground layer species, and trees (P. mariana and Larix laricina; Hanson et al., 2012). In
the summers of 2012–2014, the plants were harvested from the plots and then processed and measured
in areas adjacent to the experimental study plots. Only one data point was collected each for fine-root and
peat soil C. Fine-root peak growth and standing crop measurements were collected from root in-growth
cores throughout the growing seasons of 2013 (Iversen et al., 2017). Peat carbon was collected from core
samples of peat in the SPRUCE experimental plots over the summer of 2011 (Iversen et al., 2014; Wilson
et al., 2016). Samples were collected from the hummock and hollow surfaces to depths of 200–300 cm in
defined increments. Flowering or leaf-out dates were observed during 2011–2014 (Hanson et al., 2015). We
used leaf-out dates for data assimilation, which corresponded to the date growing degree-days above a
threshold in the TECO model. The standard deviations reported in these data sets were also compiled to
estimate uncertainties for each data stream.

We applied the Bayesian probabilistic inversion approach to estimate the posterior distribution of 18 para-
meters, representing key ecological processes in the TECO model (Table 1). The maximum rate of carboxyla-
tion (Vcmax) is widely used to determine leaf-level photosynthesis (Hu et al., 2014, Walker, Beckerman, et al.,
2014), which can be rescaled to community-level productivity through leaf area index and SLA. Allocation of
primary production to different plant organs is controlled by growth rates and autotrophic respiration of each
organ. We picked the maximum growth rates of foliage (gmaxleaf), root (gmaxroot), and stem (gmaxstem) for data
assimilation. Autotrophic respirations of different organs were modeled by baseline respirations (r0 leaf, r0 root,
r0 stem) and environmental scalars. Carbon contents in each plant and soil pool are sensitive to the residence
time (Table 1), which has been widely used for data assimilation in previous studies (Hararuk, Xia, & Luo, 2014;
Shi et al., 2015; Weng & Luo, 2011). The prior ranges of residence time in each carbon pool were based on Shi
et al. (2015) and Zhou et al. (2010), and prior ranges of maximum growth rates and baseline respiration were
based on Weng and Luo (2011) and Zhou, Wan, and Luo (2007). According to the Bayes’ theorem, the poster-
ior probability density function p(θ| Z) of model parameters θ for given observations Z can be obtained from
prior probability density function p(θ) and the likelihood function p(Z| θ).

p θjZð Þ ∝ p Zjθð Þp θð Þ (1)

From prior knowledge, the parameters represented by p(θ) were assumed uniformly distributed. The
likelihood function describes information contained in data sets. Assuming that errors between each

Table 1
Parameters Involved in Data Assimilation

Description Unit Lower limit Upper limit Initial value

Vcmax Maximum rate of carboxylation μmol m�2 s�1 14 180 80
τleaf Residence time of C in leaf year 0.5 3.0 1.0
τwood Residence time of C in wood year 5 80 40
τroot Residence time of C in root year 0.3 2 0.8
τfinelitter Residence time of C in fine litter year 0.1 0.5 0.3
τcoarselitter Residence time of C in coarse litter year 1.0 20 5.8
τfastSOM Residence time of C in fast turnover soil organic matter year 0.05 0.8 0.4
τslowSOM Residence time of C in slow turnover soil organic matter year 5 150 50
τpassiveSOM Residence time of C in passive soil organic matter year 300 4,000 2,000
gmaxleaf Maximum growth rate of foliage day�1 0.02 0.15 0.1
gmaxroot Maximum growth rate of root day�1 0.02 0.15 0.1
gmaxstem Maximum growth rate of stem day�1 0.02 0.1 0.05
r0 leaf Baseline respiration of foliage μmol m�2 s�1 10 45 30
r0 root Baseline respiration of root μmol m�2 s�1 10 45 30
r0 stem Baseline respiration of stem μmol m�2 s�1 5 10 7
Q10 Sensitivity of respiration to temperature — 1 3 2
SLA Specific leaf area cm�2 g�1 10 200 40
gddonset Minimum degree-days for plant leaf out °C 100 160 140
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observational data set and model simulation are independently following Gaussian distribution with a zero
mean, then the likelihood function can be expressed by

p Zjθð Þ ∝ exp �
X11

i¼1

X
t∈Zi

Zi tð Þ � X tð Þ½ �2
2σ2i tð Þ

( )
(2)

where Zi(t) is the ith (a total of 11 data sets) observation data set at time t, X(t) is the model simulation outputs
for the variables corresponding to observations, and σi(t) is the standard deviation of each measurement.

Posterior probability distributions of parameters were generated by the Markov chain Monte Carlo sampling
technique using the adaptive Metropolis-Hastings algorithm (Figure S1). Specifically, we repeated two steps
until generating a converged Markov chain of parameter space. In the first step, we proposed a new vector of
parameters θnew based on the previously accepted parameters θold by a proposal distribution p(θnew| θold). In
the second step, the new vector of parameters is tested against the Metropolis criterion to determine
whether it should be accepted or not. We adopted the Gaussian distribution to generate θnew:

θnew ¼ θold þ N 0; cov θð Þð Þ (3)

where N(0, cov(θ)) is the Gaussian distribution with mean of zeros and covariance cov(θ) is calculated from
previous accepted parameters. We recalculated cov(θ) at fixed steps of 500 simulations to update covariance
matrix. We run four chains of 50,000 simulations with an acceptance rate between 23% and 44%. The first half
of accepted parameters were discarded (burn-in period), and the rest were used to generate posterior para-
meter distributions. In this study, we applied the Gelman-Rubin diagnostic statistics to examine the conver-
gence of the four chains.

2.3. Stochastic Weather Generation

External forcing of TECO SPRUCE 1.0 includes hourly climate data of photosynthetically active radiation (PAR),
air temperature, soil temperature, precipitation, relative humidity, vapor pressure deficit, and wind speed. We
took records of 2011–2014 from an environmental monitoring station at S1-Bog for data assimilation. Then,
we generated an ensemble of 300 trajectories of 10 year forcing variables from 2015 to 2024 as inputs for the
forecasting period. We also obtained historical precipitation and air temperature data from 1961 to 2014 at
the USDA MEF station, which represents long-term climate for the S1-Bog. Detailed MEF station information
was published by Sebestyen et al. (2011). Precipitation and air temperature were generated by vector auto-
regression (VAR) using the 1961–2014 data set using the R package RMAWGEN (Pfaff, 2008). Analogous to the
autoregressivemodel, the VARmodel fits time series data from its own previous values. The VARmodel is also
able to capture the covariance among multiple time series. The algorithm allowed us to generate drivers for
all the experimental plots in SPRUCE. In this study, we fitted the VAR model to air temperature and precipita-
tion at the MEF station. A pth order VAR model, denoted VAR(p), can be expressed as follows:

Yt ¼ a0 þ A1Yt�1 þ…þ ApYt�p þ B1Xt�1 þ…þ BpXt�p þ Ut

where Yt is a K-dimensional vector representing the set of weather variables at K plots generated at day t by
the model, called “endogenous” variable, Xt is the corresponding K-dimensional vector for other weather
variables, called “exogenous” variables, Ai and Bi are K × K coefficient matrices, and Ut is a K-dimensional
stochastic process.

The RMAWGEN package used Akaike information criterion to determine optimal orders. We got an order of 3
for precipitation and an order of 10 for air temperature. We first generated daily precipitation by VAR(3) with-
out exogenous variables and then generated daily mean, minimum, and maximum air temperature by
VAR(10) using precipitation as exogenous variables to account for covariance. Both models passed the nor-
mality test and seriality test, which verify the absence of time autocorrelation of the VAR residuals. To further
generate hourly data, we simply divided the daily precipitation by 24 to get precipitation data in each hour of
a day (Waichler & Wigmosta, 2003). Waichler and Wigmosta (2003) compared a uniform distribution and a
relative fraction based method that fractions of rainfall in each hour were derived from monthly average.
They found no significant difference between the two methods with little diurnal pattern in precipitation.
Hourly air temperature was interpolated from minimum and maximum daily temperatures by R package
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Interpol.T (Eccel, 2010). The package estimates hourly temperature using a sine function from the minimum
temperature at sunrise until the maximum temperature is reached, another sine function from the maximum
temperature until sunset, and a square root function from then until sunrise the next morning (Cesaraccio
et al., 2001).

Three of the meteorological drivers, PAR, relative humidity, and wind speed, were coupled and randomly
drawn from frequency distributions at a given hour each month. Specifically, we constructed a 24 (hours)
by 12 (months) matrix field. Within each field, a coupled pool of the three drivers was obtained from
S1-Bog climate data during 2011–2014. We then generated PAR, relative humidity, and wind speed for
2015–2024 by resampling the set of drivers from the pools. Soil temperature at 20 cm depth was scaled from
the generated air temperature based on a linear regression between soil temperature and air temperature at
S1-Bog from 2011 to 2014. Vapor pressure deficit was calculated from the difference between the saturation
vapor pressure and actual partial pressure of the water vapor in the air, which was computed by multiplying
relative humidity with the saturation vapor pressure.

The algorithm decoupled PAR, relative humidity, and wind speed from temperature and precipitation, which
might generate biased covariance among the meteorological drivers at hourly timescale. To examine
whether the biased covariance would influence forecasting uncertainty, we generated other trajectories of
meteorological drivers by simply resampling from the 2011–2014 data sets at the S1-Bog. Specifically,
meteorological drivers for 2015 were resampled from one of the years from 2011 to 2014, and then we
repeated resampling until 2024. In this case, the covariance among meteorological drives from generated
time series would be the same as the covariance from the actual 2011–2014 time series.

2.4. Uncertainty Analysis

We designed a full factorial simulation experiment to disentangle the relative contribution of forcing and
parameter uncertainties to the forecasting uncertainty. We set up three levels of parameter uncertainties:
prior uniform distribution, posterior distribution, and a given set of constrained parameters. We also set up
two levels of forcing uncertainties: stochastic forcing from an ensemble, and predefined, fixed trajectories
of forcing. Thus, we produced a total of six levels of uncertainties (Table 2). Forecasting uncertainty was
quantified by standard deviation at the year 2024 for two flux variables (GPP and ER) and four pool size vari-
ables (foliage, wood, root, and soil). Since TECO model is deterministic, forecasting uncertainties are zero
when parameters were fixed at certain values and forcing variables were fixed at certain trajectories. We nor-
malized the uncertainties to make sure forecasting uncertainty equals one when parameters were randomly
drawn from a prior distribution and forcing trajectories were picked from the ensemble of stochastic
weather generator.

Based on the full factorial design, we produced two groups of simulation ensemble with each group consist-
ing of 2,500 simulations (Table 2). To get the first ensemble of simulation group, we randomly chose 50 sets of
parameters within the prior ranges and 50 trajectories from an ensemble of future forcings, which resulted in
a combination of 2,500 model simulations. We then calculated standard deviation at the year 2024 for the
six response variables as forecasting uncertainties resulted from prior parameters and stochastic forcings.
The other ensemble of 2,500 simulations resulted from 50 sets of posterior parameters and the same

Table 2
Factorial Design of Simulation Experiments Resulted From Parameter and Forcing Uncertainties

External forcings were
drawn from

Parameters were
drawn from

Uncertainty
sequence number

Ensemble
group number

Ensemble of forcing variables Prior distribution 1 1
Posterior distribution 2 2
Fixed at certain values 3 2

Fixed at certain trajectories Prior distribution 4 1
Posterior distribution 5 2
Fixed at certain values 6 —

Note. The uncertainty sequence numbers were corresponding to bar numbers in Figure 4. Two groups of simulation
ensemble were distinguished by drawing parameters from prior or posterior distributions.
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consistent 50 trajectories of stochastic forcings used in the first group. Forecasting uncertainties caused by
stochastic forcings alone can be estimated from a subgroup of simulations using the 50 trajectories of
forcings under a given set of parameters. We calculated 50 uncertainties from the stochastic forcings alone
for each of the 50 fixed parameters from the second ensemble group. The standard deviation of the 50
uncertainties represented the sensitivity of forcing caused by the uncertainty of parameters (error bars of
uncertainties). Similarly, we used the first and second ensemble group to calculate 50 uncertainties for
each of the 50 fixed forcing trajectories from prior parameters alone and from posterior parameters alone,
respectively. Sensitivities of parameter caused by uncertainties in forcing variables were evaluated from
the standard deviation of the normalized uncertainties. The last uncertainty level is zero as expected from
deterministic model simulations for a given set of fixed parameters and a given trajectory of forcing.

2.5. Forecasting Treatment Effects

After the parameter and forcing uncertainties were fully specified at the ambient environment for the
SPRUCE site, we ran forecasting simulations for the 10 SPRUCE treatments (five levels of elevated tempera-
ture with two levels of elevated atmospheric CO2). Each scenario contains 300 simulations with sets of
coupled parameters randomly chosen from accepted parameters by data assimilation and the forcing trajec-
tories from the stochastic weather generator. We assumed that all treatments started the first day of 2015,
although actual start dates of treatment varied, and that the parameters estimated from pretreatment data
did not change during the forecasting period or among treatments. The assumption was probably unrealistic
but provided a basis for understanding future states based on current information. When more data sets are
available, our EcoPAD platform will provide real-time forecasting and demonstrate how parameters evolve.
Based on pretreatment data, we estimated how long the experiment takes to observe the differences among
the 10 experimental treatments. We did one-way ANOVA tests and Tukey’s multiple comparisons for each of
the pool-based response variables (foliage, wood, root, and soil) for each of the 10 scenarios. The tests were
iterated daily from 1 January 2015 to the end of 2024. We recorded the first dates that the response variables
for each scenario became significantly different from the other scenarios and that remained significantly
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Figure 1. Historical climate from the USDA MEF site during 1961–2014 and stochastic weather generation for 2015–2024.
(a) Daily air temperature and (b) cumulative precipitation along Julian calendar. Curves and shaded areas represent
mean and standard deviation (S.D.), respectively (gray is historical data, and black areas represent ensemble of
future data). (c) and (d) are standard deviations of ensembles against means of each day for air temperature and
precipitation, respectively.
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different for the remainder of the period. The time between 1 January 2015 and the identified dates were
then reported as the period needed for the treatment to become statistically different from other treatments.

3. Results
3.1. Uncertainty in Precipitation and Temperature

Using the VAR model, our generated precipitation and air temperature during 2015–2024 matched the over-
all probability distributions of historical data during 1961–2014 with low interannual variability (Figures 1a
and 1b). Annual mean temperature from 1961 to 2014 was 3.4°C and 2.6–3.7°C for the ensemble generated
for 2015–2024. Annual precipitation from weather generator occurred mainly during the summer with
slightly higher variation than the variability of historical observations. The stochasticity of the weather gen-
erator resulted in the uncertainty of forcing variables. The standard deviation of temperature ensemble
decreases with increasing daily mean temperature (Figure 1c), which implies higher uncertainty of future
temperature in winter than that in summer. The standard deviation of precipitation ensemble increases with
increasing daily rainfall (Figure 1d). With higher precipitation in summer than in winter at the MEF station,
Figure 1d implies that uncertainty of future precipitation is higher in summer than in winter.

3.2. Sources of Forecasting Uncertainty

Forecasting uncertainties due to uncertainties in parameters or forcings were quite different between flux-
based and pool-based response variables. External forcings resulted in higher variation than parameters in
forecasting GPP and ER (Figure 2) but lower variation than parameters in forecasting carbon stock in foliage,
wood, root, and soil (Figure 3). Forecasting of carbon fluxes had lower interannual variability than simulations
from 2011 to 2014 (Figure 2).

The factorial analysis of sources of uncertainty in forecasting showed higher uncertainties when parameters
were unconstrained and external forcing trajectories were stochastic (Figure 4). If the parameters were con-
strained by data assimilation, uncertainties in forecasting the response variables were reduced, regardless of
whether the external forcing trajectories were stochastic (compare bar 1 and bar 2) or fixed (compare bar 4
and bar 5). Nevertheless, further fixing the parameter values cannot further reduce uncertainties in forecast-
ing GPP and ER (compare bar 2 and bar 3). Fixing parameter values could further reduce uncertainty in
forecasting pool-based variables. If all the parameters were randomly drawn from prior ranges, improving
forcing predictability did not reduce uncertainties in forecasting pool-based carbon but did considerably
reduce GPP uncertainty (compare bar 1 and bar 4). The normalized uncertainty indices in Figure 4 showed

Figure 2. Projections of GPP and ER during 2011–2024. In (a) and (b), parameters were fixed while forcing variables were
drawn from stochastic trajectories. In (c) and (d), parameters were drawn from posterior distribution while the trajectory of
forcing variables was given. The period 2011–2014 was the model training period (blue) with data points (red) from
field measurement. The period 2015–2024 is the forecasting period (gray).
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that uncertainty of GPP and ER in year 2024 caused by forcing alone was higher than the parameter
alone, but uncertainty of foliage, wood, root, and soil in the year 2024 caused by forcing alone were
lower than the parameter alone (compare bar 3 to bar 5). Using the resampled meteorological drivers
from 2011 to 2014 data sets, the forecasting uncertainties associated with forcings were reduced,

Figure 3. Uncertainties in forecasted carbon pools from forcing variables and parameter values. Mean (blue line) and stan-
dard deviation (shaded area) of foliage, wood, root, and soil carbon during 2011–2024 as influenced by stochastic forcing
variables (a–d) and parameter uncertainties (e–h). The period 2011–2014 is the model training period with data points
(red) from field measurements, and 2015–2024 is the forecasting period.
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Figure 4. Factorial uncertainty analysis of flux-based (GPP and ER) and pool-based (foliage, wood, root and soil) response
variables caused by six combinations of forcing and parameter uncertainty levels: (1) prior parameters and stochastic
forcings, (2) posterior parameters and stochastic forcings, (3) stochastic forcings alone, (4) prior parameters alone,
(5) posterior parameters alone, and (6) fixed parameters and a specific trajectory of forcing. Error bars represent standard
deviation of normalized uncertainty when available. Bar 6 was zero, and bar 1 was normalized to 1.
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especially the uncertainty of ER caused by forcing alone was reduced greatly and lower than the parameter
alone (Figure S2).

3.3. Forecasting Treatment Effects With Fully Specified Uncertainties

Both warming and elevated CO2 increased carbon stock in foliage, wood, root, and soil, but uncertainty in
forecasting reduced the statistical power to detect the treatment effects (Figure 5). Plant compartments
had stronger responses to either warming or elevated CO2 than soil carbon. Differences of response between
ambient and elevated CO2 were more likely significant at higher temperature treatments (Figure 6). For
example, the foliage difference between ambient and elevated CO2 did not become significant until the
end of experimental period (9.5 years) without warming but only took 1.5 years with temperature treatments
of +6.75°C and +9°C (Figure 6A). While soil carbon needs 6 years to respond to elevated CO2 at +9°C
treatment, it did not respond to elevated CO2 at low-temperature treatments during the entire experimental
period (Figure 6D). Wood and root had faster responses than foliage and soil (Figures 6B and 6C). Responses
to warming treatments took longer under ambient CO2 than elevated CO2 (Figure 6). Particularly, the foliage
difference between +0°C and +2.25°C was not significant during the experimental period under ambient CO2

but only took 1.7 years under elevated CO2 (Figure 6A).

4. Discussion

Northern peatland ecosystems are vulnerable to future climate change and are expected to change over the
course of this century. But forecasting how northern peatland ecosystems respond to global warming and
elevated CO2 tends to differ across models. Model-experiment integration has been proposed to reduce
the uncertainty (Luo et al., 2009, 2012; Norby & Luo, 2004). It is common for modelers to tune models to fit
data from a specific experiment (De Kauwe et al., 2014; Luo, Ogle, & Tucker, 2011). Those tunedmodels, which
often overlook intrinsic uncertainties of parameters and external forcings, have a low predictive ability in
other sites (Li et al., 2016). We developed a novel framework, the EcoPAD, to fully specify uncertainties when
forecasting the responses of an ecosystem to elevated CO2 and five levels of experimental warming treat-
ment at the SPRUCE experimental site. We found that external forcing produced higher uncertainties than
parameters in the forecasting of C flux-based response variables but lower uncertainties than parameteriza-
tion in forecasting C pool-based response variables.

The contrasting contribution of external forcing and parameterization in the uncertainty of forecasting
between C flux-based and C pool-based response variables was probably related to timescales of different

Figure 5. Projections of foliage, wood, root, and soil carbon under warming and elevated atmospheric CO2 treatments. Shaded areas above or below the curves were
one standard deviation away from mean trajectories for ambient (yellow) and elevated (purple) CO2.
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ecological processes and their sensitivity to external forcing. Photosynthesis is highly sensitive to light,
temperature, and moisture, which may fluctuate widely over minute timescale. Changes of sunlight and
precipitation have great influences on terrestrial ecosystem carbon dynamics (Medvigy et al., 2010).
Predictive ability of the C flux-based response variables, in this case, is largely determined by the precision
of forcing prediction. In some pseudo-forecasting exercises, the model projection of C fluxes fit observed
values very well, if external forcing is already known (Feng & Dietze, 2013; Keenan, Davidson, Moffat, et al.,
2012; Oikawa et al., 2017). Therefore, in predictive carbon cycle science, when forecasting C fluxes such as
NEE by eddy flux or ecosystem respiration using the static chamber, the research community should
consider the uncertainty in external forcings. The weather generator algorithms used in this study may not
be able to capture realistic trajectories, but our study was not intended to improve predictability of hourly
meteorological drivers. We used the weather generator to generate an ensemble of future meteorological
drivers with predefined uncertain levels, which allows us to distinguish relative contribution of external
forcing and parameter uncertainty in forecasting uncertainties. We found that uncertainty in future
external forcing contributed more to uncertainty in the forecasting of C flux-based response variables than
is the parameter uncertainty. The conclusion was consistent in forecasting pool-based response variables
despite biased covariance among meteorological drivers in our weather generator algorithm. However,
preserved driver covariance could reduce the uncertainties of flux-based response variables. The results
should stimulate the research communities’ efforts in predictive carbon science to improve the
predictability of future forcing when forecasting C flux-based response variables. Over the last several
decades, the accuracy of 5 day weather forecasts has increased from 60% to 90% (Bauer et al., 2015).
Although weather forecasting has improved for short timescales ranging from hours to days, it is still
unreliable at longer timescales (Bauer et al., 2015). Therefore, it is anticipated that forecasting of C

Figure 6. Delayed responses of (a) foliage, (b) wood, (c) root, and (d) soil carbon to the treatments. The numbers are how
many years since 1 January 2015 that it took for the responses to become significantly different for each pair. The values
were presented as a matrix for each pair of temperature levels underlying rows and columns. The red pixels represent
warming treatment under elevated CO2. The green pixels represent warming treatment alone under ambient CO2. The
blue pixels bisecting the matrix represent treatment of elevated CO2 under each temperature level. n.s. is not significant for
that pair of comparison within the 10 year simulations.
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flux-based response variables could be substantially improved on short-time prediction, for example, weekly,
before weather forecasting can be done over longer time or downscaling of climate prediction can be
accurately performed.

Uncertainty in forecasting C pool-based response variables mainly stemmed from parameterization instead
of external forcing. This is probably because the pool change is cumulative. Instantaneous changes in forcing
variables were smoothed over time while parameters that determine carbon allocation and turnover directly
control the accumulation rates. Parameters that influence pool sizes vary among species and across space
and time (Johnson et al., 2016; Mc Cormack et al., 2014; Thurner et al., 2016). The pool-based pretreatment
data sets were scarce at the SPRUCE site with only one observation for soil and root C, three observations
of foliage and wood, which may have resulted in relatively high uncertainty of pool-based parameters.
Among the parameters that affect residence times and growth rates, only foliage and root residence time
were constrained (Figure S1). Third, both GPP and ER are sensitive to forcings, for example, temperature, in
the same direction, which may result in balanced input and output to ecosystem carbon stock. From a
meta-analysis of Free-Air CO2 Enrichment (FACE) experiments, van Groenigen et al. (2014) found that soil C
pool was not sensitive to elevated CO2 because both net primary production and soil decomposition
increased with CO2. C pool-based response variables may be sensitive to extreme events and future climate
change (Frank et al., 2015; Reichstein et al., 2013). Our stochastically generated weather has low interannual
variability. This low variability is likely due to the ensemble of forcing trajectories generated by our algorithm,
which used averages for the past four decades. Algorithms that generate more realistic interannual variability
are needed for future studies.

Model structure is also a major source of forecasting uncertainty although it was not evaluated in this study.
By comparing experimental responses with scenario simulations among models, one can evaluate the main
assumptions causing differences and reduce uncertainty in model structure (Medlyn et al., 2015). For exam-
ple, data from ecosystem-scale FACE experiments were compared to 11 process-basedmodels and found out
that models with net primary production allocation among different plant organ varies with elevated CO2 can
perform better than constant allocation models (De Kauwe et al., 2014; Medlyn et al., 2015; Walker, Hanson,
et al., 2014). By assimilating data from SPRUCE experiment periodically, our workflow facilitates iterative data-
model integration and can identify which parameters will change with treatments and how fast the changes
would be. Thus, it can help us to improve mechanistic understanding of northern peatland ecosystem
responses to increases in temperature and exposures to elevated atmospheric CO2. But before the experi-
mental results are fully available to evaluate model structure, uncertainties in parameterization and external
forcing should be clearly identified, because two different models could produce similar results if the models
are tuned to match data and therefore bias the evaluation of model structure. Our data assimilation platform,
by assimilating multiple streams of data set into models, could provide fully specified uncertainties on how a
model behaves with a range of forecasting instead of single tuned model output. We suggest that future
model comparisons should consider uncertainties of each model.

Our scenario-based simulations reveal that C pool-based response variables are sensitive to warming and
CO2 fertilization. Time points to observe statistical difference among treatments also vary in different
response variables. For example, differences in statistical biomass among warming treatments were not
apparent until the third year in an open-top chamber experiment of grassland (Carlyle et al., 2014). Twenty
years of warming on a moist acidic tussock tundra ecosystem increased plant carbon storage but did not
change total soil carbon (Sistla et al., 2013). A meta-analysis indicated that both plant part C and microbial
biomass C were not statistically changed in response to warming in those 5–10 year manipulative experi-
ments but became statistically different in >10 year warming (Lu et al., 2013). Increasing soil respiration
and litter mass loss can be observed in a short duration of warming experiments (Lu et al., 2013; Rustad
et al., 2001). However, warming did not significantly alter the SOC pool in most experiments (Lu et al.,
2013). One major reason is that enhanced litter decomposition and soil respiration offsets the warming-
induced increase in plant-derived C influx. Our results suggest that changes in SOC might be detectable in
manipulative experiments with longer duration and higher warming magnitude.

Reducing the forecasting uncertainty could increase the statistical power to detect the treatment effects. The
greater contribution to uncertainty by parameters than drivers in forecasting pool-based variables implies
that constraining the parameters via data assimilation could cause the forecasted treatment effects to
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occur sooner than unconstrained parameters. Our projections were based on pretreatment data and
assumed that the plant community did not change with warming and elevated CO2. However, several studies
found that the plant community may change with long-term warming, which can influence carbon cycles
with nonlinear responses (Xu et al., 2015). For example, warming increased plant diversity at Cedar Creek
Ecosystem Science Reserve in Minnesota and caused a greater increase in aboveground productivity
(Cowles et al., 2016). An ecosystemmay also respond to treatments differently at different successional states
(Norby et al., 2016). Thus, the expectation on how long it would take for experimental effects to be observed
may be different from real observations. Our EcoPAD platform can update parameters regularly as new data
sets become available and reveal when model simulations depart from experimental observations (Huang
et al., 2017; Ma et al., 2017).
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