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A B S T R A C T

At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is
commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing
data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer
than observations in the optical domain and may therefore provide complementary information on the vege-
tation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation
between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations,
is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from
different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the
Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave
Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive
microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll
Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are
based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present
a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three
variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in
VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative
correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations
between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables
for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or
ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for
deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for
the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.
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1. Introduction

Vegetation plays an important role in the Earth system as plants
take up atmospheric carbon dioxide through photosynthesis and
transport water from the soil into the atmosphere through transpiration
(Lambers et al., 2008). In addition, vegetation can influence the Earth's
surface energy balance through differences in surface albedo compared
to bare soil or snow cover, which is especially pronounced for boreal
forests (Bonan, 2008). Therefore, monitoring the vegetation state in
terms of photosynthetic activity as well as plant water status is of im-
portance for hydrological, ecological and climate change applications
(Bonan, 2015).

The uptake of atmospheric carbon dioxide by vegetation through
photosynthesis is commonly referred to as Gross Primary Production
(GPP) and is the largest carbon flux in the global carbon cycle (Ciais
et al., 2013). GPP can be determined at site level from eddy covariance
measurements of carbon dioxide net exchange, which is partitioned into
GPP and ecosystem respiration (Baldocchi et al., 2001; Reichstein et al.,
2005; Jung et al., 2011; Lasslop et al., 2012). Another approach is the
biometric method, which combines estimates of plant growth, chamber
flux measurements and stock inventories (Campioli et al., 2016). GPP
can be assessed from local to global scales using process-based models
that describe the canopy light absorption and the energy and enzyme
limitations of the carboxylation rate to estimate gross carbon assim-
ilation (e.g. Farquhar et al., 1980; Collatz et al., 1992). However, cur-
rent process-based models show large uncertainties because of a limited
understanding of the processes that are involved in photosynthesis
(Rogers et al., 2017). Alternatively, data-driven approaches that com-
bine satellite observations with empirical models can be used to esti-
mate GPP at large scales (Beer et al., 2010).

Most of the approaches to estimate GPP from satellite observations
use optical data to characterize biophysical properties or photo-
synthetic activity. Biophysical properties such as the Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR) are used in
light-use efficiency models to estimate GPP, assuming a linear re-
lationship between FAPAR and GPP which is modulated by temperature
and water stress (Monteith, 1972; Nemani et al., 2003). Additionally,
machine learning algorithms, driven by meteorological and/or satellite
data, have been used to upscale site-level observations of GPP (Beer
et al., 2010; Jung et al., 2011; Tramontana et al., 2016). Alternatively,
Solar-Induced chlorophyll Fluorescence (SIF), an estimate of photo-
synthetic activity, has been proposed as a global proxy for GPP in recent
years (Frankenberg et al., 2014; Guanter et al., 2014; Damm et al.,
2015; Zhang et al., 2016).

Optical remote sensing data, however, are often affected by clouds
and aerosols (Myneni et al., 2002; Forkel et al., 2013) and sun-sensor
geometry (Dorigo, 2012; Morton et al., 2014). A common method to
reduce the influence of cloud cover on optical data is temporal com-
positing (Huete et al., 2011; Holben, 1986), which decreases the native
temporal resolution. Alternatively, time series filtering can be applied
(Chen et al., 2004).

In contrast to optical data, microwave radiation below a frequency
of 10 GHz is less influenced by clouds and is independent of the sun as
source of illumination (Woodhouse, 2005). Microwave satellite ob-
servations over vegetation are thus able to provide crucial information
in areas with extensive cloud cover like the tropics or high latitudes.
The penetration depth of the microwave radiation into the vegetation
canopy depends on frequency, dielectric properties, size and geometry
of the interacting vegetation parts. As such, microwave observations
from different frequencies theoretically contain information from dif-
ferent parts of the vegetation (Woodhouse, 2005). Whereas high fre-
quencies (short wavelengths) predominantly interact with small struc-
tures like leaves and twigs at the top of the vegetation layer, low
frequencies (long wavelengths) can penetrate deeper into the vegeta-
tion and are more sensitive to large structures like branches or trunks
(Woodhouse, 2005). Accordingly, microwave radiation exhibits a

higher penetration depth than optical radiation due to its longer wa-
velength, and should theoretically be better suited for monitoring
denser canopies, as the observed signal does not saturate as quickly as
for optical sensors (Woodhouse, 2005; Dorigo et al., 2007). Therefore,
microwave satellite observations have the potential to provide valuable
information on the vegetation state complementary to optical satellite
data which are traditionally used for estimating GPP.

Microwave Vegetation Optical Depth (VOD) describes the attenua-
tion of radiation due to scattering and absorption within the vegetation
layer, which is caused by the water contained in the vegetation
(Woodhouse, 2005). At low biomass, VOD is linearly related to the
vegetation water content (VWC; expressed in kg/m2) (Jackson and
Schmugge, 1991; Woodhouse, 2005). In addition, VOD can be related
to aboveground living biomass (Liu et al., 2015; Tian et al., 2016) and
to Leaf Area Index (LAI), especially in crop- and grasslands (Zribi et al.,
2011; Kim et al., 2012; Sawada et al., 2016).

VOD data have been analyzed for different applications such as
long-term trends in biomass (Andela et al., 2013; Liu et al., 2013a,b,
2015), forest loss (Marle et al., 2016), phenology metrics (Jones et al.,
2011, 2012), vegetation water stress (Miralles et al., 2016), evaporation
retrievals (Miralles et al., 2011; Martens et al., 2016) and ecosystem
resilience (Verbesselt et al., 2016). However, short-term variations in
VOD have not been assessed with regard to GPP.

The aim of this study is to explore the relationship between VOD
and GPP and assess if VOD can provide additional information about
GPP on top of what is provided by SIF. In addition, this study in-
vestigates the effect of different microwave frequencies (between 1 and
10 GHz) and of active and passive sensors (hereafter referred to as ac-
tive and passive VOD) on the relationship between VOD and GPP.

2. Data and methods

2.1. Vegetation remote sensing data

The analysis is based on five VOD data sets, upscaled GPP estimates,
and SIF observations (Table 1). The data sets have different temporal
coverage with a common overlap of about one year. The period from
January 2007 to December 2015 was selected in order to obtain a
minimum number of four years of overlap with the GPP data set.

2.1.1. VOD ASCAT
Active microwave VOD data were retrieved from microwave back-

scatter measurements of the Advanced Scatterometer (ASCAT) onboard
the meteorological operational satellite A (MetOp-A). ASCAT measures
backscatter at 5.25 GHz (C-band) in vertical co-polarization. The re-
trieval of VOD is based on slope estimates of the angular backscatter
dependency, which are calculated during the soil moisture retrieval
using the TU-Wien change detection algorithm. VOD is obtained by
relating the angular sensitivity of measured backscatter to the sensi-
tivity of modelled bare soil backscatter (Melzer, 2013; Vreugdenhil
et al., 2016a,b) and, therefore, represents a measure of volume scat-
tering due to vegetation relative to bare soil volume scattering. VOD is
derived jointly from measurements in ascending and descending mode
(9:30 a.m./p.m. equatorial crossing).

2.1.2. VOD AMSR-E
Measurements at 6.9 GHz (C-band) and 10.7 GHz (X-band) were

used from the Advanced Microwave Scanning Radiometer for Earth
Observation System (AMSR-E). For both frequencies, VOD was obtained
with the Land Parameter Retrieval Model (LPRM) v06 (van der Schalie
et al., 2017). The algorithm uses a radiative transfer model (Mo et al.,
1982) and includes an analytical solution for VOD using the Microwave
Polarization Difference Index (MPDI) (Meesters et al., 2005). LPRM
retrieves VOD and soil moisture simultaneously under the assumption
of a globally constant single scattering albedo and further assumes that
soil and canopy temperature are similar (Owe et al., 2001). Since the
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latter assumption generally does not hold for daytime observations, we
only used observations from the descending mode for this analysis (1:30
a.m. equatorial crossing).

2.1.3. VOD SMOS
VOD from the Soil Moisture Ocean Salinity (SMOS) radiometer,

which provides observations at 1.4 GHz (L-band), was also retrieved
with the LPRM v06 (van der Schalie et al., 2016, 2017). Only data from
the ascending mode were analyzed (6 a.m. equatorial crossing) as soil
and canopy temperatures are usually more similar in the morning than
in the late afternoon although seasonal and latitudinal variations exist.

2.1.4. VOD merged
In addition to the single frequency data sets, a merged passive mi-

crowave VOD data set developed by Liu et al. (2015) was included in
this analysis. For the period 2007-2012, the data set comprises ob-
servations from AMSR-E (6.9 GHz, C-band), WindSat (6.8 GHz, C-
band), and the FengYun-3B Microwave Radiometer Imager (10.7 GHz,
X-band). Prior to merging, the single sensor data sets were rescaled by
applying the cumulative distribution function (CDF) matching tech-
nique with AMSR-E as the reference (Liu et al., 2009).

2.1.5. GPP FLUXCOM
The FLUXCOM GPP data set presents an upscaling of flux tower

measurements based on multiple machine learning algorithms and sa-
tellite data (Tramontana et al., 2016). Different remotely sensed data in
the optical domain from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) were used as input, including the Enhanced Ve-
getation Index (EVI), LAI, band 7 - Middle Infrared Reflectance (MIR),
Normalized Difference Vegetation Index (NDVI), and Normalized Dif-
ference Water Index (NDWI) (Tramontana et al., 2016).

2.1.6. SIF GOME-2
The GOME-F v26 SIF data were obtained from the Global Ozone

Monitoring Experiment-2 (GOME-2) sensor. The retrieval is based on
the filling-in of Frauenhofer lines, which is caused by the chlorophyll
fluorescence emitted from the Earth's surface (Joiner et al., 2013). The
algorithm uses principal components analysis and radiative transfer
theory to determine SIF at 740 nm (Joiner et al., 2013, 2014, 2016). In
this study, SIF observations from the MetOp-A platform were used.

2.2. Ancillary data

2.2.1. CCI land cover
The European Space Agency (ESA) Climate Change Initiative (CCI)

global land cover data set v1.6.1 was used for identifying homogenous
grid cells and stratifying results according to land cover. The data set is
derived from Medium Resolution Imaging Spectrometer (MERIS) sur-
face reflectance time series and has a spatial resolution of 300 m
(Bontemps et al., 2013). The maps are available for three epochs that
cover the periods 1998–2002, 2003–2007, and 2008–2012, respec-
tively. In this study, the map for the period 2008–2012 was used as it
falls within the overall data period.

2.2.2. GPCP
Precipitation data from the Global Precipitation Climatology Project

(GPCP) are displayed as reference in the time series plot. GPCP 1DD
version 1.2 provides daily precipitation estimates at 1° spatial resolu-
tion (Huffman et al., 2001). The precipitation estimates are produced
from satellite data in the high frequency microwave (> 10 GHz) to
infrared region in combination with gauge data (Huffman et al., 2001).

2.2.3. ERA-Interim
Skin temperature and snow depth from ERA-Interim were used to

mask VOD. ERA-Interim is the current global atmospheric reanalysis
produced by the European Centre for Medium-Range Weather ForecastsTa
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for the period from 1979 onwards (Dee et al., 2011). Data are assimi-
lated using a 4-dimensional variational analysis. The horizontal re-
solution is about 0.7° at the equator.

2.2.4. Topographic complexity
Topographic complexity was used to mask VOD during the analysis

of homogeneous grid cells. It is described by the standard deviation of
elevation within a grid cell. A map of topographic complexity is
available as ancillary data for the ESA-CCI soil moisture v02.2 data set
(Dorigo et al., 2015) with a spatial resolution of 0.25°. The topographic
complexity is computed from the USGS 30-Arc-Second Global Elevation
Data Set (GTOPO30) (USGS, 1996).

2.3. Variables for relating VOD to GPP

In this study, three variables for comparing VOD with GPP are in-
vestigated: (1) original time series of VOD, (2) change in VOD (ΔVOD),
and (3) positive changes in VOD (ΔVOD≥0). The latter two variables
treat VOD as a proxy for aboveground biomass of the vegetation layer,
which includes leaves and woody components. Liu et al. (2015) showed
that the relationship between VOD and forest biomass data is mono-
tonically increasing, which makes VOD a suitable proxy for biomass.
Changes in VOD may thus relate to changes in biomass and hence to
Aboveground Net Primary Production (ANPP), which contributes to
total Net Primary Production (NPP).

(1) Original VOD time series: For crop- and grasslands, VOD is pro-
portional to total VWC (Jackson and Schmugge, 1991; Woodhouse,
2005) and thus scales with LAI (Zribi et al., 2011; Kim et al., 2012;
Sawada et al., 2016), which in turn is related to GPP (Suyker et al.,
2005; Gitelson et al., 2014). The original time series of VOD may
thus be related to GPP.

(2) ΔVOD: For forests, ANPP is commonly estimated through biomass
changes between two consecutive measurements (Clark et al.,
2001a; Campioli et al., 2011, 2016; Nunes et al., 2013; Wagner
et al., 2013a). Therein, biomass changes are determined from
changes in stem circumference, which are converted to whole-tree
biomass using allometric relations, and from litter traps or LAI. In
this study, this method is adopted by calculating the change in
VOD.

= − −tΔVOD( ) VOD VODt t 1

where ΔVOD(t) is the change in VOD at time t, and VODt and
VODt−1 are VOD observations at time t and t− 1, respectively.

(3) ΔVOD≥0: For grasslands, common metrics for determining annual
ANPP include peak standing biomass, difference between maximum
and minimum standing biomass, sum of positive biomass changes
with negative values set to zero, and change in biomass (Scurlock
et al., 2002). These metrics are designed for a low number of ob-
servations as the sampling of herbaceous vegetation is destructive
and is often carried out once per growing season. Since the study
focuses on the temporal agreement instead of annual metrics and
the change in VOD is already analyzed as the second variable, the
method of positive biomass changes is used as third variable.

= ⎧
⎨⎩

≥
≥ t tΔVOD ( ) ΔVOD( ) if ΔVOD(t) 0

0 otherwise0

In order to compare the results of all three variables, changes in
VOD (ΔVOD and ΔVOD≥0) are also compared with the FLUXCOM GPP
data set although, conceptually, they should relate more closely to NPP
than GPP. However, direct measurements of large-scale NPP are not
possible and, therefore, NPP is often derived from remote sensing-based
GPP estimates using either a constant NPP:GPP ratio at annual time
scales (Waring et al., 1998) or the difference between GPP and

autotrophic respiration at shorter time scales (Running et al., 2004;
Zhao et al., 2005). For this reason, VOD variables in this study are re-
lated to GPP and not to NPP.

2.4. Data preparation

The global data sets of VOD and GPP were resampled to a common
resolution of 8 days and 0.25°. Resampling was performed by averaging
over the 8-day period for VOD data sets or over the grid points within
each 0.25° by 0.25° grid cell for GPP. Prior to the resampling of the
daily VOD data sets, the data were masked for conditions of frozen soil
or snow based on ERA-Interim. Observations were excluded if the daily
mean skin temperature was ≤0 °C or snow cover was present. For
consistency with the VOD data sets, GPP and SIF were also masked
accordingly. Passive microwave observations can be affected by radio
frequency interference (RFI), which is caused by artificial sources of
radiation and hence is not related to land surface properties (Li et al.,
2004; Njoku et al., 2005). Therefore, passive VOD data were ad-
ditionally masked for RFI. For ASCAT, negative values can occur due to
a lower sensitivity of the modelled bare soil backscatter compared to
the observed backscatter in the angular dependency (Vreugdenhil et al.,
2016a). These negative values were not set to zero in order to avoid
introducing a bias. For the comparison with SIF observations, GPP and
VOD data sets were further resampled to monthly and 0.5° resolution
using temporal and spatial means, respectively.

Land cover data were converted into fractional land cover at 0.25°
(or 0.5°) resolution using the level 1 legend of the CCI classification
scheme. The resulting map of dominant land cover at 0.25° resolution is
displayed in Fig. S1. The corresponding abbreviations are summarized
in Tables 2 and S1. For global correlation maps, grid cells with a
dominant land cover class of permanent snow/ice or water were sys-
tematically excluded.

For stratifying the results according to land cover, only homo-
geneous grid cells were evaluated in order to minimize the influence of
pixel heterogeneity. Using the ESA CCI land cover map, a grid cell was
considered homogeneous if the fraction of dominant land cover within
a 0.25° by 0.25° grid cell exceeded an arbitrary threshold of 75%.
Additionally, grid cells were discarded if either topographic complexity
or percentage of water bodies were higher than 10% following Draper
et al. (2012) and Dorigo et al. (2015), since both factors have a strong
impact on the emitted or reflected microwave signal (Owe et al., 2008).

Data smoothing was applied in two cases: (1) prior to calculating
changes in VOD (ΔVOD and ΔVOD≥0) and (2) for visualization pur-
poses in the time series plots. The smoothing was performed using a
Savitzky–Golay filter of order three with a window size of 11 ob-
servations.

2.5. Statistical analysis

Linear relationships were assessed using correlation analysis. Prior
to the correlation analysis, the assumption of normality was tested
following D’Agostino (1971) and D’Agostino and Pearson (1973). As
not all grid cell data were normally distributed (p > 0.05), the non-

Table 2
CCI land cover abbreviations.

Abbreviation CCI land cover class

CRO Cropland, rainfed
EBF Tree cover, broadleaved, evergreen, closed to open (> 15%)
DBF Tree cover, broadleaved, deciduous, closed to open (> 15%)
ENF Tree cover, needleleaved, evergreen, closed to open (> 15%)
DNF Tree cover, needleleaved, deciduous, closed to open (> 15%)
SHR Shrubland
GRA Grassland
SPARSE Sparse vegetation (tree, shrub, herbaceous cover) (< 15%)
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parametric Spearman rank correlation was used instead of the para-
metric Pearson correlation. Due to this absence of normal distribution
for some grid cell data, non-parametric measures were used when
analyzing full-length time series data: the median for displaying the
global distribution of the data sets and the coefficient of quartile var-
iation (CQV, Kokoska and Zwillinger, 2000) for assessing signal varia-
bility. CQV is calculated using the 25th (Q1) and the 75th (Q3) per-
centile:

= −
+

Q Q
Q Q

CQV ( 3 1)
( 3 1)

In addition to the zero-lagged correlation analysis, time lags for
which the cross-correlations maximized were calculated as an addi-
tional measure to determine how well the signals match. Results for
homogeneous grid cells are displayed as violin plots, which are similar
to box plots but visualize the kernel estimation of the data distribution.

To compare the data sets independent of the strong seasonal signals
that affect vegetation properties in many regions, anomalies relative to
the mean seasonal cycle were calculated. The mean seasonal cycles
were obtained from the 8-daily or monthly time series by averaging
over each valid day in a year within the study period. Due to the re-
latively short data periods, no detrending was applied prior to calcu-
lating the mean seasonal cycles.

Residuals of the GPP-SIF relationship were analyzed to assess the
potential use of VOD for estimating GPP. Residuals were calculated
using a linear regression model following Guanter et al. (2014) and
Damm et al. (2015). The regression models were evaluated for each
grid cell separately with SIF as predictor variable. For grid cells with a
significant regression (p < 0.05), residuals were obtained as the dif-
ference between the observed and the SIF-based estimate of GPP.

In addition to temporal correlations, spatial correlations were cal-
culated to assess the similarity between maps. Since the spatial data
were not normally distributed (p > 0.05), Spearman rank correlation
was used.

3. Results

3.1. Global patterns of VOD, GPP and SIF

Temporal median values of VOD, GPP and SIF reveal similar spatial
patterns (Fig. 1a–g), although spatial coverage of SMOS is reduced due
to RFI masking. The spatial agreement with GPP is highest for SIF
(r = 0.87), followed by the passive VOD data sets (0.73 < r < 0.79)
and is lowest for ASCAT (r = 0.47). In general, regions of high VOD, i.e.
high biomass, coincide with highly productive regions, which are pri-
marily located in the tropics. In addition, high values are also found at
high latitudes. In these regions, data masking due to low temperature
and snow results in wintertime data gaps, which in turn increases
temporal median values as they represent medians over the growing
season only. Nevertheless, these relatively high values of productivity
or VOD at high latitudes are mainly consistent across data sets.

Considering the absolute values of the VOD data, the data range
differs between the data sets, which relates on the one hand to differ-
ences in the retrieval algorithm and version number and on the other
hand to differences in sensor frequency. Since the focus of this study,
however, is the temporal agreement between the data sets, differences
in the absolute values were not further analyzed.

Global temporal correlations between the original VOD time series
and GPP at lag zero reveal positive agreement across large areas
(Fig. 2a–e). However, also some regions with negative correlations are
observed. For ASCAT, negative correlations are found in Central
America, South America, Africa and Southeast Asia. The passive VOD
data sets show negative correlations mainly in South America (in par-
ticular in the Amazon) and Southeast Asia. Although the results for
different passive VOD data sets are similar in most areas, deviations
from this behavior are found for SMOS and the merged VOD. For SMOS,

negative correlations in central Africa coincide with those for ASCAT.
For the merged VOD, predominantly positive correlations with GPP are
observed in the Amazon, which contrasts with the negative values
found for the other passive VOD data sets and may be related to dif-
ferences in the algorithm version. Compared to the VOD data sets, the
correlation between GPP and SIF (Fig. 2f) is positive everywhere and on
average much stronger. Nevertheless, also regions with no significant
correlations (p > 0.05) occur, which are mainly located in the tropics
and in Australia. In the tropics, both GPP and SIF exhibit low varia-
bility, while the opposite, i.e. high variability for both data sets, is
found in Australia (Fig. S2).

Correlations between the anomalies of VOD and GPP (Fig. 3a–e)
also exhibit predominantly positive correlations. On average, the cor-
relations are lower in magnitude than for the original time series but
also show a lower number of negative values. Regions with relatively
high correlations for the anomalies coincide with regions of high tem-
poral agreement for the original time series, while some regions with
negative correlations for the original time series result in no significant
correlations for the anomalies. Highest correlation coefficients are ob-
served in Australia. The correlations for the anomalies of GPP and SIF
(Fig. 3f) are of similar strength as the correlations between the
anomalies of GPP and VOD.

3.2. Temporal agreement with respect to SIF

The direct comparison of correlations between VOD and either GPP
or SIF at homogeneous grid points (Fig. 4) shows that the temporal
agreement between VOD and SIF is similar to that found between VOD
and GPP. In most cases, however, the median correlation coefficient is
lower for the correlation between VOD and SIF than between VOD and
GPP. This is especially pronounced for sparsely vegetated grid cells,
which are mostly located in Australia (see Fig. 1h).

In order to assess if VOD can provide additional information about
GPP on top of that provided by SIF, VOD was correlated with the re-
siduals of the GPP-SIF relationship (Fig. 5). The spatial maps reveal
mainly positive correlations with negative correlations in the same
areas as for the original time series but show a larger number of not
significant correlations. In those areas where correlations are sig-
nificant, VOD can explain variations in GPP that are not expressed
through SIF using linear regression.

3.3. Comparison of the three variables for relating VOD to GPP

For the comparison of the three variables with GPP, only grid cells
that resulted in significant correlations for all three variables are shown
in Fig. 6. For shrub-, crop-, grassland and sparse vegetation, all three
variables yielded consistent, mainly positive correlations. Median va-
lues are generally lowest for the correlation between SMOS and GPP
and appear to increase with sensor frequency. In most cases, the ori-
ginal VOD time series result in higher median correlations with GPP
than the changes in VOD. Highest median correlations are observed for
shrubland for both frequencies of AMSR-E. Comparing the changes in
VOD, results show that ΔVOD≥0 generally leads to higher correlations
than ΔVOD.

For forests, results are not as consistent as for the sparsely to
moderately vegetated areas. Nevertheless, forests also show on average
a lower magnitude of correlation between SMOS and GPP than for the
remaining VOD data sets. Similar as for the sparsely to moderately
vegetated areas, evergreen needleleaf forests exhibit generally higher
correlations for the original VOD time series than for ΔVOD and
ΔVOD≥0. In contrast, deciduous forests mainly yield higher median
correlations for ΔVOD and ΔVOD≥0 than for the original VOD time
series. Evergreen broadleaf forests, which exhibit low signal variability
(see Fig. S2) and a high number of negative correlations, do not show a
consistent pattern for the three variables. Comparing only the changes
in VOD for all forests, median correlations tend to be higher for ΔVOD
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than for ΔVOD≥0 and thus show the opposite behavior as for the
sparsely to moderately vegetated areas.

The spatial distributions of the correlations between GPP and the
three VOD variables (Figs. 2, S6 and S7) tend to complement each
other. For grid points where the original VOD time series results in high
correlations, ΔVOD and ΔVOD≥0 have lower correlations and vice
versa. Since ΔVOD and ΔVOD≥0 both represent changes in VOD, their
spatial correlation patterns with GPP are more similar compared to the
correlation pattern between original VOD time series and GPP (Table
S2).

The lag analysis (Fig. 7) is based on the same grid cells as in Fig. 6.
On average, the original VOD time series follow the GPP signal: changes
in GPP are reflected with some delay by subsequent changes of the VOD
signal. Apart from the broadleaf forests, all land cover classes exhibit
median lag values ranging between 0 and 50 days. For ASCAT in de-
ciduous broadleaf forest, the half a year's lag corresponds to the strong
negative correlations found before for the zero-lagged correlations
(Fig. 6). In contrast to the positive lag found for the original VOD time
series, the lag values for ΔVOD and ΔVOD≥0 are negative, which in-
dicates that changes in VOD generally precede the GPP signal. In some
cases, as for example in the deciduous broadleaf forest for AMSRE_C,
AMSRE_X and the merged VOD, the absolute value of the median lag is
smaller for ΔVOD and ΔVOD≥0 than for the original VOD time series. In
these cases, calculating the change in VOD leads to a closer temporal
agreement with GPP, which corresponds to the higher correlation
coefficients found for the zero-lagged correlations.

This shift from positive to negative lag values for the different
variables is further illustrated in Fig. 8 for a rainfed cropland-

dominated grid cell. Comparing the data close to the seasonal peaks, the
original VOD time series decrease slower than the GPP signal, resulting
in a positive lag (Fig. 8b). For ΔVOD, the signal rises earlier than for
GPP, which yields a negative lag (Fig. 8c). Apart from the opposite sign
of the lag value, the scaled ΔVOD signal shows a different shape than
the GPP signal. ΔVOD exhibits a high number of values around 0.5,
which represent ΔVOD values close to zero and are a result of the re-
latively long period of small changes in VOD. In this case, considering
only positive changes in VOD appears to result in a higher temporal
matching with GPP (Fig. 8d), which explains the higher correlations
found for ΔVOD≥0 compared to ΔVOD in sparsely to moderately ve-
getated areas (Fig. 6). Despite the overall higher temporal agreement
for ΔVOD≥0 than for ΔVOD, the decline in GPP is better captured by
ΔVOD.

The relationships between the three VOD variables and GPP can be
further assessed with the corresponding scatter plots (Fig. 8e-g). This
relationship describes a seasonal hysteresis. Comparing all three vari-
ables, the shape of the mean seasonal cycle appears to be similar for the
original VOD time series and ΔVOD as they both exhibit a pronounced
linear part, while this feature is missing for ΔVOD≥0. The linear part for
the original VOD, however, corresponds to the GPP increase, while for
ΔVOD the linear part relates to the GPP decrease.

4. Discussion

4.1. Temporal agreement between VOD, GPP and SIF

In this study, large parts of the world reveal positive correlations

Fig. 1. (a–g) Temporal median value of VOD data sets (a–e), SIF (f) and GPP (g). VOD is dimensionless, GPP is in gC m−2 d−1 and SIF in mWm−2 nm−1 sr−1. For visualization purposes,
each data set is scaled between the 5th and the 95th percentile. (a–f) r denotes the spatial Spearman rank correlation between maps of temporal medians of GPP and VOD or SIF. All
coefficients are highly significant (p < 0.001). (h) Map of CCI land cover grid cells with a dominant land cover over 75% that correspond to the analyzed grid cells in Fig. 4. The center of
the red circle marks the location of the grid cell shown in Fig. 8. Note that the size of the grid cells is enhanced for clearer visibility. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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between VOD and GPP both for the original time series and for the
anomalies from the mean seasonal cycle. In addition, correlations be-
tween VOD and the residuals of the linear GPP-SIF relationship de-
monstrate that VOD can explain variations in GPP that are not ex-
plained by SIF. These findings suggest that VOD provides useful
information with regard to GPP.

Water limitation appears to foster the coupling between VOD and
GPP as areas with particularly high correlations between VOD and GPP
in this study seem to coincide with areas of low water availability
(Miralles et al., 2016; Papagiannopoulou et al., 2017). In these areas,
vegetation responds more rapidly to changes in water availability (De
Keersmaecker et al., 2015), which in turn is reflected in a close

Fig. 2. (a–e) Spearman rank correlation between GPP and VOD data sets at 0.25° and 8-daily resolution. Correlations that are not significant (p > 0.05) are masked in grey.
Corresponding correlations at 0.5° and monthly resolution are displayed in Fig. S4. (f) Spearman rank correlation between GPP and SIF at 0.5° and monthly resolution.

Fig. 3. As Fig. 2 but for the anomalies from the mean seasonal cycle. For a–e, the corresponding correlations at 0.5° and monthly resolution are shown in Fig. S5.
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association between VOD and GPP.
The most prominent example of low correlations in this study is

found for evergreen broadleaf forests, which can be attributed to the
low signal variability found in the tropics. This is in line with the
generally low predictability of GPP in tropical forests (Tramontana
et al., 2016) and can be linked to isohydricity, which describes the plant
strategy of stomatal control in response to water stress (Konings and
Gentine, 2016). Evergreen broadleaf forests are very isohydric, i.e. they

try to minimize changes in leaf water potential by closing stomata
(Fisher et al., 2006; Konings and Gentine, 2016). This closing of sto-
mata may result in a decoupling of VWC and photosynthetic activity
and hence cause a weaker relationship between VOD and GPP.

4.2. Occurrence of negative correlations between VOD and GPP

Negative correlations between VOD and GPP can be attributed to

Fig. 4. Violin plots of Spearman rank correlation between VOD and GPP (green) and between VOD and SIF (blue) at 0.5° and monthly resolution for grid cells with a dominant land cover
fraction above 75%. Results are grouped according to the CCI land cover classification and single frequency data sets are ordered along increasing microwave frequency. The number of
grid cells (n) is displayed above each graph. Horizontal lines within the violins indicate quartiles. Values that are not significant (p > 0.05) are excluded. For the description of the land
cover abbreviations see Table 2, for the spatial distribution of grid cells see Fig. 1h. Note that DNF is not displayed since the analysis did not result in significant correlations for this land
cover type. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 5. As Fig. 2a–e but for the correlation between VOD and the residuals of the GPP-SIF relationship at 0.5° and monthly resolution.
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land surface properties and vegetation phenology. For ASCAT, negative
correlations can be explained with the contribution of dry soil to vo-
lume scattering (Vreugdenhil et al., 2016a), which is often found for
ASCAT backscatter in arid and semi-arid regions (Wagner et al., 2013b;
De Jeu et al., 2008). Liu et al. (2016) showed for L-band backscatter
that the scattering mechanism of the soil shifts from surface scattering
under wet conditions to volume scattering under very dry conditions;

below a certain soil moisture threshold, the backscatter increases again
with decreasing soil moisture. Some grid cells showing negative cor-
relations are found in the tropical dry forest biome, which regularly
experience a pronounced dry season lasting up to six months (Olivares
and Medina, 1992). Therefore, depending on the duration and severity
of the seasonal dry period and on the soil properties, volume scattering
of dry soil might lead to spurious signals in the VOD if soil volume

Fig. 6. Violin plots of Spearman rank correlation between GPP and VOD (green), ΔVOD (yellow) or ΔVOD≥0 (orange) at 0.25° and 8-daily resolution. Results are displayed for grid cells
with a dominant land cover fraction above 75% and grouped according to land cover (Table 2). n is the number of grid cells. Horizontal lines within the violins indicate quartiles. Values
that are not significant (p > 0.05) are excluded. See Fig. S3 for the spatial map of the analyzed grid cells. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

Fig. 7. As Fig. 6 but for the lag. Lag values are excluded if the lag is larger than half a year or the correlation of the lagged time series is not significant (p > 0.05).
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scattering is not taken into account in the retrieval algorithm, as is the
case for the ASCAT TU-Wien algorithm (Hahn et al., 2017).

In contrast to the active VOD, most negative correlations for passive
VOD data can be linked to wetlands (Jones et al., 2011; Liu et al., 2011;
Vreugdenhil et al., 2016b). Jones et al. (2011) demonstrated that pas-
sive VOD data exhibit an inverse relationship with vegetation growth
for areas that are seasonally inundated.

For evergreen broadleaf forest, negative correlations with GPP for
SMOS, AMSRE_C, and AMSRE_X may partly relate to leaf phenology.
Jones et al. (2014) reported asynchronous behavior between flux tower
GPP estimates and AMSR-E C-band VOD for the Amazon forest, which
may be linked to an inverse relationship between leaf age and photo-
synthetic capacity. New leaves, which flush during the dry season
(Wright and van Schaik, 1994; Huete et al., 2006), are photo-
synthetically more active than old leaves (Kitajima et al., 2002; Hutyra
et al., 2007) but may also cause overall lower values of VOD.

Similarly, negative correlations found for SMOS in Africa may relate
to the phenology in tropical dry forests. Early studies demonstrated that
deciduous trees in dry forests minimize their water loss by leaf shed-
ding, and that some trees also flower during the dry season or often leaf
out at the end of the dry season (Olivares and Medina, 1992; Borchert,
1994a,b). In terms of the VOD signal, this means that trunks and
branches still contain a relatively high amount of water during the dry
season. Since L-band data is most sensitive to larger structures
(Woodhouse, 2005), this asynchronous behavior of the stem water
content may lead to the observed negative correlations between SMOS
and GPP.

4.3. Effect of sensor frequency

The comparison of different sensor frequencies between 1 and
10 GHz (L-, C-, and X-band) showed that for sparsely to moderately
vegetated areas median correlations increased with sensor frequency. In
line with this result, Calvet et al. (2011) demonstrated for a dense
wheat field that C- and X-band microwave observations obtained from a
ground-based radiometer are more sensitive to VWC than L-band data.
Since VWC is linearly related to VOD (Jackson and Schmugge, 1991;
Woodhouse, 2005), this can explain the lower magnitude of the cor-
relation coefficients between SMOS and GPP compared to the re-
maining VOD data sets. For forested regions, a similar behavior, with a
low magnitude of the correlation for SMOS, was observed in this study.
This suggests that C- and X-band microwave observations are better
suited for relating VOD to GPP than L-band data.

4.4. Comparison of the three VOD variables in relation to GPP

Detailed knowledge about land cover is of decisive importance
when assessing VOD in relation to GPP. Large differences exist for the
three VOD variables between forested and non-forested regions. While
ΔVOD shows a higher temporal agreement with GPP over forests, the
original VOD time series yield higher correlations with GPP for sparsely
to moderately vegetated areas.

According to the lag analysis, all three VOD variables generally did
not yield a zero lag. The opposite signs for VOD compared to ΔVOD and
ΔVOD≥0 suggest that at the global scale neither the original VOD time
series nor the changes in VOD alone can be used for relating VOD to
GPP, but instead should be combined. The reason why both VOD and
ΔVOD (or ΔVOD≥0) are linked to GPP, i.e. the sum of NPP and

Fig. 8. Time series (a–d) and scatter plots (e–g) at 8-daily resolution for a cropland-dominated grid cell in West Sahel, located at 16.125 W 14.625 N, for the period 2009–2012 (location is
indicated in Fig. 1f). (a) Skin temperature (T) and monthly sums of precipitation (P). (b–d) VOD (b), ΔVOD (c), or ΔVOD≥0 (d) together with GPP. Data are smoothed and scaled between
their minimum and maximum for visualization purposes. Note that the unscaled ΔVOD includes negative values. (e–g) Scatter plots of scaled VOD variables against unscaled GPP for the
same data as in (b–d).
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autotrophic respiration, can be explained with the contribution of both
biomass and growth-related terms to GPP.

NPP relates to the sum of above- and belowground NPP as well as
losses through volatile organic compounds (VOC), herbivory and root
exudates (Clark et al., 2001a,b; Gower et al., 2001; Girardin et al.,
2010). Assuming that belowground NPP is a fraction of ANPP (Clark
et al., 2001a), these two terms relate to changes in biomass and, hence,
to ΔVOD. The magnitude of the VOC flux was estimated to be small
compared to NPP or GPP (Guenther et al., 1995; Kesselmeier et al.,
2002), and losses through herbivory between consecutive observations
and root exudates are difficult to quantify.

Autotrophic respiration can be expressed as the sum of maintenance
and growth respiration; while maintenance respiration is proportional
to living biomass, growth respiration is a function of the change in
biomass (Ryan, 1990; Lavigne et al., 1996). Hence, VOD and ΔVOD can
be related to maintenance and growth respiration, respectively. This
suggests that GPP may be expressed as a combination of VOD and
ΔVOD.

The relationship between VOD, ΔVOD or ΔVOD≥0 and GPP may
also vary throughout the season leading to hysteresis as shown in this
study for a cropland-dominated grid cell. Similarly, but for the re-
lationship between LAI and GPP, Gitelson et al. (2014) emphasized the
importance of seasonal hysteresis. In the current study, the hysteresis
was also present for ΔVOD, which indicates that this behavior is not
merely a result of using a state (VOD) rather than a flux variable
(ΔVOD). The presence of a seasonal hysteresis also explains here the on
average lower correlations found for GPP vs VOD compared to GPP vs
SIF, since such a hysteresis decreases the strength of the linear re-
lationship. Combining the original VOD time series and the change in
VOD thus might reduce the strength of the seasonal hysteresis and
thereby improve the temporal agreement with GPP.

5. Conclusion

The global analysis of VOD from different frequencies (L-, C- and X-
band) in relation to GPP indicates that microwave VOD, which provides
complementary information to optical data, has the potential to serve as
explanatory variable for estimating GPP. Although some negative cor-
relations occurred in dry and wet areas for active and passive VOD,
respectively, VOD and changes in VOD (ΔVOD or ΔVOD≥0) generally
demonstrated a high temporal agreement with GPP, especially for C-
and X-band data. The mainly non-overlapping distributions of negative
correlations for active and passive observations indicate that active and
passive VOD data should be used jointly. Land cover based differences
in lag and correlation coefficient further suggest to combine original
VOD time series with changes in VOD for relating VOD to GPP. In ad-
dition, seasonal hysteresis was observed for the relationship between
VOD variables and GPP, which demonstrates that this relationship may
vary both in space and in time. This underpins the need to further in-
vestigate the spatio-temporal relationship between VOD and GPP in
order to make full use of microwave satellite vegetation data for re-
gional to global ecosystem analyses and vegetation monitoring.
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