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A B S T R A C T

As leaves are the basic elements of plants that conduct photosynthesis and transpiration, vegetation leaf dy-
namics controls canopy physical and biogeochemical processes and hence largely influences the interactive
exchanges of energy and materials between the land surface and the atmosphere. Given that the processes of
plant leaf allocation is highly sensitive to climatological and environmental conditions, developing robust
models that simulate leaf dynamics via climate variables contributes a key component to land surface models
and coupled land-atmosphere models. Here we propose a new method to simulate seasonal leaf dynamics based
on the idea of applying vegetation productivity as a synthesized metric to track and assess the climate suitability
to plant growth over time. The method first solves two closed simultaneous equations of leaf phenology and
canopy photosynthesis as modeled using the Growing Production-Day model iteratively for deriving the time
series of steady-state leaf area index (LAI), and then applies the method of simple moving average to account for
the time lagging of leaf allocation behind steady-state LAI. The seasonal LAI simulated using the developed
method agree with field measurements from a selection of AmeriFlux sites as indicated by high coefficient of
determination (R2 = 0.801) and low root mean square error (RMSE = 0.924 m2/m2) and with satellite-derived
data (R2 = 0.929 and RMSE = 0.650 m2/m2) for the studied flux tower sites. Moreover, the proposed method is
able to simulate seasonal LAI of deciduous broadleaf forests that match with satellite-derived LAI time series
across the entire eastern United States. Comparative modeling studies suggest that the proposed method pro-
duces more accurate results than the method based on Growing Season Index in terms of correlation coefficients
and error metrics. The developed method provides a complete solution to modeling seasonal leaf dynamics as
well as canopy productivity solely using climate variables.

1. Introduction

The Earth is an integrated and complex system that consists of in-
terrelated components, such as biosphere, atmosphere, hydrosphere,
cryosphere, pedosphere, and lithosphere. As a key constituent compo-
nent of the Earth system, the land surface interacts with the atmosphere
by exchanging massive fluxes of energy and materials (Bonan, 2002).
Terrestrial plants have considerable impacts on the climate by releasing
water vapor to the atmosphere through transpiration and removing
atmospheric carbon dioxide through photosynthesis (Beer et al., 2010).
The climate, in turn, controls plant growth and subsequent physical and
biogeochemical processes (Keenan et al., 2013; Zhu et al., 2017). Ro-
bust simulation of canopy processes and fluxes is then essential to

understand the land surface-atmosphere interactions and hence global
carbon cycle and water cycle of the Earth system.

One key to successful modeling of canopy exchanges between the
land surface and the atmosphere is to develop and solve two simulta-
neous equations. Given that leaves are the basic elements of plants that
conduct photosynthesis and control transpiration, the land surface
models commonly use leaf area index (LAI) to characterize vegetation
canopy (Clark et al., 2011; Dai et al., 2003; Oleson et al., 2013; Sellers
et al., 1996), and thus the first equation is to simulate canopy fluxes
such as gross primary production (GPP) and evapotranspiration given
known LAI on the ground. Thanks to decades of scientific advances in
land surface studies, the models that describe the first equation, despite
differing from each other in terms of sophistication, have been
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reasonably formulated and could be generalized as follows:

= …GPP ET f LAI E[ , ] ( , )n1,2, (1)

where GPP denotes gross primary production [gC/m2/day], ET denotes
evapotranspiration [W/m2], f denotes a certain function with inputs in
the parenthesis, LAI denotes leaf area index [m2/m2], and E1,2,…n de-
notes various environmental variables (e.g., temperature, vapor pres-
sure deficit, photoperiod, elevation, and soil moisture).

As external environmental variables in vegetation models are typi-
cally considered as known conditions that could be obtained from ob-
servations or atmospheric circulation models, the second equation is to
provide complementary LAI to the first equation by simulating the leaf
dynamics solely using climate variables. Solving the second equation, as
generalized as follows, essentially involves the study and modeling of
vegetation phenology and its interaction with the environment:

= …LAI f E( )n1,2, (2)

where LAI denotes leaf area index [m2/m2], and E1,2,…n denotes various
environmental variables.

Vegetation phenology modeling has been found highly uncertain in
the land surface models and is challenging for reasons (Friedl et al.,
2014; Richardson et al., 2012). While understanding the exact role of
each individual climate factor in leaf allocation is needed for model
developments, the climate drivers affect vegetation phenology through
various physiological and biochemical processes with interrelated im-
pacts. Moreover, the physiological processes of plant leaf allocation
responds to climate variation relatively slowly, ranging from days to
months, such that there is a need to account for the time lag effects by
using preceding climate variables when simulating seasonal leaf dy-
namics. In response to climate conditions, plant species have evolved
distinct canopy structures and their own strategies of leaf allocation to
optimize the acquisition of natural resource (Givnish, 1986). Im-
portantly, developing models of leaf dynamics requires recording in-
fluential climate variables and plant phenology simultaneously and
continuously, while key phenophases, such as the events of leaf emer-
gence, maturation, senescence, and dormancy, typically occur only
once (or at most twice) in a year (Broich et al., 2014), making data from
traditional field measurements limited, especially when taking the
factors of weather conditions and equipment malfunctions into account.
Fortunately, land surface observations from flux towers, automated
camera networks, and remote sensing now offer opportunities for de-
veloping and validating comprehensive phenology models (Ganguly
et al., 2010; Hufkens et al., 2012; Yang et al., 2013).

Typically, the models of plant phenology are developed separately
from the canopy model of photosynthesis and evapotranspiration. One
approach to characterize vegetation leaf dynamics is to simulate the
timing of key phenophases such as spring onset and autumn senescence
using climate variables (Melaas et al., 2016; Yang et al., 2012). For
example, acknowledging temperature as one of the most important
factors that affect biochemical reactions and hence leaf allocation, the
Growing Degree Day (GDD) model accumulates daily temperatures to
predict the occurrence of spring onset when heating accumulation
reaches a certain heating forcing (Chuine et al., 1999). To account for
the impacts of environmental drivers other than temperature, the GDD
derivative models downregulate heating accumulation by adding con-
straint functions of different climate variables, such as chilling tem-
perature, photoperiod, vapor pressure deficit, and soil water stress
(Melaas et al., 2013; White et al., 1997; Xin et al., 2015a). Complex
land surface models like the Community Land Model use a set of em-
pirical functions to downregulate heating accumulation, thereby pre-
dicting spring onset and autumn senescence (Oleson et al., 2013). Other
than predicting specific dates of key phenophases, biogeochemical
models such as DeNitrification-DeComposition choose to first simulate
optimal LAI time series using the GDD time series and then simulate
stressed LAI time series using empirical functions derived based on
other environmental factors (Li, 2000). Jolly et al. (2005) proposed the

Growing Season Index (GSI), a product of three indices as derived from
temperature, vapor pressure deficit, and photoperiod, respectively, to
quantify the time series of vegetation greenness throughout the year.
Note that GSI essentially downregulates GDD accumulations with ad-
ditional considerations for evaporative demand and daylength. To sum
up, while existing methods have varied degrees of success in simulating
seasonal leaf dynamics of vegetation, most of them are largely empirical
to date and thus have limitations in climate change studies (Arora and
Boer, 2005).

Different from existing approaches, Xin (2016) developed a syn-
thesized model that integrates the canopy model of photosynthesis and
evapotranspiration for simulating vegetation phenology. The model,
named as the Growing Production-Day (GPD) model, has an analogous
form to the GDD model and its derivatives, but accumulates vegetation
productivity instead of environmental temperature in time series. In
essence, the GPD model considers plant photosynthetic productivity as
the first-order control determining leaf allocation and applies the pro-
ductivity of a hypothetical reference vegetation cover as a synthesized
metric instead of environmental temperature to track and assess the
climate suitability to plant growth over time. The timing of vegetation
spring onset is then predicted as the optimal point that balances the
inevitable conflict between greater productivity benefits and higher
hazard damage risks underlying the plant strategy of earlier leaf allo-
cation. The GPD model has explicit biological explanations and syn-
thesizes all environmental factors that affect photosynthetic activities
and hence vegetation phenology. Although the GPD model has shown
to simulate the timing of spring onset for different biomes well, there is
a need to develop further solutions for modeling the entire time series
of seasonal leaf dynamics.

The goals of this study are to: 1) develop an approach to simulate
seasonal leaf dynamics of vegetation, and 2) evaluate the model per-
formance for deciduous broadleaf forests in eastern United States using
field measurements and satellite data.

2. Methods and materials

2.1. A steady-state approximation approach

The physiological processes that regulate canopy photosynthesis
and vegetation phenology do not respond to the climate variation in-
stantaneously and simultaneously. The biochemical process of leaf
photosynthesis usually takes one minute to reach the steady-state
condition. In addition, plants open and close the stomata, numerous
microscopic pores on the surfaces of leaves, to control the diffusion
rates of carbon dioxide into leaves for photosynthesis. The stomatal
conductance, a metric that measures the rates of carbon dioxide en-
tering and water vapor leaving leaf stomata, usually takes several
minutes to approach the steady state (Sellers et al., 1996). By com-
parison, the biogeochemical processes that plants allocate biomass to
leaves could take up days to months under a changing climate (Zeng
et al., 2013). Because vegetation phenology is typically modeled at
daily or sub-daily time steps, it is then reasonable to treat plant pho-
tosynthesis as a near-instantaneous process on the daily or hourly basis,
but simulate vegetation phenology as lagging behind the steady state.
As such, the proposed method is to first solve the steady state of leaf
dynamics and then account for the time lagging of leaf allocation be-
hind the steady state.

Plants conduct photosynthesis and convert solar radiation into
chemical energy to fuel all subsequent activities of organisms. Under
the pressure of national selection, plants have evolved their strategies to
compete resources such as light, water, and nutrients for photosynthesis
(Eagleson, 2005; Menzel, 2002). As such, given unchanging environ-
ment conditions (i.e., limited natural resources), vegetation leaf dy-
namics would eventually reach a steady state if time approaches in-
finity, meaning that the total canopy LAI becomes unchanging as
foliation balances defoliation under the competition pressures from
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both within and between species. In the natural environment, decid-
uous broadleaf forests have evolved themselves to adapt to the climates
with two distinct steady states during a growing season: dormancy with
leaf absence when the climate is unsuitable for plant growth and ma-
turation with canopy closure when plant leaves reach the carrying ca-
pacity in an environment. Solving LAI at the steady state as the point
that photosynthesis could sustain by using the simplest form of a linear
function that meets both steady state conditions, we are able to write an
equation as follows:

⎜ ⎟= ⎛
⎝

⎞
⎠

LAI GPP
GPP

LAI LAImin ,s
s

c
c c

(3)

where LAIs denotes leaf area index at the steady state condition given
fixed environmental conditions [m2/m2], GPPs denote gross primary
production at the steady state condition given fixed environmental
conditions [gC/m2/day], LAIc denotes leaf area index at canopy closure
[m2/m2], and GPPc denotes mean gross primary production at canopy
closure [gC/m2/day].

The solution, although having a simple form, provides a key com-
plementary equation to Eq. (1), since canopy LAI and GPP at canopy
closure (LAIc and GPPc) can be obtained from observational data as
prescribed parameters. In essence, the above equation applies the
photosynthetic capacity under given environmental conditions to
quantify the carrying capacities of the environment. Note that all en-
vironmental factors that influence the photosynthetic activities as
quantified using the metric of steady-state gross primary production
(GPPs) would affect leaf allocations. If the overall environmental con-
dition is not suitable for photosynthesis (GPPs = 0), then there are no
leaf presence for the steady state (LAIs = 0), whereas total canopy LAI
is capped at canopy closure. If substituting the variables of LAIs and
GPPs into a well-developed photosynthesis model like the GPD model
(see Section 2.2 for details), then we obtain another equation as follows
and hence closed simultaneous equations of both Eqs. (3) and (4):

= …GPP f LAI E( , )s s n1,2, (4)

where LAIs denotes leaf area index at the steady state condition given
fixed environmental conditions [m2/m2], GPPs denote gross primary
production at the steady state condition given fixed environmental
conditions [gC/m2/day], and E1,2,…n denotes various environmental
variables.

One key prerequisite to solving the simultaneous equations is that
Eqs. (3) and (4) must converge. Note that Eq. (3) is a linear function and

Eq. (4) is a logarithmic function passing through the origin in the space
of GPP and LAI because GPP increases as LAI increases and saturates
when the leaf radiation absorption saturates under given environmental
conditions. Taking an example as shown in Fig. 1a, two solutions can be
obtained as the crossover points of the lines of the two functions. As one
of the crossover points is the origin, the needed LAIs is then solved as
the larger one. Note that because inputs to both equations are con-
volved and the modeling of canopy photosynthesis (i.e., Eq. (4)) often
involves a complex model, the simultaneous equations of Eqs. (3) and
(4) cannot be solved directly. Numerical solutions however can be
obtained by the method that first gives initial LAI values and then
solves for approximated values of the steady state iteratively until
converging.

Once applying the steady-state method to time series observations
of climate conditions, we could obtain steady-state LAI time series that
tracks the climatic suitability to plant growth in a leading phase (see for
an illustrative example shown in Fig. 1b). Note that the solved steady-
state LAI fluctuates unrealistically as daily climate variation is high and
thus there is a need to buffer single extreme events from triggering
canopy changes prematurely. There are generally two methods to make
the model have the ability for predicting vegetation phenology: one is
to accumulate daily values and predict the timing of specific phenology
events such as spring onset and autumn senescence, and another is to
adopt the method of simple moving average and make predictions of
the entire time series. Here we apply the second method to the pre-
ceding time series of the steady-state LAI and simulate LAI as follows:

=LAI SMA LAI n( , )s (5)

where LAI denotes leaf area index [m2/m2], LAIs denotes leaf area index
at the steady state condition [m2/m2], n denotes the number of days in
the sample window, and SMA denotes the operation of simple moving
average.

2.2. Modeling photosynthesis using the GPD model

Applying the steady-state approach to model LAI time series re-
quires a robust model that simulates canopy photosynthesis, whereas
canopy models with varied degrees of sophistication are available (Dai
et al., 2003; Oleson et al., 2013; Running et al., 2000; Ryu et al., 2011;
Sellers, 1985). Here, we apply the GPD model, a coupled model that
extends our previous work (Xin et al., 2015b, 2016) and synthesizes
state-of-the-art models, to simulate canopy photosynthesis. The GPD

Fig. 1. Demonstrative examples of the modeling methods are shown for a) the solutions to the simultaneous equations and b) time series of satellite-based and modeled leaf area index
(LAI). In the figure, GPD LAIs denotes the steady-state leaf area index derived using the growing production-day model, GPD LAI denotes the leaf area index modeled using the growing
production-day model (i.e., 21-day simple moving average of GPD LAIs), iGSI LAI denotes the instantaneous leaf area index derived using the growing season index, and GSI denotes the
leaf area index modeled using the growing season index (i.e., 21-day simple moving average of iGSI LAI). Climate data used in Fig. 1a were acquired on Jun 1st in 2011 at the US-Oho site
(Table 2) and all data used in Fig. 1b were obtained for the entire year of 2011 at the US-Oho site.
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model has proven suitable for applications in deciduous broadleaf for-
ests when validated against direct measurements of canopy photo-
synthesis and evapotranspiration at flux tower sites (Xin, 2016).

The GPD model consists of several sub-models and each sub-model
involves a complex system of equations. Here we only provide a brief
summary for each sub-model (Table 1), where complete descriptions of
the GPD model can be found in Xin (2016). The GPD model accounts for
five fundamental processes within a canopy: 1) a radiative transfer
model that determines the canopy light environment and the leaf ra-
diation absorption, 2) a leaf photosynthesis model that simulates the
photosynthetic rates of individual leaves, 3) a leaf conductance model
that derives the leaf boundary layer and stomatal conductance, 4) a leaf
energy balance model that accounts for leaf temperature and leaf
transpiration, and 5) a surface energy balance model that derives soil
evaporation rates. Note that the models of leaf photosynthesis, leaf
transpiration, and leaf conductance are also convolved in terms of
model inputs. Similar to the method used for the steady-state approx-
imation, the canopy model can be solved iteratively until converging.

2.3. Comparative modeling based on Growing Season Index

To make comparisons with the proposed method, another method
based on the Growing Season Index (GSI) is also applied for simulating
LAI time series (Jolly et al., 2005; Savoy and Mackay, 2015). GSI is a
simple indicator of environmental constraints to canopy development
and has proven useful for monitoring canopy greenness in time series.
GSI is derived as a single metric based on the product of three in-
dividual environmental indicators on a daily basis as follows:

= × ×iGSI iTMIN iVPD iPhoto (6)

where iGSI denotes daily growing season index, and iTMIN, iVPD, and
iPhoto denote the daily indicator for minimum temperature, vapor
pressure deficit, and photoperiod, respectively.

The indices of minimum temperature (iTMIN), vapor pressure def-
icit (iVPD), and photoperiod (iPhoto) are bounded between 0 and 1 and
are derived as follows:

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

iTMIN TMIN TMIN
TMIN TMIN

max(0, min , 1min

max min (7)

⎜ ⎟= ⎛
⎝

− −
−

⎞
⎠

iVPD VPD VPD
VPD VPD

max(0, min 1 , 1min

max min (8)

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

iPhoto Photo Photo
Photo Photo

max(0, min , 1min

max min (9)

where TMIN denotes daily minimum temperature [°C], VPD denotes
daily vapor pressure deficit [Pa], Photo denotes daily photoperiod
[hour], whereas the minimum and maximum thresholds for
daily minimum temperature, daily vapor pressure deficit, and daily
photoperiod that constrain vegetation growth are given as
TMINmin = − 2 °C, TMINmax = 5 °C, VPDmin = 900 Pa, VPDmax =
4100 Pa, Photomin = 10 h, and Photomax = 11 h, respectively.

The daily GSI is calculated as the 21-day simple moving average of
the daily indicator (iGSI). Note that both GSI and iGSI are dimension-
less, and thus both are scaled using LAI at canopy closure (LAIc) when
modeling LAI time series. An example is given in Fig. 1b to illustrate the
LAI time series modeled based on GSI.

2.4. Study materials

We use measurements at flux tower sites for model development
and apply our model to simulate seasonal LAI of deciduous broadleaf
forest for the entire eastern United States (Fig. 2). The climate data on a
daily basis are required as model inputs, whereas both LAI and GPP
data are needed for model validation.

For the site-scale modeling studies, 106 site-year data from twelve
flux towers of deciduous broadleaf forests (Table 2) that have Level 2 or
Level 4 data available in the AmeriFlux website (http://ameriflux.ornl.
gov/) were used for model validation. We used half-hourly gap-filled
Level 4 data as priority and half-hourly or hourly Level 2 data as the
secondary choice if Level 4 data were missing. Half-hourly or hourly
flux tower measurements, such as air temperature, incoming solar ra-
diation, atmospheric pressure, vapor pressure deficit, gross primary
production, and latent heat, were preprocessed to a daily basis. Extra-
terrestrial solar radiation, photoperiod, and solar zenith angle (i.e., the
angle that the sun away from directly overhead) are calculated as a
function of geolocation (i.e., latitude and longitude), the day of year
(DOY), and solar time of the day (Allen et al., 1998). Diffuse solar ra-
diation, if not measured, was derived based on incoming solar radiation
and extraterrestrial solar radiation using an empirical model recently
developed for the United States (Kathilankal et al., 2014). Atmospheric
pressure, if missing, is derived as a function of elevation. All functions
that derive the needed but missing model inputs could be found in

Table 1
The generalized equations for the growing production-day model to simulate canopy
photosynthesis and evapotranspiration.

model name equations

canopy radiative transfer =PAR R R f R R θ L Ω[ , , ] ( , , , , )l ln sn g d

leaf photosynthesis =A f PAR T Photo SWC P g c( , , , , , , )n l l atm s i

leaf conductance =g g c f A VPD P u CO[ , , ] ( , , , , [ ])s b i n atm 2

leaf transpiration =λE T f R T VPD P g g[ , ] ( , , , , , )l l ln a atm s b
soil evaporation =λE f R T VPD P( , , , )s sn a atm

where PARl denotes the radiation absorbed by either sunlit or shaded leaves per leaf
hemi-surface area at the photosynthetically active radiation wavelength [W m−2]; Rln

denotes the net shortwave radiation at the leaf surface [W m−2]; Rsn denotes the net
shortwave radiation at the soil surface [W m−2]; f denotes the function with input ar-
guments in parenthesis; Rg denotes daily total incoming solar radiation at the canopy top
[MJ m−2 day−1]; Rd denotes daily diffuse radiation at the canopy top [MJ m−2 day−1]; θ
denotes solar zenith angle [radian]; L denotes leaf area index [m2 (leaf hemi-surface area)
m−2 (ground area)]; Ω denotes foliage clumping index [dimensionless]; An denotes the
leaf net photosynthetic rate [μmol CO2 m−2 s−1]; Tl denotes daily mean leaf temperature
[°C]; Ta denotes daily mean air temperature [°C]; VPD denotes daily vapor pressure deficit
[Pa]; Patm denotes daily atmospheric pressure [Pa]; Photo denotes daily photoperiod for a
given day of year at a given geolocation [hour]; SWC denotes the root zone soil water
content [kg m−2]; gs denotes the leaf stomatal conductance [m s−1]; gb denotes the leaf
boundary layer conductance [m s−1]; ci denotes the intercellular CO2 partial pressure
[Pa]; CO[ ]2 denotes atmospheric CO2 concentration [ppm]; u denotes the wind speed
[m s−1]; λEl denotes the latent heat at the leaf surface [W m−2]; and λEs denotes the
evaporation rate for the soil surface [W m−2].

Fig. 2. Locations of the studied flux tower sites against a backdrop of the MODIS land
cover classification map of deciduous broadleaf forests. Note that US-WBW is located
close to US-ChR and US-UMd is located close to US-UMB.
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details in Xin (2016).
To evaluate LAI modeling, we obtained all field-measured LAI at the

flux towers from the AmeriFlux biological datasets. Because field ex-
periments only provide insufficient LAI measurements at arbitrary time
intervals, we also processed satellite data from Moderate Resolution
Imaging Spectroradiometer (MODIS) that provide continuous large-
scale observations of the land surface. The 8-day 500 m MODIS LAI
Version 6 products (MOD15A2H; Myneni et al., 2002) and the yearly
500 m MODIS Land Cover type Version 5 products (MCD12Q1; Friedl
et al., 2010) were downloaded from the Land Processes Distributed
Active Archive Center (https://lpdaac.usgs.gov/). The satellite-derived
LAI could fluctuate unrealistically in the time series due to cloud and/or
aerosol contamination (Running and Zhao, 2015). To produce reason-
able LAI time series, we first replaced poor quality LAI data as derived
based on the Quality Control data in MOD15A2H using the median
value of a three-point moving window and then filled the gap, if any,
using the autoregressive modeling approach. Spikes in the gap-filled
time series due to possible outliers are removed using the Hampel filter
and then a Savitzky-Golay filter is applied to produce smoothed time
series of canopy LAI on an 8-day basis, which are further linearly in-
terpolated to daily time series (Li et al., 2014). The satellite-based LAI
time series are extracted for the pixel that contains the corresponding
flux tower site.

In addition to the field datasets of absolute LAI, the datasets of re-
lative LAI developments as derived from radiometric field measure-
ments at four deciduous broadleaf forests within our study domain (US-
Ha1, US-MMS, US-UMB, and US-WCr; data from the North American
Carbon Program phenology site synthesis by Richardson et al. (2012),
see also Barr et al. (2013)) were used for study. Daily canopy gap
fraction was first calculated as the ratio of measured daily incident solar
photosynthetic photon flux density below the canopy to that above the
canopy. The seasonal trajectory of canopy LAI was estimated based on
canopy gap fraction and was further normalized into a relative scale to
obtain relative LAI developments (0 = bare canopy in winter; 1 = full
canopy in summer). The correlation between LAI derived using canopy
radiation absorption and LAI measured with the LAI-2000 instruments
were reported to be high (r > 0.95 for US-MMS and US-UMB and
r = 0.85 for US-Ha1). More details about the processing of field data
could be found in (Richardson et al., 2012).

For the large-scale modeling studies, we obtain daily 1000 m cli-
mate data for the year of 2006 from the Daymet datasets (Thornton
et al., 2012) distributed by the Oak Ridge National Laboratory (ORNL)
Distributed Active Archive Center (http://daymet.ornl.gov/). The cli-
mate datasets are reprojected to match the Sinusoidal projection of the
MODIS data using the tool of Geospatial Data Abstraction Library. Daily
mean temperature was calculated as the average of daily maximum and
minimum temperatures. Daily vapor pressure deficit were derived as
the difference between average saturated vapor pressure and vapor
pressure. The 1000 m digital elevation maps as obtained from NOAA’s
Global Land One-km Base Elevation (GLOBE) project (http://www.

ngdc.noaa.gov/mgg/topo/) was used to derive atmospheric pressure.
Other climate data required by the model are calculated the same way
as the processing of the flux tower datasets. To evaluate the model
performance over large areas, the processed 500 m MODIS LAI time
series were resampled to match the 1000 m climate datasets based on
the averaging method for the pixels that are classified as deciduous
broadleaf forests in the MODIS land cover product. The MODIS land
cover product is resampled to 1000 m resolution based on the majority
approach and is then used to mask out areas that are not deciduous
broadleaf forests.

2.5. Model implementation

Modeling seasonal LAI time series requires proper parameterization
for each individual sub-model. The GPD model that simulates canopy
photosynthesis given LAI has already been well calibrated for the biome
of deciduous broadleaf forests. Typical parameter values in the litera-
ture are used with details explained in Xin (2016). The leaf photo-
synthesis, conductance, and transpiration models were solved itera-
tively by initializing the leaf photosynthesis model using an
intercellular to ambient carbon dioxide concentration ratio of 0.66
(Katul et al., 2000). It typically takes less than four iterations to obtain
converged solutions when simulating canopy photosynthesis on a daily
basis.

Given LAI time series derived from MODIS for all the flux tower
sites, LAI at canopy closure (LAIc) for deciduous broadleaf forests is
determined as 5.793 based on the maximum 95th percentile of satellite-
derived LAI, whereas GPPc is determined as the mean value of daily
GPP from all flux tower data for the time period that MODIS LAI are
greater than LAIc. Similar to the method used to solve canopy photo-
synthesis, the simultaneous equations of Eqs. (3) and (4) are solved
iteratively given an initialized LAI value of 3.0, and it normally takes
less than five iterations to obtain a converged solution for LAI at the
steady state condition (LAIs). The same as the GSI model, the sample
window size (n) for simple moving average to account for the time
lagging effect is set as 21, thereby allowing for direct comparisons.

As the correlation between modeled and observed seasonal trajec-
tory of canopy LAI could be high because of the underlying seasonality,
key phenophases from the seasonal trajectory of both modeled and
observed canopy LAI were also extracted for model assessment. The
phenological transition dates we estimated were derived for the first
spring and last autumn dates at which measured and modeled
LAI = 20%, 50%, and 80% of the seasonal LAI amplitude (Richardson
et al., 2012). The relative thresholds (20%, 50%, and 80%) were chosen
to represent varied key phenophases in vegetation growth. The phe-
nological transition dates derived from modeled canopy LAI were then
compared with those derived from observed canopy LAI.

Table 2
Site information for the flux towers of deciduous broadleaf forests.

Site Code Site Name Lat (°N) Lon (°W) Elev (m) Years Reference

US-Bar Bartlett Experimental Forest 44.0646 −71.2881 272 2004–2011 Jenkins et al. (2007)
US-ChR Chestnut Ridge 35.9311 −84.3324 286 2006–2010 Hollinger et al. (2010)
US-Dk2 Duke Forest Hardwoods 35.9736 −79.1004 168 2007–2008 Oishi et al. (2008)
US-Ha1 Harvard Forest EMS Tower 42.5378 −72.1715 340 2000–2012 Urbanski et al. (2007)
US-MMS Morgan Monroe State Forest 39.3231 −86.4131 275 2000–2014 Dragoni et al. (2011)
US-MOz Missouri Ozark 38.7441 −92.2000 219 2005–2013 Gu et al. (2006)
US-Oho Oak Openings 41.5545 −83.8438 230 2005–2011 Xie et al. (2014)
US-Slt Silas Little Experimental Forest 39.9138 −74.5960 30 2005–2012 Clark et al. (2012)
US-UMB Univ. of Mich. Biological Station 45.5598 −84.7138 234 2000–2012 Gough et al. (2013)
US-UMd UMBS Disturbance 45.5625 −84.6975 239 2008–2012 Gough et al. (2013)
US-WBW Walker Branch 35.9588 −84.2874 343 2000–2006 Miller et al. (2007)
US-WCr Willow Creek 45.8060 −90.0798 515 2000–2013 Desai et al. (2008)
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3. Results

3.1. Site-scale modeling of leaf area index and leaf phenology

The measured and modeled time series of LAI are shown for 8
successive years over the US-Ha1 and US-MMS sites in Fig. 3. Overall,
the LAI modeled using both GPD and GSI match with LAI measured in
field experiments or derived from MODIS in terms of the phase and
amplitude. Seasonal LAI peaks derived from MODIS agree with that
measured in field experiments for the US-Ha1 site, but are slight
overestimated for the US-MMS site. As the prescribed parameter of LAI
at canopy closure was calibrated using MODIS data, the modeled sea-
sonal LAI amplitudes match with satellite-based time series better than
field-based time series. For the deciduous broadleaf forests, modeled
LAI could be as low as zero during the wintertime, given that the cli-
mate conditions are not suitable for vegetation growth, while MODIS-
derived LAI could have residual values. GPD-based LAI exhibits time
series of seasonal cycles closer to MODIS-based LAI than GSI-based LAI
in phase, as GSI-based LAI tends to overestimate during the period from
spring onset to summer maturation and from autumn senescence to
winter dormancy.

Scatter plots in Fig. 4 show the validation of modeled and satellite-
based LAI against field-measured LAI. Despite having mismatched
footprints, satellite data provide reasonable LAI estimates as compared
to field measurements, where the coefficient of determination (R2) is as
high as 0.803 and the root mean square error (RMSE) is 0.972 m2/m2.
The LAI modeled using GPD agree well with field measurements
(R2 = 0.801 and RMSE = 0.924 m2/m2). By comparisons, the LAI
modeled using GSI, although correlating with field-measured LAI po-
sitively and significantly, have relatively large errors

(RMSE = 1.696 m2/m2). When validating using field measured LAI,
positive biases (the metric of bias, derived as the mean of the residual
errors between modeled and observed data, is indicative to whether the
model tends to under- or over-estimate the measured data with an ideal
value of zero; Bennett et al. (2013)) are apparent for MODIS-based LAI
(bias = 0.326 m2/m2) and GSI-based LAI (bias = 1.409 m2/m2), and
biases are minor for GPD-based LAI (bias = −0.070 m2/m2). The GSI-
based LAI have shown to slightly underestimate during the non-
growing season but largely overestimate during the growing season.

Relative LAI developments (0 = bare canopy in winter; 1 = full
canopy in summer) are evaluated against that derived from continuous
measurements of Fraction of absorbed Photosynthetically Active
Radiation (FPAR) at four sites of deciduous broadleaf forests on a
weekly basis (Fig. 5). The correlation coefficients (r) between relative
LAI from the GPD model and field measurements are significantly high
(r = 0.92, 0.97, 0.95, and 0.98 for US-Ha1, US-MMS, US-UMB, and US-
WCr, respectively). The correlation coefficients between relative LAI
from the GSI model and field measurements are slightly lower
(r = 0.93, 0.89, 0.89, and 0.90 for US-Ha1, US-MMS, US-UMB, and US-
WCr, respectively) for all sites except US-Ha1. Note that relative LAI as
derived from the GSI model are positively biased (bias = 0.12, 0.15,
0.15, and 0.12 for US-Ha1, US-MMS, US-UMB, and US-WCr, respec-
tively), whereas relative LAI as derived from the GPD model do not
have significant biases.

In addition to evaluation using field measurements, the modeled
results are assessed using the processed MODIS LAI on a biweekly basis
for all flux towers in Fig. 6. The GPD model and the GSI model could
explain 92.9% and 73.1% variance of the MODIS LAI, respectively. The
GPD-based LAI and MODIS LAI have a regression line close to the line of
equality and an RMSE value of 0.650 m2/m2. Note that the GPD-based

Fig. 3. Measured and modeled daily time series of
leaf area index are shown for the flux tower sites of
a) US-Ha1 and b) US-MMS over 8 successive years
from 2001 to 2008.
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Fig. 4. Regressions are shown for comparisons a) between field-measured and satellite-based LAI, b) between field-measured and GPD-based LAI, and c) between field-measured and GSI-
based LAI using all available data from the deciduous broadleaf forest sites. The solid lines denote the lines of equality and the dashed lines denote the regression lines.

Fig. 5. Regressions are shown for comparisons a) between field-measured and GPD-based relatively LAI and b) between field-measured and GSI-based relatively LAI on a weekly basis. All
available site-year flux tower data were included in the analysis. The solid lines denote the lines of equality.

Fig. 6. Regressions are shown for comparisons a) between MODIS-based and GPD-based LAI and b) between MODIS-based and GSI-based LAI on a biweekly basis. All available site-year
flux tower data were included in the analysis. The solid lines denote the lines of equality and the dashed lines denote the regression lines.
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LAI have a negative bias as compared to MODIS LAI, which offset the
positive bias of MODIS LAI as compared to the field-measured LAI. By
comparison, the GSI-based LAI have an RMSE value of 1.402 m2/m2

and a positive bias value of 0.652 m2/m2 when taking MODIS LAI as
references. As validated using the site-scale data, the GPD model shows
to be robust for simulating seasonal dynamics of canopy LAI.

Table 3 provides assessments of the timing of seasonal phenology
transitions as derived from both the GPD and GSI models using both
field measurements and satellite observations. Using field data from
four sites, the GPD model could well simulate the first date at which
daily spring LAI exceeds 50% seasonal amplitude with the correlation
coefficient of 0.924 and the bias of −1.11 days. By comparison, the
GSI-based method predicts the timing of key phenophases in spring
much earlier than field measurements (bias = −36.89, −19.82, and
−10.82 days for spring LAI that exceeds 20%, 50%, 80% seasonal
amplitudes, respectively). In autumn, the GPD model predicts the last
date at which LAI exceeds 20% seasonal amplitude close to field ob-
servations (r = 0.480 and bias =−2.33 days), whereas the predictions
based on the GSI model are much later than was actually observed
(r = 0.690 and bias = 27.22 days).

Given that data from field observations were limited (n = 27 site-
years), key phenophases derived from MODIS LAI were also used for
model assessment (n = 104 site-years). With large site-year datasets
from satellites, the GPD model could well simulate key phenophases
both in spring (r = 0.835 and bias = −7.88 days for the first dates that
LAI exceeds 20% seasonal amplitudes) and in autumn (r = 0.707 and
bias = 6.72 days for the last dates that LAI exceeds 20% seasonal am-
plitudes). Similar to assessment using field observations, the GSI-based
method predicts the timing of key phenophases much earlier in spring

(large negative biases) and much later in autumn (large positive biases)
than derived from satellite data. Note that in terms of modeling key
phenophases in spring and fall, the GSI model generally performed as
well as or better than 14 tested models in Richardson et al. (2012),
while the GPD model greatly exceeded the performance of any single
model in that earlier study.

3.2. Large-scale modeling of leaf area index

To understand the model performance over large areas, Fig. 7 pre-
sents annual average LAI as obtained using different methods for the
eastern United States. The annual average LAI in the year of 2006 si-
mulated using the GPD model (Fig. 7b) has a spatial pattern similar to
that derived from satellite data (Fig. 7a), where both show to increase
from less than 2.0 m2/m2 in the north to greater than 3.0 m2/m2 in the
south. Notably, the GPD-based method could well depict the decreases
of LAI as elevation increases in the Appalachian mountain areas.
Compared to the MODIS data, the GSI-based method (Fig. 7c), although
producing a minor north-south gradient of LAI, largely overestimates
LAI, given that the annual average LAI are greater than 3.0 m2/m2 for
most areas.

Fig. 8 displays the spatial pattern of the Pearson’s correlation
coefficient between modeled and satellite-based daily LAI time series in
2006, where higher positive correlations indicate better modeling of
LAI for the corresponding pixel. The GPD model well captures the
seasonal variation of satellite-derived LAI, as the correlation coeffi-
cients are higher than 0.95 across the eastern United States. By com-
parison, although the GSI-based LAI time series have a positive corre-
lation with that derived from MODIS, the correlation coefficients only

Table 3
The performance of predicted leaf area index (LAI) transition dates as evaluated against field measurements and satellite observations. LAI transition dates were estimated based on dates
at which specific relative thresholds of seasonal development, i.e., 20%, 50%, 80% of seasonal amplitude, were reached. Positive biases indicate that modeled spring onset and/or autumn
senescence are later than observed ones, and negative biases indicate the opposite.

reference GPD-based method GSI-based method

RMSE (days) Bias (days) r RMSE (days) Bias (days) r

field data (n = 27 site-years)
Spring LAI 20% threshold 0.916*** 12.97 −12.19 0.761*** 38.12 −36.89
Spring LAI 50% threshold 0.924*** 4.60 −1.11 0.805*** 21.92 −19.82
Spring LAI 80% threshold 0.710*** 12.07 6.41 0.618*** 16.12 −10.82
Autumn LAI 80% threshold −0.086 26.61 −17.59 0.020 28.80 21.26
Autumn LAI 50% threshold 0.456* 17.71 −14.67 0.683*** 20.98 19.26
Autumn LAI 20% threshold 0.480* 9.92 −2.33 0.690*** 28.44 27.22

MODIS data (n = 104 site-years)
Spring LAI 20% threshold 0.835*** 10.89 −7.88 0.793*** 35.57 −33.64
Spring LAI 50% threshold 0.752*** 9.92 0.27 0.737*** 27.97 −24.39
Spring LAI 80% threshold 0.612*** 14.79 7.77 0.586*** 21.30 −13.30
Autumn LAI 80% threshold −0.043 15.04 0.12 −0.058 42.65 39.82
Autumn LAI 50% threshold 0.619*** 7.60 0.27 0.536*** 34.84 33.91
Autumn LAI 20% threshold 0.707*** 9.78 6.72 0.636*** 34.97 34.23

* Correlation is significant at the 0.05 level.
*** Correlation is significant at the 0.001 level.

Fig. 7. The spatial distribution of annual average leaf area index as derived from a) MODIS, b) the GPD model, and c) the GSI model for the year of 2006 across the eastern United States.
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range from 0.80 to 0.90 for most areas, much lower than that between
GPD-based and satellite-based LAI.

To help further understand the model performance over large areas,
Fig. 9 presents the spatial distribution of the errors between modeled
and satellite-based LAI time series in the year of 2006. The RMSE

between the GPD-modeled and satellite-derived LAI are about 0.5 m2/
m2 for most of the study areas, much lower than that between GSI-
modeled and satellite-derived LAI, which vary from 1.0 to over 2.0 m2/
m2 across the eastern United States. The bias errors between the GPD-
modeled and MODIS-based LAI mostly range from −0.5 to 0.5 m2/m2,

Fig. 8. The spatial distribution of Pearson’s correlation coefficients a) between GPD-modeled LAI and satellite-derived LAI and b) between GSI-modeled LAI and satellite-derived LAI for
the year of 2006 across the eastern United States. The Pearson’s r values that are greater than 0.80 are all significant at the 0.001 level.

Fig. 9. The spatial distribution of errors are shown for a) RMSE between GPD-modeled LAI and satellite-derived LAI, b) RMSE between GSI-modeled LAI and satellite-derived LAI, c) bias
errors between GPD-modeled LAI and satellite-derived LAI, and d) bias errors between GSI-modeled LAI and satellite-derived LAI for the year of 2006 across the eastern United States.
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while the GSI-based method results in positive LAI bias errors as shown
to be greater than 0.5 or even 1.0 for most areas. The magnitudes of
errors in terms of RMSE and biases obtained at a large scale are con-
sistent with those derived at the site scale. Note that the spatial dis-
tribution of errors does not exhibit any apparent geographical gradient
for the GPD-modeled results, while there are large RMSE and bias errors
in the Appalachian mountain areas and at high latitudes for the GSI-
modeled results, implying that the GSI model is more susceptible to bias
in cooler climates.

3.3. Site-scale modeling of gross primary production

An important issue in modeling seasonal leaf dynamics is whether
the modeled LAI can be used for subsequent modeling of canopy pho-
tosynthesis. To address the question, all modeled and satellite-derived
LAI time series are substituted into the GPD model to simulate daily
canopy GPP, of which the time series are compared with flux tower
measurements in Fig. 10. Compared with flux tower measurements, the
modeled GPP time series are lower for the US-Ha1 site and slightly
higher for the US-MMS site over the 8 successive years in general, of
which the differences are likely due to different canopy structures
across both sites of deciduous broadleaf forests. The modeled GPP could
well capture daily variation in time series resulted by reduced incoming
solar radiation due to clouds. Interestingly, the GPP time series modeled
using GSI-based LAI agree with others, although the GSI-based LAI are
much higher than others during the time period of spring onset and
autumn senescence. One reason is that the climate condition poses large
limitations on canopy photosynthetic activities when the canopy is not
closed even if the modeled LAI are unrealistically high.

When validating against GPP measured at flux towers on a biweekly
basis, canopy GPP modeled using MODIS-derived LAI, GPD-based LAI,
and GSI-based LAI result in R2 values of 0.851, 0.848, and 0.799, re-
spectively, RMSE values of 1.962, 1.932, and 2.400 gC/m2/day, re-
spectively, and bias values of 0.629, 0.476, and 1.054 gC/m2/day, re-
spectively (Fig. 11). As satellite-derived LAI are likely overestimated
during the non-growing season, the GPD-based method provides lower
biased estimates of GPP than using the satellite-based data. The GSI-
based method produces the largest GPP overestimates as compared to
flux tower measurements. Since GPP modeled using both satellite-de-
rived and GPD-based LAI agree reasonably well with flux tower GPP
and achieve comparable performance, the GPD-based method shows to
provide a robust basis for modeling leaf dynamics as well as canopy
photosynthesis.

4. Discussion

4.1. Relationship between the GPD- and GSI-based method

As both GPD- and GSI-based models adopt the method of simple
moving average to simulate time series of canopy LAI, there is a need to
explore and understand the relationship between the two models. We
therefore vary the parameters in Eq. (3) (i.e., let LAIc/GPPc = 1) while
holding other parameters unchanging, and apply the GPD model to
simulate LAI time series again. Fig. 12a presents an example for the LAI
time series derived from different approaches for the site of US-Oho in
2011. While the proposed GPD-based method agrees with satellite-de-
rived LAI, the recalibrated GPD-based model produces LAI time series
that are consistent with the GSI-based method. When making direct

Fig. 10. Measured and modeled daily time series of
gross primary production are shown for the flux
tower sites of a) US-Ha1 and b) US-MMS over 8
successive years from 2001 to 2008. All the modeled
gross primary production is derived by substituting
satellite-based and modeled LAI into the GPD model
separately.
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comparisons between modeled LAI using all biweekly flux tower data as
shown in Fig. 12c, the GSI-based method has large positive biases over
the proposed GPD-based method (Fig. 12b), but matched results with
that obtained from the recalibrated GPD-based method (R2 = 0.952,
RMSE = 0.540 m2/m2, and bias = 0.042 m2/m2). These results suggest
that the GPD-based method, if recalibrated, could produce nearly the
same results as compared to the GSI-based method.

In essence, the proposed GPD-based model is a highly generalized
method that includes considerations for all environmental factors in-
fluencing vegetation growth, and the GSI-based model is a much sim-
plified method that only accounts for the impacts of dominate climate
drivers (i.e., daily minimum temperature, vapor pressure deficit, and
photoperiod) on vegetation photosynthetic activities. Note that GSI has
a mathematical form analogous to the Jarvis-Stewart equation (Bonan,
2002; Jarvis and McNaughton, 1986), which has been widely used for
modeling stomatal conductance and also vegetation productivity, but
cancels out the term of LAI in Eq. (3) to generate a simplified and di-
mensionless bioclimatic index. Both the GPD- and GSI-based methods
first seek leading metrics that are indicative of the climate suitability to
vegetation growth and then account for the time lagging effects,

thereby simulating the dynamics of vegetation leaf allocation.

4.2. Future improvements and applications

While the GPD-based method shows to simulate seasonal variation
of leaf dynamics in deciduous broadleaf forests successfully using cli-
mate variables, one important issue is whether the developed method
could capture the interannual variation of plant leaf dynamics.
Recently, we have developed the GPD model that is able to well si-
mulate multi-decadal variation in the timing of vegetation spring onset
across the Northern Hemisphere (Xin, 2016). Since the method devel-
oped here is one step forward in addition to our previous study and
provides a complete rather than an empirical solution, applying the
GPD-based method using long-term time series data has the potential
for simulating interannual variation of plant leaf dynamics. Evaluating
the model against extensive long-term data sets is beyond the scope of
the current research, but is urgently needed to fully validate our ap-
proach.

Another key issue is to understand whether the developed method
can be applied over other biomes and other places. Although GSI has

Fig. 11. Regressions are shown for comparisons a) between GPP measured at flux towers and GPP modeled using MODIS-derived LAI, b) between GPP measured at flux towers and GPP
modeled using GPD-derived LAI, and c) between GPP measured at flux towers and GPP modeled using GSI-derived LAI on a biweekly basis. All available site-year flux tower data were
included in the analysis. The solid lines denote the lines of equality and the dashed lines denote the regression lines.
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been developed as a generalized index to simulate time series of ve-
getation greenness across biomes, GSI only accounts for water avail-
ability indirectly using vapor pressure deficit, while soil moisture and
precipitation have large impacts on the phenology of short vegetation
like grasses, whose roots are not long enough to fetch deep water.
Having a similar mathematical form as compared to GSI, the GPD-based
method accounts for a wider range of environmental factors influencing
vegetation growth and therefore could potentially improve the simu-
lation of leaf allocation dynamics for plants in arid ecosystems, where
existing phenology models are known to perform poorly.

It is worth noting that the performance of the proposed method is
largely dependent on how accurate the canopy photosynthesis can be
modeled. As shown in Fig. 11, the current version of the GPD model,
which accounts for major processes within canopies, performs well
when simulating canopy photosynthesis of deciduous broadleaf forests
for all flux tower sites using both satellite-derived and modeled LAI.
Given that a variety of land surface models have been developed to
simulate plant activities with varied degrees of sophistication, it is then
interesting to implement the developed approach to existing land sur-
face models and make comparative studies of vegetation phenology for
further assessments. However, advanced parameterization of land sur-
face processes with increased sophistication in model structures often
requires matching observational data, which are sometimes not avail-
able for large-scale applications.

5. Conclusions

Vegetation growing cycle, as characterized by seasonal variation of
leaf dynamics, controls plant photosynthetic activities and subsequent
physical and biochemical processes within canopies. As vegetation
growing is highly sensitive to climate variation, one central task in land
surface modeling is to develop phenology models that are capable of
capturing seasonal and interannual variation of vegetation leaf alloca-
tions using environmental variables.

In this paper, we develop a new method to model seasonal variation
of leaf area index (LAI) based on the idea that plant photosynthetic
productivity can serve as a synthesized metric to track the climate
suitability to plant growth over time. The proposed method combines
the Growing Production-Day (GPD) model for simulating canopy pho-
tosynthesis and a phenology model to form closed simultaneous equa-
tions. The LAI time series is first solved iteratively to obtain the steady-
state approximation without considering the time lags of plant leaf al-
location in response to climate variation, and is then derived using the

method of simple moving average to account for the time lagging ef-
fects. The proposed method simulates seasonal LAI well as evaluating
using both field-measured and satellite-derived data, and performs
better than the method based on Growing Season Index (GSI) in terms
of higher correlation coefficients and lower root mean square errors.
The proposed method provides a complete solution to modeling sea-
sonal canopy leaf dynamics and gross primary production solely using
climate variables.

Acknowledgments

We thank the researchers and investigators that are involved in the
data collection and analysis at the AmeriFlux sites. This research is
supported by National Key R&D Program of China (grant no.
2017YFA0604302 and 2017YFA0604402) and Key Projects for Young
Teachers at Sun Yat-sen University (grant no. 17lgzd02). Research at
the Bartlett Experimental Forest is supported by the USDA Forest
Service’s Northern Research Station, the National Science Foundation
(DEB-1114804), and the Northeastern States Research Cooperative.
ADR acknowledges additional support from the National Science
Foundation’s Macrosystems Biology (awards EF-1065029 and EF-
1702697). We also thank anonymous reviewers for their constructive
comments.

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration-Guidelines
for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56, vol.
300 FAO, Rome 6541.

Arora, V.K., Boer, G.J., 2005. A parameterization of leaf phenology for the terrestrial
ecosystem component of climate models. Global Change Biol. 11 (1), 39–59.

Barr, A.G., et al., 2013. NACP Site: Tower Meteorology, Flux Observations with
Uncertainty, and Ancillary Data. ORNL Distributed Active Archive Center.

Beer, C., et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and
covariation with climate. Science 329 (5993), 834–838.

Bennett, N.D., et al., 2013. Characterising performance of environmental models.
Environ. Modell. Softw. 40, 1–20.

Bonan, G.B., 2002. Ecological Climatology: Concepts and Applications. Cambridge
University Press.

Broich, M., et al., 2014. Land surface phenological response to decadal climate variability
across Australia using satellite remote sensing. Biogeosciences 11 (18), 5181–5198.

Chuine, I., Cour, P., Rousseau, D.D., 1999. Selecting models to predict the timing of
flowering of temperate trees: implications for tree phenology modelling. Plant Cell
Environ. 22 (1), 1–13.

Clark, D., et al., 2011. The Joint UK Land Environment Simulator (JULES), model de-
scription-part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4 (3),
701.

Clark, K.L., Skowronski, N., Gallagher, M., Renninger, H., Schäfer, K., 2012. Effects of
invasive insects and fire on forest energy exchange and evapotranspiration in the

Fig. 12. The relationship between GPD and GSI models are illustrated for a) time series of satellite-derived and modeled leaf area index, b) comparisons between GSI-based LAI and the
proposed GPD-based LAI on a biweekly basis, and c) comparisons between GSI-based LAI and the recalibrated GPD-based LAI on a biweekly basis. The recalibrated GPD method applies
k = 1 m2 day/gC in modeling, where k= LAIc/GPPc denotes leaf area index per gross primary production at canopy closure. In Fig. 12b and 12c, the solid lines denote the lines of
equality and the dashed lines denote the regression lines. Data are shown for the entire year of 2011 at the US-Oho site in Fig. 12a and all available site-year flux tower measurements in
Fig. 12b and 12c.

Q. Xin et al. Agricultural and Forest Meteorology 249 (2018) 44–56

55

http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0005
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0005
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0005
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0010
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0010
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0015
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0015
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0020
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0020
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0025
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0025
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0030
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0030
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0035
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0035
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0040
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0040
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0040
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0045
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0045
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0045
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0050
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0050


New Jersey pinelands. Agric. For. Meteorol. 166, 50–61.
Dai, Y., et al., 2003. The common land model. Bull. Am. Meteorol. Soc. 84 (8),

1013–1023.
Desai, A.R., et al., 2008. Influence of vegetation and seasonal forcing on carbon dioxide

fluxes across the Upper Midwest, USA: implications for regional scaling. Agric. For.
Meteorol. 148 (2), 288–308.

Dragoni, D., et al., 2011. Evidence of increased net ecosystem productivity associated
with a longer vegetated season in a deciduous forest in south-central Indiana, USA.
Global Change Biol. 17 (2), 886–897.

Eagleson, P.S., 2005. Ecohydrology: Darwinian Expression of Vegetation Form and
Function. Cambridge University Press.

Friedl, M.A., et al., 2010. MODIS Collection 5 global land cover: algorithm refinements
and characterization of new datasets. Remote Sens. Environ. 114 (1), 168–182.

Friedl, M.A., et al., 2014. A tale of two springs: using recent climate anomalies to char-
acterize the sensitivity of temperate forest phenology to climate change. Environ.
Res. Lett. 9 (5), 054006.

Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., 2010. Land surface phenology
from MODIS: characterization of the Collection 5 global land cover dynamics pro-
duct. Remote Sens. Environ. 114 (8), 1805–1816.

Givnish, T.J., 1986. On the Economy of Plant Form and Function: Proceedings of the Sixth
Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity,
Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983, vol. 6
Cambridge University Press.

Gough, C.M., et al., 2013. Sustained carbon uptake and storage following moderate dis-
turbance in a Great Lakes forest. Ecol. Appl. 23 (5), 1202–1215.

Gu, L., et al., 2006. Direct and indirect effects of atmospheric conditions and soil moisture
on surface energy partitioning revealed by a prolonged drought at a temperate forest
site. J. Geophys. Res.: Atmos. 111 (D16).

Hollinger, D.Y., et al., 2010. Albedo estimates for land surface models and support for a
new paradigm based on foliage nitrogen concentration. Global Change Biol. 16 (2),
696–710.

Hufkens, K., et al., 2012. Linking near-surface and satellite remote sensing measurements
of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321.

Jarvis, P.G., McNaughton, K., 1986. Stomatal control of transpiration: scaling up from leaf
to region. Adv. Ecol. Res. 15, 1–49.

Jenkins, J., et al., 2007. Refining light-use efficiency calculations for a deciduous forest
canopy using simultaneous tower-based carbon flux and radiometric measurements.
Agric. For. Meteorol. 143 (1), 64–79.

Jolly, W.M., Nemani, R., Running, S.W., 2005. A generalized, bioclimatic index to predict
foliar phenology in response to climate. Global Change Biol. 11 (4), 619–632.

Kathilankal, J., O’Halloran, T., Schmidt, A., Hanson, C., Law, B., 2014. Development of a
Semi-parametric PAR (Photosynthetically Active Radiation) Partitioning Model for
the United States, Version 1.0.

Katul, G., Ellsworth, D., Lai, C.T., 2000. Modelling assimilation and intercellular CO2
from measured conductance: a synthesis of approaches. Plant Cell Environ. 23 (12),
1313–1328.

Keenan, T.F., et al., 2013. Increase in forest water-use efficiency as atmospheric carbon
dioxide concentrations rise. Nature 499 (7458), 324–327.

Li, L., et al., 2014. Mapping crop cycles in China using MODIS-EVI time series. Remote
Sens. 6 (3), 2473–2493.

Li, C., 2000. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl.
Agroecosyst. 58 (1–3), 259–276.

Melaas, E.K., et al., 2013. Using FLUXNET data to improve models of springtime vege-
tation activity onset in forest ecosystems. Agric. For. Meteorol. 171, 46–56.

Melaas, E.K., Friedl, M.A., Richardson, A.D., 2016. Multiscale modeling of spring phe-
nology across Deciduous Forests in the Eastern United States. Global Change Biol. 22
(2), 792–805.

Menzel, A., 2002. Phenology: its importance to the global change community. Clim.
Change 54 (4), 379–385.

Miller, G.R., Baldocchi, D.D., Law, B.E., Meyers, T., 2007. An analysis of soil moisture
dynamics using multi-year data from a network of micrometeorological observation

sites. Adv. Water Resour. 30 (5), 1065–1081.
Myneni, R.B., et al., 2002. Global products of vegetation leaf area and fraction absorbed

PAR from year one of MODIS data. Remote Sens. Environ. 83 (1–2), 214–231.
Oishi, A.C., Oren, R., Stoy, P.C., 2008. Estimating components of forest evapotranspira-

tion: a footprint approach for scaling sap flux measurements. Agric. For. Meteorol.
148 (11), 1719–1732.

Oleson, K., et al., 2013. Technical Description of Version 4.5 of the Community Land
Model (CLM). NCAR. National Center for Atmospheric Research (NCAR), Boulder,
Colorado.

Richardson, A.D., et al., 2012. Terrestrial biosphere models need better representation of
vegetation phenology: results from the North American Carbon Program Site
Synthesis. Global Change Biol. 18 (2), 566–584.

Running, S., Zhao, M., 2015. User’s Guide Daily GPP and Annual NPP (MOD17A2/A3)
Products NASA Earth Observing System MODIS Land Algorithm. Version, 3. pp. 1–28.

Running, S.W., Thornton, P.E., Nemani, R., Glassy, J.M., 2000. Global terrestrial gross
and net primary productivity from the earth observing system. Methods Ecosyst. Sci.
44–57.

Ryu, Y., et al., 2011. Integration of MODIS land and atmosphere products with a coupled-
process model to estimate gross primary productivity and evapotranspiration from
1 km to global scales. Global Biogeochem. Cycles 25 (4), GB4017.

Savoy, P., Mackay, D.S., 2015. Modeling the seasonal dynamics of leaf area index based
on environmental constraints to canopy development. Agric. For. Meteorol. 200,
46–56.

Sellers, P., et al., 1996. A revised land surface parameterization (SiB2) for atmospheric
GCMs. Part I: model formulation. J. Clim. 9 (4), 676–705.

Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote
Sens. 6 (8), 1335–1372.

Thornton, P., et al., 2012. Daymet: Daily Surface Weather on a 1 km Grid for North
America, 1980–2008. Oak Ridge National Laboratory Distributed Active Archive
Center, Oak Ridge, T, N.

Urbanski, S., et al., 2007. Factors controlling CO2 exchange on timescales from hourly to
decadal at Harvard Forest. J. Geophys. Res.: Biogeosci. 112 (G2).

White, M.A., Thornton, P.E., Running, S.W., 1997. A continental phenology model for
monitoring vegetation responses to interannual climatic variability. Global
Biogeochem. Cycles 11 (2), 217–234.

Xie, J., et al., 2014. Long-term variability and environmental control of the carbon cycle
in an oak-dominated temperate forest. For. Ecol. Manage. 313, 319–328.

Xin, Q., Broich, M., Zhu, P., Gong, P., 2015a. Modeling grassland spring onset across the
Western United States using climate variables and MODIS-derived phenology metrics.
Remote Sens. Environ. 161, 63–77.

Xin, Q., Gong, P., Li, W., 2015b. Modeling photosynthesis of discontinuous plant canopies
by linking the Geometric Optical Radiative Transfer model with biochemical pro-
cesses. Biogeosciences 12 (11), 3447–3467.

Xin, Q., Gong, P., Suyker, A.E., Si, Y., 2016. Effects of the partitioning of diffuse and direct
solar radiation on satellite-based modeling of crop gross primary production. Int. J.
Appl. Earth Obs. Geoinf. 50, 51–63.

Xin, Q., 2016. A risk-benefit model to simulate vegetation spring onset in response to
multi-decadal climate variability: theoretical basis and applications from the field to
the Northern Hemisphere. Agric. For. Meteorol. 228–229, 139–163.

Yang, X., Mustard, J.F., Tang, J., Xu, H., 2012. Regional-scale phenology modeling based
on meteorological records and remote sensing observations. J. Geophys. Res.:
Biogeosci. 117 (G3).

Yang, J., et al., 2013. The role of satellite remote sensing in climate change studies. Nat.
Clim. Change 3 (10), 875.

Zeng, F., Collatz, G.J., Pinzon, J.E., Ivanoff, A., 2013. Evaluating and quantifying the
climate-driven interannual variability in Global Inventory Modeling and Mapping
Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at global scales.
Remote Sens. 5 (8), 3918–3950.

Zhu, P., et al., 2017. Elevated atmospheric CO2 negatively impacts photosynthesis
through radiative forcing and physiology-mediated climate feedback. Geophys. Res.
Lett. 44 (4), 1956–1963.

Q. Xin et al. Agricultural and Forest Meteorology 249 (2018) 44–56

56

http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0050
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0055
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0055
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0060
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0060
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0060
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0065
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0065
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0065
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0070
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0070
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0075
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0075
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0080
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0080
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0080
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0085
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0085
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0085
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0090
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0090
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0090
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0090
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0095
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0095
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0100
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0100
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0100
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0105
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0105
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0105
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0110
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0110
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0115
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0115
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0120
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0120
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0120
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0125
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0125
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0130
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0130
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0130
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0135
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0135
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0135
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0140
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0140
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0145
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0145
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0150
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0150
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0155
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0155
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0160
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0160
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0160
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0165
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0165
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0170
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0170
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0170
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0175
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0175
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0180
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0180
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0180
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0185
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0185
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0185
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0190
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0190
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0190
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0195
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0195
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0200
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0200
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0200
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0205
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0205
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0205
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0210
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0210
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0210
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0215
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0215
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0220
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0220
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0225
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0225
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0225
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0230
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0230
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0235
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0235
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0235
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0240
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0240
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0245
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0245
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0245
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0250
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0250
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0250
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0255
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0255
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0255
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0260
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0260
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0260
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0265
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0265
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0265
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0270
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0270
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0275
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0275
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0275
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0275
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0280
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0280
http://refhub.elsevier.com/S0168-1923(17)30398-2/sbref0280

	A steady-state approximation approach to simulate seasonal leaf dynamics of deciduous broadleaf forests via climate variables
	Introduction
	Methods and materials
	A steady-state approximation approach
	Modeling photosynthesis using the GPD model
	Comparative modeling based on Growing Season Index
	Study materials
	Model implementation

	Results
	Site-scale modeling of leaf area index and leaf phenology
	Large-scale modeling of leaf area index
	Site-scale modeling of gross primary production

	Discussion
	Relationship between the GPD- and GSI-based method
	Future improvements and applications

	Conclusions
	Acknowledgments
	References




