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ABSTRACT

Aridisols are the dominant soil type in drylands, which occupy one-third of Earth’s terrestrial surface. We examined
controls on biogeographical patterns of Aridisol prokaryotic (bacterial and archaeal) communities at a regional scale by
comparing communities from 100 Aridisols throughout the southwestern United States using high-throughput sequencing
of the 16S rRNA gene. We found that microbial communities differed among global biomes and deserts of the Southwest.
Differences among biomes were driven by differences in taxonomic identities, whereas differences among deserts of the
Southwest were driven by differences in relative sequence abundance. Desert communities were dominated by
Actinobacteria, Proteobacteria and Crenarchaeota, supporting the notion of a core set of abundant taxa in desert soils. Our
findings contrast with studies showing little taxonomic overlap at the OTU level (97% sequence similarity) across large
spatial scales, as we found ∼90% of taxa in at least two of the three deserts. Geographic distance structured prokaryotic
communities indirectly through the influence of climate and soil properties. Structural equation modeling suggests that
climate exerts a stronger influence than soil properties in shaping the composition of Aridisol microbial communities, with
annual heat moisture index (an aridity metric) being the strongest climate driver. Annual heat moisture index was
associated with decreased microbial diversity and richness. If the Desert Southwest becomes hotter and drier as predicted,
these findings suggest that prokaryotic diversity and richness in Aridisols will decline.
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INTRODUCTION

In arid environments, extreme temperature fluctuations, soil
moisture content and plant traits influence soil microorganisms
(Collins et al. 2008; Bell et al. 2013; van Gestel, Reischke and Bååth
2013). Aridisols (from the Latin aridus, meaning ‘dry’), the third
most abundant soil type in the world (Walther 2014), are char-
acterized bywater deficiency (i.e. evapotranspiration far exceeds
precipitation for amajority of the year; Brady andWeil 2008), low
organic matter content, accumulations of inorganic minerals
(e.g. salt, gypsum, and carbonates), and short-statured vegeta-
tion that often includes bunchgrasses and shrubs.While there is
a large body of work on a subset of desert soil microorganisms—
for example, the autotrophic component of biological soil crusts
(e.g. Belnap and Gardner 1993; Garcia-Pichel and Belnap 1996;
Belnap 2003; Yeager et al. 2004)—less is known about Aridisol
microbial communities, particularly regarding the factors con-
trolling their biogeographic distributions at large spatial scales
(but see Fierer et al. 2012; Wang et al. 2012a; Maestre et al. 2015).
The limited number of molecular examinations of prokaryotic
communities in desert soils indicates they are taxonomically
and functionally distinct from those found in other biomes
(Drenovsky et al. 2010; Fierer et al. 2012).

Soil bacterial communities across ecosystems are often
strongly influenced by pH, which explains a large proportion of
the variance in soil bacterial diversity at local, regional and con-
tinental scales and across ecosystem types (Fierer and Jackson
2006; Lauber et al. 2009; Griffiths et al. 2011). Most Aridisols, how-
ever, have a neutral to alkaline pH; with little variation in the pH
of these arid soils, it is likely that other environmental parame-
ters influence patterns inmicrobial community composition. Al-
though some evidence suggests that plant communities shape
microbial communities at the local scale in non-desert ecosys-
tems (Zak et al. 2003;Wardle et al. 2004; Gao et al. 2013), this is not
always the case (Ramirez et al. 2010; Bastida et al. 2013; McHugh
and Schwartz 2015), even at larger, continental scales (Fierer and
Jackson 2006).

Aridity has been invoked as an important variable shap-
ing soil microbial communities in desert soils for bacteria
(Ben-David et al. 2011; Köberl et al. 2011; Maestre et al. 2015) and
fungi (Tedersoo et al. 2014;Maestre et al. 2015) due to the typically
negative relationship between aridity and resource availability
(e.g. water and nutrients). A recent study (Maestre et al. 2015)
used a structural equation modeling (SEM) approach on high-
throughput sequencing data to separate the direct and indirect
effects of aridity on microbial diversity and total abundance in
arid systems globally; however, metrics of diversity and abun-
dance do not addresswhether communities are compositionally
distinct along climate and soil gradients.

The purpose of this study was to assess the spatial structur-
ing of soil microbial communities across the arid Southwest of
theUnited States, and to determinewhat factors drive these pat-
terns. We formulated five a priori hypotheses. First, we hypothe-
sized that (1a) microbial communities are distinct among global
biomes and (1b) among deserts of the Southwest. Additionally,
we predicted that microbial community separation would be
more pronounced among biomes than deserts. To test this set
of hypotheses, we integrated our sequencing dataset with pub-
licly available sequences from a cross-biome prokaryotic com-
munity comparison (Fierer et al. 2012) to evaluate how the com-
position of desert prokaryotic communities compared to those
found in other biomes. Second, we hypothesized that (2) geo-
graphic distance would structure soil microbial communities of
the Desert Southwest. Specifically, we predicted that microbial

communities in geographic proximity would be compositionally
more similar. We made this prediction because this distance-
decay pattern has been observed in all domains of life (e.g.
Nekola and White 1999; Green et al. 2004; Horner-Devine et al.
2004). Finally, we hypothesized that (3a) climate would be the
most important variable structuring soil microbial communities
of the Desert Southwest because it has been identified as a com-
mon driver of soil microbial communities at regional and conti-
nental scales (Ettema and Wardle 2002; Fierer and Jackson 2006;
Lauber et al. 2008, 2009; Fierer et al. 2009). Furthermore, because
our study examined microbial communities of Aridisols, we hy-
pothesized that (3b) among climate variables, aridity would be
the most important predictor variable. We addressed this set of
hypotheses using SEM to determine whether the global pattern
that aridity structures microbial communities in drylands was
also observed at a regional scale. By accounting for other vari-
ables associated with aridity, we assessed whether aridity was a
causal factor influencing microbial communities and evaluated
the relative importance of aridity in comparison to other fac-
tors. By considering soil microbial communities across a large
geographic extent in extreme Aridisols, where the controls on
microbial distributions are likely to be different from temperate
ecosystems, this work adds substantially to our understanding
of microbial biogeography and provides new context for iden-
tifying the mechanisms controlling distributions of microbial
communities (see Fierer et al. 2012 and Maestre et al. 2015 for
other examples of large-scale studies in arid systems).

MATERIALS AND METHODS
Study area

The southwestern United States encompasses extensive dry-
lands containing portions of the Mojave, Sonoran and Great
Basin Deserts. These three deserts are distinct in terms of cli-
mate variables, such as temperature, aridity, and the amount
and timing of precipitation (Huxman et al. 2004), and also
in terms of vegetation (Shreve 1942) and soil characteristics
(Table 1). Soils were sampled in the southwestern United States,
across an area of 460 000 km2 (Fig. S1a, Supporting Information).
Themedian pairwise distance between any two siteswas 350 km
linea recta (minimum = 0.4 km; maximum = 888 km; Fig. S1b).
The study area spanned three of the four US deserts (Mojave
Desert, Sonoran Desert and Great Basin Desert), encompassing
100 Aridisol sites selected using soil survey maps from the Nat-
ural Resources Conservation Service (U.S. Department of Agri-
culture). Across these sites, soil texture varied from sandy clay
loam to loamy sand.

Climate and vegetation data

Climate data for individual sites were obtained from an
open-data platform hosted by the Center for Forest Con-
servation Genetics at the University of British Colombia
(www.climatewna.com) for the period from 1981 to 2010. Cli-
mate data were generated via PRISM high-resolution spatial
climate data for the conterminous United States (Wang et al.
2012b). Sites ranged in elevation from 80 to 2197m,mean annual
temperature (MAT) from 6.1◦C to 23.0◦C, and mean annual pre-
cipitation (MAP) from 77 to 420 mm. Great Basin Desert samples
were collected at an elevation ∼2.5 times greater than that of
the other two deserts. The Great Basin Desert is the coolest and
wettest desert in our study, whereas theMojave Desert is the dri-
est, but just as hot as the Sonoran Desert (Table 1). The annual
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heat-moisture index (AHM) for our sites ranged from 39.3 to 422.
AHM is a biologically relevant indicator of aridity that is calcu-
lated as the ratio of heat and precipitation (Wang et al. 2012b):
(MAT + 10)/(MAP/1000). Soils in areas of high AHM have hot and
dry soil environments that experience large daily fluctuations in
temperature, compared to soils under cooler and wetter condi-
tions (Nobel and Geller 1987). In essence, AHM is an indicator
that captures how much soils can store and lose heat, making it
a relevant environmental variable for soil microbial communi-
ties (van Gestel et al. 2011).

Data for vegetation type and cover were collected from
LANDFIRE (http://www.landfire.gov/). The most common exist-
ing vegetation types were mixed desert scrub (e.g. with cacti,
palo verde, creosotebush), desert grassland, shrubland and
piñon-juniper woodland. Vegetative cover ranged from 0% to
59% (mean = 31%).

Soil sample collection

Soil samples were collected from 16 to 20 June 2014 from areas
between plants. Desert plants can have extensive root systems
(Rundel and Nobel 1991), so plants can still influence soil in in-
terplant spaces. Sampling occurred during the dry period pre-
cedingmonsoon rains, and no precipitationwas observed across
the study region during the period of collection. To ensure that
we captured the variability in soil at each site, we collected five
replicate samples, with a minimum distance of 10 m between
each replicate (n = 100 sites, 500 samples). Climate and vege-
tation data for these sites (described above) were taken at GPS
coordinates corresponding to the center of the sampling area for
each site. Samples were collected after removing visible desert
varnishes or biological soil crusts when present. Samples were
taken from the top ∼5 cm of soil using sterile scoops and trans-
ferred into sterile Falcon tubes. Samples were stored on dry ice
and transported to the laboratory, where DNA was extracted.

Physical and chemical soil properties

The five replicates at each site were combined to create a com-
posite soil sample. The composite samples were sent to Col-
orado State University’s Soil, Water, and Plant Testing Labora-
tory to determine soil physical and chemical properties. Soil
chemistry variables were selected based on known or pre-
dicted biological influences they have on soil microbes. Soil
pH, electrical conductivity (mmhos cm−1), organic matter (%)
and sodium adsorption ratio were measured. Nitrate (NO3

−-N),
P, K, Zn, Fe, Mn and Cu were assessed using the NH4HCO3-
diethylenetriaminepentaacetic acid (AB-DTPA) method (with
values provided in ppm). Additionally, the exchangeable bases
Ca, Mg and Na were extracted using ammonium acetate (val-
ues provided in meq L−1). All macro- and micronutrients were
analyzed by inductively coupled plasma-atomic emission spec-
troscopy.

DNA extraction and sequencing of 16S rRNA genes

Because soil microbial communities are spatially more variable
than soil chemical properties (Ettema and Wardle 2002), we se-
quenced all replicates at a site to better capture the true diver-
sity within these soils.We then summarized compositional data
across the replicates to obtain representative site-level informa-
tion. Total genomic DNA was extracted using the PowerLyzer
PowerSoil DNA extraction kit (MoBio Laboratories, Carlsbad, CA).
Extracted DNA was quantified by PicoGreen (Molecular Probes,
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Eugene, OR) fluorescence and normalized to 1 ng μL−1 prior to
amplification.

Bacterial communities were prepared for high-throughput
sequencing on an Illumina MiSeq using a two-stage PCR ap-
proach (Berry et al. 2011). Each sample was first amplified using
primers 515f and 806r, which target the hypervariable v4 region
(Bates et al. 2011). This was done in triplicate 8 μL PCR ampli-
fications containing 1 mM of each primer, 0.01 U μL−1 Phusion
HotStart II Polymerase (Thermo Fisher Scientific, Waltham, MA),
1X Phusion HF buffer (Thermo Fisher Scientific), 3.0 mM MgCl2,
6% glycerol and 200 μM dNTPs. PCR conditions were 95◦C for 2
min; 15 cycles of 95◦C for 30 s, 55◦C for 30 s and 60◦C for 4 min.
Initial PCR products were checked on a 1% agarose gel. Tripli-
cates were then pooled, diluted 10-fold and used as template
in the subsequent tailing reaction with region-specific primers
that included the Illumina flowcell adapter sequences and a 12
nucleotide Golay barcode (15 cycles identical to initial amplifi-
cation conditions). Products of the tailing reaction were puri-
fied with carboxylated SeraMag Speed Beads (Sigma-Aldrich, St.
Louis, MO) at a 1:1 (volume to volume) ratio (Rohland and Reich
2012) and quantified by PicoGreen fluorescence. Equal quantities
of the reaction products were then pooled, and the library was
bead-purified once again (1:1 ratio) and quantified by qPCR us-
ing the Library Quantification Kit for Illumina (Kapa Biosciences,
Woburn, MA). The amplicon library was denatured and loaded
at 11 pM (including a 30% PhiX control) onto an Illumina MiSeq
instrument (San Diego, CA) using 2 × 150 paired-end read chem-
istry at Northern Arizona University’s Environmental Genetics
and Genomics Laboratory. A total of three amplicon pools were
sequenced, returning 14.24, 15.6 and 14.75 million reads passing
filter for sequencing runs 1, 2 and 3, respectively. All sequences
were submitted to MG-RAST, project ID 14035.

Sequence processing and community comparisons

Sequence data were analyzed using Quantitative Insights into
Microbial Ecology v 1.7 (QIIME, Caporaso et al. 2010b). Read 1 of
each library was demultiplexed, and the reads and downloaded
libraries were combined for subsequent analysis. For quality fil-
tering, the default score was changed from 25 to 30. Open ref-
erence OTU picking was performed at 97% identity using uclust
(Edgar 2010). The most abundant sequence for each OTU was
aligned with PyNAST (Caporaso et al. 2010a) against the Green-
genes v13˙5 database (DeSantis et al. 2006), and taxonomy was
assigned using Ribosomal Data Project classifier (Wang et al.
2007). A phylogenetic tree was built using FastTree (Price, De-
hal and Arkin 2010). Additional quality filtering was applied, dis-
carding anyOTUs that accounted for less than 0.005% of the total
sequences (Bokulich et al. 2013). After quality filtering, 19 266 450
16S rRNA gene sequences remained, representing 2 744 unique
OTUs. Of the initial 100 geographic locations, 12 were removed
due to low-sequencing depth in the samples. To remove hetero-
geneity in sampling depth, the bacterial librarieswere rarefied to
a depth of 5 000 sequences prior to calculations of alpha (Chao1
and Shannon) and beta diversity. Our quantitative analyses uti-
lized site-level community data, based on the five replicates per
site.

Crossbiome prokaryotic community composition

To compare hot desert prokaryotic community data to commu-
nity data from other biomes, additional 16S rRNA gene libraries
from the study ‘Cross-biome metagenomic analyses of soil mi-
crobial communities and their functional attributes’ (Fierer et al.

2012) were accessed (MG-RAST project ID 10307). These libraries
were from soils collected at 16 sites: three hot deserts (Mo-
jave and Chihuahuan), six Antarctic cold deserts, two tropical
and temperate forests, and one prairie, tundra and boreal for-
est. Our Aridisol dataset was collected using the same sampling
methodology, primers, sequencing approach and principal co-
ordinates analyses as those utilized by Fierer et al. (2012), with
the exception that we did not sample soils during the peak of
the plant growing season. However, desert soil microbial com-
munity composition has been shown to be temporally stable
(Armstrong et al. 2016), and hence, the timing of sampling would
have little effect. To further enable the best comparison between
the data sets, OTU picking and taxonomic assignments were
performed on the combined data set.

Data analysis

Statistical analyses were conducted in R (3.0.2, R Core Team
2012) unless otherwise noted. For the prokaryotic cross-biome
analyses, principal coordinates analyses based on weighted
Unifrac distances were conducted in PRIMER v. 6 using pair-
wise distances between prokaryotic communities from differ-
ent biomes (Fierer et al. 2012 dataset) and hot deserts (our
own study plus desert communities from Fierer et al. 2012). To
test if hot desert communities differed significantly from one
another, permutational multivariate analysis of variance (Per-
MANOVA) and pairwise t-tests were performed in PRIMER. To
determine whether site-level climate and soil characteristics
differed among the Great Basin, Mojave and Sonoran Deserts,
we obtained P-values from randomization tests (5 000 boot-
strap iterations). Bonferroni corrections were applied to the P-
values because we used three pairwise comparisons per vari-
able. Chao1 and Shannon diversity indices were calculated us-
ing the Vegan package in R (Oksanen et al. 2013). To assess the
degree of endemism, we determined presence and absence of
taxa at the OTU level for each desert. A Venn diagram was then
constructed to visualize the shared taxa (present in more than
one desert) and unique taxa (found only in one desert).

We created an interpolated map of community similarity
by first determining how similar the microbial communities
were at the OTU level. The dissimilarity matrix was based
on Bray-Curtis distances (Legendre and Gallagher 2001) among
sites using relative abundances from all replicates per site. We
then performed non-metric dimensional scaling (NMDS) analy-
sis (‘ecodist’ R package; Goslee and Urban 2007) on the dissim-
ilarity matrix to summarize the data into one dimension using
1000 iterations, and used the scores of the iteration that pro-
duced the lowest stress. The NMDS scores were interpolated
across the study area using inverse distance weighting (‘gstat’
package; Pebesma 2004), and visualized using color (‘ggmap’ R
package; Kahle and Wickham 2013), such that sites with similar
microbial communities had similar color on the map. We also
created an interpolated map using the original data of the cli-
mate variable that was the best predictor of community similar-
ity (i.e. AHM), as determined from the SEM approach.

For the SEM, we used two NMDS axes to describe the soil
microbial community because this was the least number of
axes that resulted in the greatest decrease in stress (final
stress= 0.29, r2 = 0.71). Because of the constraints of SEM related
to our limited sample size,weused partial-Mantel tests (‘ecodist’
package) to screen for predictor variables that went into our a
priori SEM. We did this in two ways. First, we tested whether
geographic distance controlled microbial community compo-
sition (either directly or through environmental variables).
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Second, we tested whether microbial community composition
was controlled by environmental, climatic or plant community
variables, with geographic distance held constant. Additionally,
to determine the relative importance of the three types of vari-
ables tested (i.e. climate, soil properties and plant communities),
we conducted separate analyseswith each variable type grouped
into a composite variable. Partial-Mantel tests allowed us to ex-
amine associations between variables while accounting for the
influence of all other variables. We tested whether dissimilarity
matrices (Euclidean distance) for geographic distance, climate
variables, soil property variables, vegetative cover and vegeta-
tion type correlated with the microbial community dissimilar-
ity matrix (Bray-Curtis distance). The type of distance matrix
used was based on long-standing recommendations (McCune,
Grace and Urban 2002). For all partial-Mantel tests, dissimilar-
ity matrices were compared and P-values were calculated us-
ing distributions estimated from 999 permutations (Jackson and
Somers 1989). Partial-Mantel correlation P-valueswere corrected
for multiple comparisons using the False Discovery Rate tech-
nique in R (Benjamini and Hochberg 1995; Benjamini 2010).

The SEMwas conducted (IBM R© SPSS R©Amos 22.0.0; Arbuckle
2006) because it combines factor analyses with multiple regres-
sion (Bollen 1989), thereby allowing us to determine if our causal
inferences about what controls the soil microbial community
were supported by our data. We generated an a priori model
that showed our hypothesized interactions among soil proper-
ties, climate and the microbial community. Vegetation charac-
teristics and geographic distances were excluded because par-
tial Mantel tests showed these variables did not correlate well
with the microbial community dissimilarity matrix. We tested
our proposed causal links by confronting our model with ob-
servations, which allowed us to falsify or support our proposed
model and evaluate the fit between our model and the obser-
vational data (Grace and Pugesek 1998). Next, we developed a
measurement model (Bollen 1989; Bowker et al. 2005) describing
the hypothesized relationships among our measured variables
and underlying, unmeasured factors (i.e. latent variables). This
measurement model was then tested iteratively using the boot-
strap goodness-of-fit test until a satisfactory fit with the data
was achieved (Bollen and Stine 1992). Our final model (see sum-
marized representation in Fig. 5) included MAT, MAP, elevation
and AHM, which were highly intercorrelated (all r ≥ 0.60−0.97)
and therefore suitable as indicators for the latent ‘climate’ vari-
able, andNO3

−, pH and soil organicmatter (SOM) as soil property
variables.

RESULTS
Climate and soil chemical characteristics

The Sonoran and Mojave Deserts had similar MATs, which were
at least 8.4◦C higher than the Great Basin Desert (Table 1). The
Mojave Desert was the driest, receiving up to 58% of the MAP
of the other two deserts (Table 1). Thus, the aridity index, AHM,
was lowest in the cold and wet Great Basin Desert and greatest
for the hot and dry Mojave Desert (Table 1).

The Great Basin Desert had significantly higher SOM
(P < 0.001) than the other two deserts (Table 1). Despite higher
SOM, soil pH was similar for all three deserts (mean = 7.7). Soil
NO3

− was highest for the Sonoran Desert (Table 1), but this was
due to three sites (of 23) having exceptionally high concentra-
tions (≥190 μg g−1) that greatly influenced the mean. Soil P,
Ca, Mg and Na concentrations were similar among the three
deserts, exhibiting high within-desert variability for the latter

two cations (Table 1). The only nutrient to differ among deserts
was K, with lower values in the Mojave Desert (Table 1).

Cross-biome and cross-desert microbial community
composition

In support of hypothesis 1a, prokaryotic communities from our
Aridisols studywere compositionally distinct from communities
found in other biomes, but similar to desert soil microbial com-
munities previously characterized within and near our study
region (Fierer et al. 2012; Pseudo-F94,2 = 8.7, P = 0.001; Fig. 1a).
Compared to non-desert biomes, our Aridisol communities had
lower abundances of Acidobacteria and Verrucomicrobia. Instead,
Aridisol microbial communities from our study were dominated
by Actinobacteria (32.9%), Proteobacteria (22.5%) and Crenarchaeota
(9%; Fig. S2a, Supporting Information), and all other phyla were
relatively rare (<9%). In support of hypothesis 1b, there were
also significant differences among microbial communities of
the three deserts (Pseudo-F2,382 = 51.4, P = 0.001), with the
hottest and driest Mojave Desert having communities of distinct
composition. Compared to the other two deserts, communi-
ties from the Mojave Desert had the lowest relative abundances
of Actinobacteria, Crenarcheaota, Acidobacteria and Firmicutes, but
highest relative abundances of Proteobacteria and Cyanobacteria
(Fig. S2a). The higher relative abundances of Proteobacteria in the
Mojave Desert were driven by higher abundances of Alphapro-
teobacteria (Fig. S2b), which was the most dominant class of Pro-
teobacteria across the three deserts. The most notable difference
in Alphaproteobacteria was that the order Rhizobiales (members
fix atmospheric nitrogen and have beneficial relationships with
plants) comprised 64% of that class in the Mojave Desert and
accounted for 16.8% of the total prokaryotic community. The
dominant order in the Great Basin and Sonoran Deserts, mak-
ing up about 10% of the total prokaryotic community, was Ni-
trososphaerales within the phylum Crenarchaeota. Actinobacteria
was the second most dominant phylum in the Mojave Desert,
and the dominant phylum in the Sonoran and Great Basin
Deserts. The most notable compositional difference within this
phylum was that the order Actinomycetales comprised half of
the Actinobacteria in the Mojave Desert, whereas it comprised
only 28% of the Actinobacteria in the other two deserts (Fig. S2c).
Other dominant orders in the Actinobacteriawere Rubrobacterales
(23−28%) and Solirubrobacterales (11−19%; Fig. S2c).

Diversity and degree of endemism

Community differences were also apparent in terms of diver-
sity and richness, with the Great Basin Desert having the high-
est phylotype diversity (both Chao1 and Shannon; Fig. 2a) of the
three deserts. In contrast, the diversity in the Sonoran Desert
was similar to the Mojave Desert, but because of large within-
desert variability in diversity, this resulted in lower Chao1 di-
versity, but not Shannon diversity, compared to the Great Basin
Desert. Observed OTU richness was also highest for the Great
Basin Desert (3 659 OTUs) compared to the other two deserts
(2 369 OTUs for the Mojave Desert and 3485 OTUs for the Sono-
ran Desert; Fig. 2b). Eight per cent (288 OTUs) of the phylo-
types found in the Great Basin Desert were unique to that
desert, whereas only 0.04% (1 OTU) was unique to the Mojave
Desert (Fig. 2b). Furthermore, we found little support for high
endemism because community differences were related to dif-
ferences in the relative abundance of OTUs rather than by pres-
ence or absence of particular OTUs, as a high percentage of OTUs
(87% of phylotypes) were found in at least two deserts (Fig. 2b)
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Figure 1. Ordination plots derived from principal coordinates analysis of weighted Unifrac distances. (A) Aridisol (hot desert) prokaryotic communities (open symbols)
are contrasted with communities from other biomes (closed symbols) using sequencing data acquired from Fierer et al. (2012). (B) Aridisol communities are isolated
and assigned to the four United States deserts for comparison of community composition among deserts in our study (Great Basin, Mojave and Sonoran; open symbols)
and those from Fierer et al. (2012) (Chihuahuan and Mojave; closed symbols).

and, of these, 70% (i.e. 61% of all OTUs) were found in all three
deserts. Shared OTUs among the deserts spanned all phyla, and
they exhibited similar relative abundances at the phylum level
compared to whole communities (shared and unique) in each
desert (i.e. compared to Fig. S2a; data not shown).

Drivers of Aridisol community composition

In support of hypothesis 2, geographically similar sites in the
southwestern United States supported more similar microbial
communities (Mantel r = 0.36; P < 0.001). However, geographic
distance did not directly influence the composition of soil mi-
crobial communities in the Desert Southwest, as this correlation
was not significant when the partial correlations of other vari-
ableswere considered (partial Mantel r= 0.0052; P= 0.45); rather,
the influence of geographic distance was indirect, through as-
sociations with climate (partial Mantel r = 0.30; P < 0.001) and
soil properties (partial Mantel r = 0.49; P < 0.001). Furthermore,
the influences of climate and soil properties on microbial com-
munities were much stronger than the influence of vegetation

(partial Mantel r = 0.027; P = 0.35). When we examined the ef-
fects of climate and soil properties on vegetation (using compos-
ite variables), we found that vegetation cover was weakly asso-
ciated with soil properties (partial Mantel r = 0.069, P = 0.094),
but not climate (partial Mantel r = –0.0078, P = 0.42). Vegeta-
tion type, however, was associated with neither soil properties
(partial Mantel r = 0.018, P = 0.37) nor climate (partial Mantel
r = 0.035, P = 0.37). Because geographic distance and vegeta-
tion were not predictors of microbial community composition,
we simplified our SEM by removing them. Thus, our SEM exam-
ined the relative influence of climate versus soil properties on
prokaryotic community composition (Fig. 3).

In the simplified SEM, we allowed climate to directly and in-
directly (through soil properties) influence microbial commu-
nity composition. Our model explained 50% of the variance of
NMDS axis 1 and 25% of the variance of NMDS axis 2. In sup-
port of hypothesis 3a, we found stronger direct and indirect ef-
fects of climate on community composition in comparison to
soil properties (Fig. 3). There was only a weak direct influence
of soil properties on microbial community composition once we
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Figure 2.Differences inmicrobial communities in Great Basin, Mojave and Sonoran Deserts in terms of (A) diversity using Shannon and Chao1 indices based on relative
abundances (±standard deviation), and (B) the number of shared OTUs among deserts and the number of OTUs unique to each desert based on presence/absence.

Figure 3. Simplified diagram of structural equation modeling results illustrating
that climate (latent variable, circle), indirectly and directly, has a larger influ-
ence on soil microbial community composition than soil properties (composite

variable, gray box) directly. Results also show how climate affects the individual
properties of soil (NO3

−, pH and SOM), with SOM being the strongest affected
by climate. Highly intercorrelated indicators of the latent variable ‘climate’ were

MAT, MAP, elevation and AHM. The soil microbial community dissimilarity was
determinedusingNMDSof the Bray-Curtis distancematrix of OTU-level commu-
nity composition of two axes (NMDS 1 and NMDS 2). The high P-value indicates
a goodmodel fit. Standardized regression weights are shown for each path, with

arrow widths indicating the strength of the relationships; dashed arrows indi-
cate non-significant relationships.

partitioned out the strong direct influence of climate. Soil prop-
erties affected NMDS 1 (βstand = –0.26), but not NMDS 2 (βstand = –
0.07; Fig. 4). The influence of soil properties on NMDS 1 was
mostly driven by SOM (βstand = 0.22) and NO3

− (βstand = –0.16),
and not pH (βstand = –0.08). Soil properties themselveswere influ-
enced strongly by climate, most notably for SOM and pH (Fig. 3).
In support of hypothesis 3b, the strongest climate predictor of
SOM was AHM (βstand = –0.97): high AHM (i.e. extreme hot and
dry conditions) coincidedwith low SOM. The strongest predictor
of pH was MAP (βstand = –0.78), with MAP negatively associated
with pH.

Climate showed the greatest direct and indirect (via soil
properties) influences on community composition, affecting
both NMDS axes of the community ordination (with absolute
values of direct paths with a standardized regression coeffi-
cient (βstand) > 0.5 on NMDS 1 and NMDS 2). The most impor-
tant climate variables directly influencing community compo-
sition were AHM (βstand of –0.65 on NMDS 1) and MAT (βstand of
–0.55 on NMDS 2). When visualized spatially, geographic regions
with similar AHM also had similar soil community composition
(Fig. 4). Notably, the hot and dry Mojave Desert, with high AHM,
had soil microbial community composition scores that were dis-
tinct from the other two deserts (Fig. 4).

Associations between relative abundances of microbial
taxa and AHM

Because our SEM showed AHM strongly influenced micro-
bial composition, we regressed relative abundances of the
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Figure 4. Interpolated map of community composition. The map is based on the
inverse-distance-weighted interpolation of the NMDS scores onto one axis using
the Bray-Curtis distance matrix of OTU-level community composition. Similar

colors indicate similar prokaryotic communities. Sampling sites are indicated
by black symbols.

dominant phyla against AHM in order to understand the re-
sponses of specific taxa (Fig. 5). Relative abundances ofCyanobac-
teria increasedwith increasing AHM, associatingwith hotter and
drier sites, whereas the relative abundances of several phyla

(e.g. Crenarcheaota, Acidobacteria, Gemmatimonadetes, Plancto-
mycetes, Verrucomicrobia and Nitrospirae) decreased with AHM,
associating with moister and cooler conditions (Fig. 5). Of
these, Acidobacteria, Planctomycetes and Verrucomicrobia showed
the clearest, non-linear, declines with increasing hotter and
drier conditions. Four phyla had a unimodal relationship with
AHM (i.e. highest relative abundances at an intermediate AHM):
Proteobacteria (class Alphaproteobacteria), Chloroflexi, Armatimon-
adetes and FBP. The remaining phyla showed no clear relation-
ship with AHM: Actinobacteria, Proteobacteria (classes Beta-, Delta-
and Gammaproteobacteria), Firmicutes, Bacteroidetes, Thermi, BRC1
and Euryarchaeota.

DISCUSSION
Cross-biome and cross-desert comparison

Our study indicates that Aridisols have distinct microbial com-
munities from those found in soils of other biomes (support-
ing hypothesis 1a). Non-desert biomes contained higher rela-
tive abundances of Acidobacteria and Verrucomicrobia compared
to desert biomes in this study and other desert surveys (Andrew
et al. 2012; Fierer et al. 2012; Maestre et al. 2015). Consistent with
other studies (Andrew et al. 2012; Maestre et al. 2015), our desert
communities were dominated by Actinobacteria and Proteobacte-
ria. Together, these phyla comprised over half of the total taxa
we detected. Generally, and even in hyperarid soils (Neilson et al.
2012), Actinobacteria dominate soil communities.

Specialized survival strategies are necessary for prokaryotes
to withstand the physiological stresses imposed by low water
potential and nutrient concentrations, intense heat and solar
radiation, and soil instability, which are characteristic of desert

Figure 5. Relative abundances of phyla with AHM across the three deserts. Panels are ordered in decreasing dominance (i.e. average relative abundances across

samples), except for the secondmost dominant group, the Proteobacteria, whichwere subdivided intoAlpha-, Beta-,Delta- andGammaproteobacteria and grouped together
following the most dominant phylum, the Actinobacteria. The line represents a locally weighted polynomial regression using weighted least squares, a LOESS curve
fitting procedure, with the shaded area representing the 95% confidence interval.
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soils. Actinobacteria can grow in low humidity environments
(Doroshenko et al. 2005) and are known to tolerate drought
well (Barnard, Osborne and Firestone 2013; McHugh, Koch and
Schwartz 2014). This is in part because of the filamentous mor-
phology of some Actinobacteria, enabling them to exploit soils
at low soil water potential with very thin and discontinuous
water films (Stark and Firestone 1995) or with water in dis-
tant soil pores (Torsvik and Øvreås 2008). Additionally, their fil-
amentous nature aids in the formation of stable soil aggregates
(Torsvik and Øvreås 2008), thereby increasing soil stability. Other
drought adaptations include spores that may persist for a long
time in the absence of water (Chen and Alexander 1973). The
Firmicutes, which can form drought-tolerant endospores, were
also well represented in Aridisols from our study (Bueche et al.
2013). Besides drought, prokaryotes in hot deserts must with-
stand large temperature fluctuations, with average diurnal tem-
peratures ranging from 12◦C to 45◦C, compared to 4◦C−8◦C in
coastal and temperate regions (Dai, Trenberth and Karl 1999;
van Gestel, Reischke and Bååth 2013). Phyla including Crenar-
chaeota and Chloroflexi are able to withstand substantial temper-
ature ranges (Cavicchiolo 2006; Hatzenpichler et al. 2008) and ex-
treme heat (Gladden et al. 2011). Collectively, these traits likely
contribute to the establishment of a core set of abundant taxa
in desert soils (Andrew et al. 2012), and enable microbes to with-
stand extreme environmental stress.

Prokaryotic communities in theMojave Desert were themost
distinct of the three deserts (supporting hypothesis 1b). Surpris-
ingly, of the deserts in our study, the hottest and driest Mo-
jave Desert was the sole desert dominated by Proteobacteria and
not by Actinobacteria, even though Actinobacteria are typically
the most abundant phylum in desert soils (Andrew et al. 2012;
Neilson et al. 2012; Maestre et al. 2015). Not only were commu-
nity differences in the Mojave Desert reflected by this difference
in the dominant phylum, but also in the dominant order; Rhi-
zobiales (phylum Proteobacteria) dominated in the Mojave Desert,
whereasNitrososphaerales (phylumCrenarchaeota) was the dom-
inant order in the other two deserts. Members of the Rhizobiales
are plant symbionts commonly occurring in semiarid ecosys-
tems, even in bare soil (Hortal et al. 2013), and they supply usable
nitrogen to their hosts by fixing it from the atmosphere. Mem-
bers of the Nitrososphaerales, which have only been described
since 2005 (Könneke et al. 2005; Treusch et al. 2005), are ammonia
oxidizers that can fix atmospheric CO2 and are hence important
in both carbon and nitrogen cycling (Kerou et al. 2016). Interest-
ingly, the second most dominant order, Actinomycetales (phylum
Actinobacteria), was present in equal relative abundances across
all deserts. Members of this order can degrade lignin and other
recalcitrant litter (Heuer et al. 1997) and are thus important de-
composers in deserts. The Mojave Desert was further compo-
sitionally distinct from the other two deserts by having lower
relative abundances of Acidobacteria and Firmicutes, but higher
relative abundances of Cyanobacteria.

The Acidobacteria, Planctomycetes and Verrucomicrobia showed
the strongest, non-linear, declines with increasing AHM (i.e.
they were associated withmoister and cooler conditions). These
phyla are more common in non-desert biomes, such as forests
and tundra (Fierer et al. 2012). Only Cyanobacteria increased in
relative abundance with increasing AHM. Cyanobacteria are in-
habitants of all desert soils (Hagemann et al. 2015), where they
are important producers. They are also key constituents of bi-
ological soil crusts (Belnap 2003; Hagemann et al. 2015), con-
tributing to soil stabilization and nitrogen fixation. Frost heav-
ing that leads to tall, pinnacled crusts makes biological soil
crustsmore pronounced in the cooler Utah desert soils, whereas

they are less conspicuous in hotter and drier climates (Belnap
2003). Perhaps intentionally avoiding visible soil crusts in our
sampling approach biased against Cyanobacteria in Utah. This
could explain an apparent positive relationship of Cyanobacteria
with AHM. The four phyla that had unimodal relationships with
AHM (i.e. highest relative abundances at intermediate AHM)
were Proteobacteria (class Alphaproteobacteria), Chloroflexi, Arma-
timonadetes and FBP. Other phyla were found in similar relative
abundances across the range of AHM in our study. These ‘insen-
sitive’ phyla included the dominant, drought-tolerant filamen-
tous Actinobacteria, and less dominant phyla (i.e. typically at rel-
ative abundance<5%), such as Proteobacteria (classes Beta-, Delta-
and Gammaproteobacteria), Firmicutes, Bacteroidetes, Thermi, BRC1
and Euryarchaeota. These findings suggest that these prokaryotic
groups cope equally well across environmental gradients and
therefore have a wider environmental niche.

Low endemism

Our work contrasts with studies showing little taxonomic over-
lap at the OTU level across large spatial scales (Fulthorpe et al.
2008; Griffiths et al. 2011). Instead, we determined that nearly
90% of the OTUs were found in at least two deserts, with 70%
of these common to all deserts, thereby demonstrating low
prokaryotic endemism. Even in the Great Basin Desert, which
had the highest OTU level diversity, a mere 8% of the phylotypes
found therein were unique to that desert. Our findings at the
OTU level provide support for a core desert microbiome com-
mon to the Southwest desert region, an idea previously proposed
for Sonoran Desert soils (Andrew et al. 2012). This suggests that
deserts exert a strong selection pressure that resulted in this set
of core desert phyla that are adapted to extreme desert envi-
ronments. In our study, this core set spanned all phyla. Because
differences in Aridisol prokaryotic community composition
(Fig. S2) arose mainly from differences in relative abundances
rather than differences in taxonomic identity, our findings fur-
ther support the notion of ubiquitous dispersal within this re-
gion (van der Gast 2015). One mechanism explaining the large
taxonomic overlap is the dispersal of bacteria on dust parti-
cles throughout desert ecosystems. Deserts are a large source of
these airborne particles that accommodate transport for bacte-
ria over large distances (Prospero et al. 2005; Barberán et al. 2015).
Alphaproteobacteria, which comprised 76% of the Proteobacteria in
our study, can be abundant on dust particles in the continental
United States (Barberán et al. 2015). Additionally, it is possible
that desert bacteria are dispersed across deserts via rain clouds
(Delort et al. 2010). For example, species from the twomost abun-
dant phyla in our study (Actinobacteria and Proteobacteria) have
been cultivated from cloud water (Amato et al. 2005, 2007), sug-
gesting that monsoon rains might be an underappreciated dis-
persal mechanism in the southwestern United States.

Drivers of Aridisol prokaryotic community composition

A growing body of evidence indicates that microbial communi-
ties follow a distance-decay pattern (Horner-Devine et al. 2004;
Martiny et al. 2011; Monroy et al. 2012), whereby communities
closer in space are more similar in composition than communi-
ties that are farther apart. This is observed in many other eco-
logical systems (Nekola and White 1999). We found support for
the distance-decay pattern in our Aridisol study (hypothesis 2),
but this pattern disappeared once other variables, namely cli-
mate and soil properties, were factored out with partial-Mantel
tests and SEMs. Our results are consistent with other studies
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that show community similarity decaywith geographic distance
was weak (Martiny et al. 2011) or non-existent when other envi-
ronmental factors (e.g. climate, soil properties) were accounted
for (Horner-Devine et al. 2004; Fierer et al. 2007), demonstrat-
ing that an apparent relationship between geographic distance
and community similarity is merely indirect. Because there was
no residual effect of geographic distance once climate and soil
properties were partitioned out, we suggest our study captured
the main factors driving the divergence of prokaryotic commu-
nities across geographic distance.

Among the factors we measured, climate and soil proper-
ties best explained Aridisol microbial community differentia-
tion, with climate having a much stronger influence on micro-
bial communities than soil properties (supporting hypothesis
3a). The SEM allows causal interpretations, but does not pre-
clude other interactions. Nevertheless, consistent with our find-
ings, climate does tend to be an important factor controllingmi-
crobial communities at regional and continental scales, as well
as other factors such as topography and soil pH (Ettema and
Wardle 2002; Fierer and Jackson 2006; Lauber et al. 2008, 2009;
Fierer et al. 2009); vegetation type, land use, soil nutrient sta-
tus and the quality and quantity of SOM can also be important
(Högberg, Högberg and Myrold 2007; Jangid et al. 2008; Lauber
et al. 2008; Fierer et al. 2009).We foundno indication of vegetation
influencing the prokaryotic communities, perhaps because the
vegetation data were too coarse at the spatial scale and lacked
sufficient species detail to effectively link vegetation to prokary-
otic composition. Of the climate variables tested in our SEM,
AHM, the ratio between MAT and MAP, had the strongest in-
fluence on prokaryotic community composition (supporting hy-
pothesis 3b). The higher AHM of the Mojave Desert likely lead to
extremely high daily temperature fluctuations, as dry soils heat
up and cool down much faster and to a greater degree than wet
soils (Nobel andGeller 1987). High daily soil temperature fluctua-
tions have been shown to be an important stressor for microbial
communities (Maestre et al. 2015; vanGestel et al. 2016) and could
therefore exert a strong selective pressure on soilmicrobial com-
munities. Of the soil properties, organic matter content was the
most influential for microbial community similarity. The impor-
tance of SOM in arid ecosystems is consistent with a field study
of global drylands that suggests microbial communities are lim-
ited by carbon (Maestre et al. 2015). Soil pHhad theweakest effect
on microbial community composition in our study, which con-
trasts with many studies in terrestrial (Fierer and Jackson 2006;
Jangid et al. 2008; Lauber et al. 2008, 2009; Fierer et al. 2009; Rousk
et al. 2010; Rousk, Brookes and Bååth 2010) and aquatic (Fierer
et al. 2007) ecosystems. However, we only observed small varia-
tion in pH across our soil samples (Table 1), which is common
for deserts (Maestre et al. 2015).

Conclusion

Results from our study suggest that climate plays a larger role
than do soil properties in structuring microbial communities
at regional and continental scales. However, while past stud-
ies in temperate ecosystems have found that precipitation and
temperature are the major climatic variables driving soil micro-
bial communities (Castro et al. 2010; de Vries 2012), our study
showed the combination of these two (i.e. AHM) is the most im-
portant climate factor in Aridisols of the Southwest. The ex-
tremes in temperature and precipitation, and not merely the
means, are likely more important to Aridisol microbial com-
munities than to microbial communities in mesic ecosystems.
Our results suggest that prokaryotic communities in the Desert

Southwest could thus be disproportionately more susceptible to
climate change, as this region is predicted to become hotter and
drier, with more intense but less frequent precipitation events
(Bernstein et al. 2007). Soil microbes influence element cycling,
plant community dynamics and the evolutionary responses of
ecosystems to global change (Bardgett and van der Putten 2014).
Accordingly, loss of soil biodiversity and simplification of com-
munity structure are expected to result in loss of ecosystem
function and stability (Wagg et al. 2014). Because the ecological
strategies of microbes related to the moisture regime are likely
linked to traits that influence their functional potential (Evans
andWallenstein 2014),microbial communities in the arid South-
west could contribute to shifts in ecosystem function as wetting
and drying cycles fluctuate with climate change. This could be
particularly true for ecosystem processes that are governed by a
narrow range of phylogenetic groups (Graham et al. 2016).

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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cloud water at the Puy de Dôme: implications for the chem-
istry of clouds. Atmos Environ 2005;39:4143–53.

Amato P, Parazols M, Sancelme M et al.Microorganisms isolated
from the water phase of tropospheric clouds at the Puy de
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