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Abstract Groundwater is an integral component of the water cycle, and it also influences the carbon cycle
by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation
interactions are poorly understood at the global scale. Using several high-resolution data products, we show
that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated
during at least one season in more than two thirds of the global vegetated area. Positive relationships, i.e.,
larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic
conditions with herbaceous and shrub vegetation. Negative relationships, i.e., larger productivity under deeper
groundwater, predominate in humid climates with forests, possibly indicating a drawdown of groundwater
table due to substantial ecosystem water use. Interestingly, these opposite groundwater-vegetation
interactions are primarily associated with differences in vegetation than with climate and surface
characteristics. These findings put forth the first evidence, and a need for better representation, of extensive
and non-negligible groundwater-vegetation interactions at the global scale.

1. Introduction

Groundwater is a critical source of soil moisture supply for evapotranspiration [Lautz, 2008; Martinet et al.,
2009; Niu et al., 2007; Yeh and Famiglietti, 2009] and its components [Cramer et al., 1999; Maxwell and
Condon, 2016] when radiation energy is abundant and precipitation is limited. Several studies have shown
that under such moisture-limited conditions, this additional moisture supply also enables vegetation to limit
the loss of productivity [Gou et al., 2015], especially in water-limited ecosystems [Baldocchi et al., 2010;
Barbeta et al., 2015]. This access to and potential dependence on below-ground moisture supply from
groundwater can even shape local-scale vegetation distribution and species segregation [Orellana et al.,
2012; Silvertown et al., 2015], and it has been speculated that groundwater may also be a key driver of
ecological patterns globally [Fan, 2015]. Unfortunately, efforts to link such patterns have been limited to
the local scale in experimental studies and regional scale in remote-sensing or model-based studies (see
Eamus et al. [2015] for an in-depth review). At the global scale, we still lack any knowledge on the relevance,
extent, timing, and conditions leading to the groundwater-vegetation interactions.

The global-scale efforts to link groundwater and vegetation patterns have been impeded by a dearth of
higher resolution data sets and models that consider both groundwater and vegetation processes
[Bierkens et al., 2015]. As the collection of field observation data is impractical for regional- and global-scale
studies, remote sensing data are suitable to identify groundwater-dependent ecosystems over a large spatial
scale [Eamus et al., 2015; Pérez Hoyos et al., 2016]. The remote sensing data have successfully been used to link
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terrestrial water storage variations (total storage including groundwater) and vegetation activities on a regio-
nal scale [A et al., 2015; McGrath et al., 2012; Yang et al., 2014]. Due to recent advances in Earth observation
networks and modeling approaches, we can now investigate the relationship between fine-grained spatial
patterns of groundwater and vegetation productivity in the global context as well.

In this study, we exploit relatively high spatial resolution (~10 km) global data sets of model-based ground-
water table depth (WTD) together with gross primary productivity (GPP) derived from satellite remote sen-
sing, FLUXNET observations, and multiple machine learning methods to identify where, when, and how
spatial patterns of GPP and WTD are related globally. We then assess how these spatial patterns are asso-
ciated with vegetation, land surface, and climate characteristics.

2. Data and Methods

The GPP data, at ~10 km spatial and 8 daily temporal resolution, were obtained from FLUXCOM [FLUXCOM,
2017; Jung et al., 2017; Tramontana et al., 2016]. Using nine machine learning algorithms, two observed
GPP variants from two flux partitioning methods [Lasslop et al., 2010; Reichstein et al., 2005] were upscaled
from 224 FLUXNET sites [Baldocchi et al., 2001] to the global scale. The machine learning algorithms were
initially trained to site-level observations of the explanatory climate and land surface variables. To capture
variabilities in vegetation greenness and land surface temperature with reliable imprint of changes asso-
ciated with groundwater, the variables from high-resolution satellite remote sensing data were fed into
the extensive variable selection analysis [Jung and Zscheischler, 2013]. The machine learning algorithms
and their training and a thorough cross-validation of the data are presented in detail in Tramontana et al.
[2016]. To obtain the global GPP, the trained and validated machine learning algorithms were forced with
global gridded satellite data of selected explanatory variables, at 10 km spatial and 8 daily temporal resolu-
tion, to obtain the GPP for the period of 2001–2012. In total, 18 variants (two observed GPP variants and nine
algorithms) of global GPP time series were produced, and the ensemble median was used in this study.

Compared to other global GPP products, the median GPP from FLUXCOM is advantageous because it
combines the strengths of multiple global satellite-based observations with site-level observations using sev-
eral methods. The GPPs estimated only by a subset of algorithms used in FLUXCOM have shown better per-
formance than the GPP from Moderate Resolution Imaging Spectroradiometer (MODIS) against site-level
observations [Ichii et al., 2017; Tramontana et al., 2015; Yang et al., 2007]. At the global scale, the Model
Tree Ensembles GPP product [Beer et al., 2010; Jung et al., 2011], also estimated by a subset of algorithms used
in FLUXCOM, compares well with modern satellite observation of Sun-induced fluorescence [Frankenberg
et al., 2013], and it has been used extensively to benchmark global land surface models [Anav et al., 2013;
Bonan et al., 2012; Piao et al., 2013].

The WTD data were obtained from an observation-constrained global-scale groundwater model simulation
that considers the lateral groundwater flow [de Graaf et al., 2015]. Mean seasonal climatology of WTD is avail-
able at ~10 km spatial andmonthly temporal resolutions. Forced by climate-driven recharge, land surface, and
aquifer parameters, their groundwater model distributes the groundwater recharge laterally based on topo-
graphy with coasts and river channels as boundary conditions. The WTD simulation was validated against
>1.6 million site-level WTD observations. See section S1 in the supporting information for details.

To characterize the spatial covariation of GPP andWTD, we calculated Spearman’s rank correlation coefficient
within 11,134 river basins [Lehner et al., 2008] smaller than ~100,000 km2 globally (see section S2). For a given
basin, the correlation coefficient was calculated between two (or more for partial correlation coefficient)
vectors of data variables from all the 10 km grid cells within the basin boundary. The Spearman’s correlation
is suitable here because it quantifies the covariation of spatial patterns which, for WTD, are well constrained
by topography and bedrock information and, for GPP, by remote sensing of land surface characteristics. We
test the statistical significance of the correlation at 5% level of significance.

These GPP-WTD Spearman’s correlations were then controlled for five confounding climatic and land surface
variables: precipitation, net radiation, topography/elevation, porosity, and leaf area index to eliminate the
“background” collinearity. Precipitation and net radiation represent the moisture and energy available,
respectively. Topography drives the spatial variation of WTD, and shallower WTDs usually occur at lower
elevation. In addition, elevation differences also account for variation in temperature, which in turn relates
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to vapor pressure deficit, a driver of transpiration and GPP. Soil porosity, the potential soil moisture content,
affects groundwater recharge and resistance against evapotranspiration. Finally, leaf area index (LAI)
accounts for differences in vegetation types within a basin. The data sets of these variables were obtained
from several observation-based or model-based sources. A summary of these data is provided in Table 1,
and they are explained in detail in section S1. As these data are either based on high-resolution satellite or
topographic data, we assume that they represent the spatial variability well. The assumption is a necessity,
as there are no global modeling or observation frameworks that could produce all the data needed in a
consistent manner.

Since the GPP are positive and WTD are negative numbers while calculating (partial) correlation coefficient,
the GPP-WTD correlation is positive for a basin when the grids with larger GPP have shallower WTD (smaller
magnitude of a negative number). In contrast, a negative GPP-WTD correlation indicates that grids with larger
GPP have deeper WTD. For each basin, the GPP-WTD correlation was calculated seasonally for four phenolo-
gical stages of the vegetation derived from GPP (see sections S3 and S4 and Forkel et al. [2014]). The correla-
tion coefficient over four seasons is then used to identify the dominant sign of GPP-WTD spatial correlation.
The dominant GPP-WTD correlation for a basin is defined as the sign, positive or negative, of the correlation
that dominates over four phenological stages. To identify the dominant correlation, we first record the sign of
a significant correlation (p< 0.05) in each phenological stage, and then calculate the difference in number of
seasons with positive correlation minus that with negative correlation. This generalization using the domi-
nant GPP-WTD correlation is reasonable because the sign of GPP-WTD correlation does not change in differ-
ent phenological stages for 89% of the basins (see section S5 for a detailed explanation). The main text here
focuses on the dominant GPP-WTD correlation, while a complete analysis for each phenological stage is
presented in the supporting information.

3. Results and Discussions

We first present the results for global distribution of the dominant GPP-WTD correlation. Then, we investigate
the association of the dominant correlation with vegetation, surface, and climate characteristics. Finally, we
evaluate the relative importance of vegetation, surface, and climate characteristics in determining the sign
of the dominant GPP-WTD correlation.

3.1. Global Distribution of GPP-WTD Correlation

The GPP-WTD correlations are statistically significant in at least one season for roughly two thirds of the
vegetated area (Figure 1). Temporally, the correlation is statistically significant in only one season for 21%
and in two seasons for further 15% of the basins. This shows that the groundwater-vegetation interaction,

Table 1. A Summary of Data Sets Used in This Study

Variable

Temporal Spatial

Resolution Period
Resolution

(km) Domain Source

GPP 8 daily 2001–2012 10 Global Satellite/machine learning [FLUXCOM, 2017; Jung et al., 2017; Tramontana et al.,
2016]

WTD Monthly Climatology 10 Global Model-based [de Graaf et al., 2015]
Net radiation 8 daily 2001–2012 10 Global Satellite/machine learning [FLUXCOM, 2017; Jung et al., 2017; Tramontana et al.,

2016]
Precipitation 30 min 1998–2013 8 60°S-60°N Multiple satellites [Joyce et al., 2004; NOAA, 2011]
Elevation Static 1 Global Satellite/cartography [USGS, 1996]
Soil porosity Static 1 Global Statistical/various [Dirmeyer et al., 2006; Hamonized World Soil Database, 2008]
Leaf area index 8 daily 2001–2012 10 Global Satellite [Moderate Resolution Imaging Spectroradiometer, 2012]
Climate class Static 50 Global Climate data [Kottek et al., 2006]
Vegetation
class

Static 1 Global Satellite [Moderate Resolution Imaging Spectroradiometer, 2012]

Tree cover Static 10 Global Satellite [Defries et al., 2000]
Grass cover Static 1 Global Satellite [Jung et al., 2006]
C4 cover Static 1 Global Satellite [Jung et al., 2006]
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either positive or negative, is significant under certain “ecohydrologically relevant” condition only and has
strong temporal dynamics. Further, the areal extent of significant positive correlation is the largest when
GPP is minimum, showing that positive correlation predominates when vegetation activity is limited. In
contrast, the negative correlation predominates when vegetation activity is maximum (see section S5
for details).

Even though the basins dominated by positive and negative GPP-WTD correlations have similar areal extents
globally, they have a distinct spatial footprint. The positive relationship prevails in ~36% of the vegetated
area, located primarily in the Indian subcontinent, sub-Saharan Sahel regions, semiarid regions of eastern
and southern Africa, noncoastal regions of southern and eastern Australia (in and around Lake Eyre basin),
Eurasian midlatitudes, and northern parts of North America. In most of these regions with typically limited
moisture supply, groundwater is likely supporting primary productivity through enhanced soil moisture
availability. This is also consistent with earlier model-based findings of sizable groundwater-supplied evapo-
transpiration in the semiarid regions globally [Koirala et al., 2014] as well as those in seasonally dry northern
high-latitude regions [Cohen et al., 2006] and regions with higher probability of using nonprecipitation
moisture sources in Australia [Doody et al., 2017].

A negative GPP-WTD relationship predominates in ~36% of the global vegetated area, and it is mostly
evident in humid regions concentrated in tropical regions of South America, Africa, Southeast Asia, and
parts of northern and northeastern Eurasia. Such an extensive negative GPP-WTD relationship was
unexpected, as the previous studies signify, almost exclusively, the positive effect of groundwater on
productivity. However, a negative GPP-WTD relationship might emerge due to several mechanisms such
as suppression of GPP via anaerobic stress under very shallow WTD [Naumburg et al., 2005] or via a loss of
leaves [Parolin and Wittmann, 2010] and structural disturbances [Moreno-Casasola and Vázquez, 1999] in
floodplains. Furthermore, and perhaps more essentially and widespread, the WTD may become deeper
with increasing GPP through simultaneously increasing evapotranspiration [Jung et al., 2011] and decreas-
ing groundwater recharge.

Nearly 30% of the total vegetated area shows no significant GPP-WTD correlation in any season. There is
no spatial coherency of insignificant relationship apart from an extensive area within the contiguous U.S.,
which might be related to large-scale anthropogenic irrigation that also affects GPP-WTD relationship
[Kath et al., 2014]. Uncertainties of the WTD and GPP products likely weaken correlation coefficients as well.
We carried out an additional analysis using an independent WTD data from Fan et al. [2013] (section S7).
Despite a significant difference in the magnitude of WTD in two data products, the analysis reveals con-
sistent spatial patterns of positive and negative GPP-WTD relationships globally. This is due to a similar
regional spatial variability of two data, as WTD is mainly driven by topography in both cases.

Figure 1. Global distribution of the dominant GPP-WTD relationship. The red (blue) shades are used for basins where the number of seasons with positive correlation
is larger (smaller) than that with negative correlation. The basins in which GPP-WTD correlation is statistically insignificant in all seasons are shaded grey. In the bar
chart, the height of a bar shows the areal coverage (relative to total global vegetated area), while the number above each bar is the number of basins.
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3.2. Association With Vegetation, Surface, and Climate Characteristics

To characterize the determinants of the dominant GPP-WTD correlation, we segregated the occurrences of
dominant positive and negative relationships for different climate and vegetation classes. We find that nega-
tive relationships prevail in humid climate and positive relationships prevail in dry climate irrespective of the
vegetation types (Figure 2). In transient climates that are neither strictly humid nor dry, there is a substantial
heterogeneity with respect to different vegetation types. In these temperate and seasonally cold regions,
there is a clear distinction between prevailing negative relationships for forests and prevailing positive rela-
tionships for shrub or grasslands. For Savannas, mixed tree-grass systems, and crops (which are highly man-
aged), there is no clear pattern on whether positive or negative GPP-WTD relationships dominate.

To further identify possible driving mechanisms behind variability of GPP-WTD relationship, we dissected the
occurrences of positive and negative relationships against gradients of vegetation characteristics (leaf area
index, fractions of tree [Defries et al., 2000] and grass covers, relative fraction of vegetation with C4 photo-
synthesis [Jung et al., 2006]), and the most important climatic variables (precipitation and net radiation).
Because the mean WTD and GPP are independent of the spatial GPP-WTD correlation, they were also
included in the analysis.

In general, the dominant sign of GPP-WTD relationships relates more strongly to differences in vegetation
characteristics than to differences in mean climate characteristics (Figure 3). The Kolmogorov-Smirnov two-
sample test (see section S9 for details) also reveals that the differences in the distribution of the occurrences
of positive and negative GPP-WTD relationships are statistically significant (p < 0.05) against the proxies of
vegetation structure and productivity (except relative fraction of C4 vegetation). While the number of basins
with positive GPP-WTD relationships decreases with increasing GPP, LAI, and tree cover (Figures 3a–3c), it
increases with increasing grass cover and relative fraction of vegetation with C4 photosynthesis
(Figures 3d and 3e).

The stronger association of vegetation characteristics with the difference in the sign of GPP-WTD relationship
might result from different connections between WTD, root depth [Fan, 2015; Tron et al., 2014], and distribu-
tion [Grimaldi et al., 2015], as well as from plant physiological factors affecting water use [Rodriguez-Iturbe
et al., 2007]. For example, deeper tree roots (compared to those of shrub or grass) provide access to a

Figure 2. Distribution of basins dominated by positive and negative GPP-WTD relationships against simplified climate class
and vegetation types. For each simplified climate class (from Köppen-Geiger climate classification) and vegetation type
(from MODIS plant functional type), the total number of basins (inset number) is divided into those dominated by positive
and negative GPP-WTD relationship, and the relative difference (in percentage) between the two is plotted. For the hatched
blocks (insignificant difference), the relative difference is smaller than that caused by random effects. A summary for
each climate class and vegetation type is provided in the axis labels. The ones dominated by positive (negative) relationship
are colored red (blue), and the insignificant ones are colored grey.
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deeper soil column [Neill et al., 2013] under both normal and dry conditions [Baldocchi et al., 2004;Weltzin and
McPherson, 1997], which increases the potential water uptake. This large water uptake decreases soil
moisture and, consequently, groundwater recharge and results in a deeper WTD leading to a negative
GPP-WTD relationship. On the other hand, the enhanced water use efficiency of vegetation with C4
photosynthesis [Still et al., 2003] facilitates a higher productivity per additional unit of soil moisture supply
from groundwater, which could explain the prevalence of positive GPP-WTD relationship at the highest
relative fraction of C4 vegetation (>90%).

The number of both positive and negative GPP-WTD relationships peaks at relatively low precipitation
(300–400 mm/yr; Figure 3g) and shallow WTD (<10 m; Figure 3f), while no clear pattern is evident for net
radiation (Figure 3h). We observe a statistically significant pattern (p < 0.05) of more negative GPP-WTD
relationships with increasing precipitation (Figure 3g), suggesting that WTD deepens due to a large produc-
tivity and transpiration loss when the moisture supply from rainfall is abundant. Positive relationships prevail
at shallow WTD (6–8 m), where groundwater capillary flux can be expected to enhance root zone moisture
and surface water fluxes [Koirala et al., 2014]. Such shallowWTD conditions are particularly necessary for grass
and shrub vegetation with shallower roots and limited direct access to groundwater.

Figure 3. Distribution of vegetation, surface, and climate characteristics in basins dominated by positive and negative GPP-
WTD relationship. In the left axis, the number of basins (red line for positive and blue line for negative) is plotted against
(a) GPP, (b) leaf area index, (c) tree cover fraction, (d) grass cover fraction, (e) relative fraction of C4 vegetation, (f) 25th
percentile WTD, (g) mean annual precipitation, and (h) net radiation. In the right axis, the difference in number of basins
(positive minus negative) is plotted (grey bars). The P values of the Kolmogorov-Smirnov test of significance between the
distributions of positive and negative relationships are provided on the top-right section of each plot. Note the irregular
vertical axis limits, as well as the logarithmic horizontal axis in Figure 3f.
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3.3. Relative Importance of
Vegetation, Surface, and
Climate Characteristics

Finally, we quantify the relative im-
portance of climate (three variables),
vegetation (seven variables), and sur-
face (three variables) characteristics
for the dominant sign of GPP-WTD
correlation. To do so, we first trained
a random forest classification algo-
rithm [Breiman, 2001] to predict
whether the GPP-WTD correlation is
dominated by a positive or negative
relationship. The relative importance
of the groups of variables was then
calculated using two methods; per-
mutation and leave out approaches
(see section S10). Irrespective of the
metric chosen, vegetation-related

predictors have a much larger relative importance than climate and land surface-related predictors in deter-
mining the dominant GPP-WTD correlation (Figure 4), which is also evident at the seasonal scale (Figures S13
and S14 in the supporting information). An additional calculation using only two principal components of
each group of variables also produces a similar result (Figure S15), showing that the collinearity and differ-
ence in the number of variables within each group have little effect on relative importance.

4. Conclusions

This analysis has uncovered patterns of complex but spatially coherent and statistically significant distribu-
tion of positive or negative groundwater-vegetation relationships during at least one season in ~72% of
the global vegetated land surface. This clearly demonstrates a global relevance of, often excluded,
groundwater-vegetation interactions.

Whether groundwater may be supporting vegetation (yielding a positive relationship) or vegetation may be
affecting groundwater (yielding a negative relationship) relates with climate, and more importantly, with
characteristics of the vegetation itself. Because causality cannot be inferred from correlation coefficients
alone, appropriate ecosystem model developments are urgently needed to quantify the groundwater-
vegetation interactions at the global scale. It is especially critical because both positive and negative relation-
ships are equally extensive at the current state, but their patterns and extents can be altered due to global
climate and land cover changes. It implies that the recent trends and future projections of declining ground-
water resources [Richey et al., 2015] and forest cover [Hansen et al., 2013], along with an increasing vegetation
water use efficiency due to CO2 fertilization [Keenan et al., 2013], would potentially shift the groundwater-
vegetation interactions. The understanding of how groundwater-vegetation interactions respond to changes
in climate and anthropogenic influence is crucial to quantify ecosystem services of groundwater and
vegetation resources.
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