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Abstract Temperature rise in the Arctic is causing deepening of active layers and resulting in the
mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM
mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a
year, are poorly understood. Here we conducted a short-term leaching experiment on surface and deep
organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and
molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5%
of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM
while releasing fluorescent components (up to 107%), indicating selective release of aromatic components
(e.g., lignin and tannin), while retaining nonchromophoric components, as supported by spectrofluorometric
and ultrahigh-resolution mass spectroscopic techniques. Our findings highlight the importance of the
lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic
active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export
as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway
from soil to atmosphere in a warming Arctic.

1. Introduction

Temperature in the Pan-Arctic region is predicted to increase 3–10°C by the end of this century
[Intergovernmental Panel on Climate Change, 2013]. As a result, permafrost, or perennially frozen soil, in this
region is vulnerable to enhanced thaw, leading to the potential microbial decomposition of permafrost
organic carbon (OC). Permafrost soils have accumulated over hundreds to thousands of years and store half
of global belowground organic carbon (~1700 Pg) [Tarnocai et al., 2009; Schuur et al., 2015], largely due to
slow microbial decomposition in a cold environment [Hicks Pries et al., 2012; Vonk et al., 2013a]. Thawing of
permafrost allows the release of previously frozen organic carbon (OC) into the contemporary carbon cycle
by mobilization of dissolved and particulate OC (DOC and POC) as well as the release of greenhouse gases
(CO2 and CH4) [Schuur et al., 2009; Rowland et al., 2010; Spencer et al., 2015].

As for the mobilization of permafrost OC, previous studies have focused on the transport of permafrost-
derived DOC, because it is the major form of OC (80%) from Arctic river watersheds [Dittmar and Kattner,
2003]. The magnitude and composition of DOC/dissolved organic matter (DOM) exported from the Arctic
soils varies with season, with the spring freshet exporting lignin-rich, young, and aromatic DOMwhile the late
summer, when active layers are deepest, exports less bioavailable, less aromatic, older, and lower molecular
weight DOM [e.g., Raymond et al., 2007; Striegl et al., 2007; Spencer et al., 2008]. However, the mechanisms
behind this are still poorly understood, especially with active layer deepening—resulting in exposure of pre-
viously frozen soil to transport processes [Neff et al., 2006; Wickland et al., 2007; Frey and McClelland, 2009].

The fate and transport of DOM released from thawing soils will in part be controlled by molecular composi-
tion at different soil depth as well as hydrological flow paths (e.g., through surface versus deep soils) [Guo and
Macdonald, 2006; Spencer et al., 2008; O’Donnell et al., 2014]. Conceptual models of vertical movement of
DOM in soils has been well reviewed by Kaiser and Kalbitz [2012], summarizing the importance of physical,
chemical, and biological effects. Ward and Cory [2015] showed the difference in chemical composition of
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DOM from surface organic soils and deep mineral soils in the Arctic. However, these researches focused
only on the differences between organic versus mineral soils. In permafrost regions, especially continuous
permafrost, most surface runoff only percolates through the very top of soil (in the organic soil layer).
Thus, there remain gaps in our knowledge on the role of export from leaching in overall C losses from
Arctic soils, or, more specifically, what chemical changes occur in the formation of DOM leachate and
how those changes are linked with the chemical composition of DOM in Arctic rivers [e.g., Spencer et al.,
2008; Cao et al., 2016; Mann et al., 2016]. Here we describe results from an Arctic soil leaching
experiment, using soils collected from the Yukon River basin, to investigate DOM transformations during
vertical infiltration through the organic soil layer as well as the importance of soil infiltration in the lateral
transport of DOM.

In this study, we used a laboratory experiment to provide a proof-of-concept using state-of-the-art chemi-
cal techniques. Chemical changes in soil leachate DOM were investigated using Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS), chromophoric dissolved organic matter (CDOM),
and fluorescent dissolved organic matter (FDOM), measured using excitation emission matrix (EEM) fluor-
escence. EEMs have been widely used to provide compositional information of DOM in a diversity of aqua-
tic environments, including lakes, wetlands, and estuaries [Coble, 1996; Stedmon et al., 2003; Chen and
Jaffé, 2014]. FT-ICR-MS, an ultrahigh-resolution mass spectrometric technique, has been applied more fre-
quently in environmental sciences to provide an unprecedented means for understanding detailed
molecular-level characteristics of DOM—which is commonly outside of the traditional analytical window
[Kujawinski et al., 2002; Sleighter and Hatcher, 2007; Kellerman et al., 2015]. Extensive work on the chemical
composition of DOM in the Yukon River [e.g., Guéguen et al., 2006; Striegl et al., 2007; Spencer et al., 2008;
O’Donnell et al., 2014; Cao et al., 2016], as well as extensive soil incubation experiments [e.g., Mikan et al.,
2002; Schuur et al., 2009; Sistla et al., 2013; Natali et al., 2014; Hicks Pries et al., 2015], makes the application
of the lab leachate experiment particularly useful in examining soil-to-river versus soil-to-atmosphere
linkages in C transport.

Figure 1. Map of the Yukon River basin and sampling location (black dot).
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2. Material and Methods
2.1. Sample Location
and Preparation

Two landscape replicate soil
cores E1 and E2 were collected
to ~1m depth in March 2015
from a site located in the Eight
Mile Lake watershed of the Alaska
Range (~670m elevation), Alaska,
USA (63°52059.64″N, 149°13033.97″W)
(Figure 1) using a Snow, Ice, and
Permafrost Research Establishment-
style handheld drilling device. The
site is located near the headwaters
of a tributary (Tanana River) in the
Yukon River drainage basin, on a
well-drained gentle northeast
facing slope (4%) [Natali et al.,

2014]. This region is characterized by moist acidic tundra—vegetated dominantly by tussock-forming sedge,
graminoid, dwarf shrubs, and various mosses and lichens [Schuur et al., 2009]. Soils were classified as Gelisol
and are composed of 0.3–0.5m thick organic horizon on top of cryoturbated mineral soil mixture of wind-
blown loess and glacial till (small stones and cobbles) [Schuur et al., 2009; Hicks Pries et al., 2015]. Soil organic
carbon pools with 1m of the soil are ~50 kg C/m2, and the active layer thaws up to ~60 cm during growing
season [Natali et al., 2014]. Although located in a discontinuous permafrost region, this site is fully underlain
by permafrost. Permafrost thaw features (e.g., thermokarst) have been documented over the past several
decades in the nearby region [Osterkamp, 2007; Schuur et al., 2009].

Soil samples were kept frozen and split lengthwise down the core in ~5 cm intervals in a �10°C cold room
using band saw at the University of Alaska, Fairbanks. Samples were then shipped frozen to University of
Florida and kept in a �80°C refrigerator before the experiment.

2.2. Laboratory Leaching Experiment

We conducted a three-stage laboratory leaching experiment to investigate DOC transformations during ver-
tical percolation during short-term equilibration. Surface soil (S, 10–26 cm, two sample sections) and deep
soil (D, 40–61 cm, two sample sections) from each core were used. Two lengthwise replicates from each core
were used during leaching (Tables S1 and S2 in the supporting information). Surface soils (E1-S and E2-S)
were sequentially leached with 220, 120, and 120mL of artificial rain (Figure 2) during stages one, two,
and three, respectively, and frozen overnight between stages to minimize microbial processing between
days (Figure 3). Approximately half of surface soil leachates were percolated through the deep soils (E1-D
and E2-D) using the same approach as above. Our initial leaching volume of 220mL was based on our
expectations from other soil leaching experiments to reach asymptotic DOC concentrations [Bohan et al.,
1997; Guo et al., 2007]. The experiment was continued for two additional days (stages) until asymptotic con-
centrations were reached.

Soil samples were shaped to fit into a 60mL syringe using a chisel while still frozen. Syringes were acid
washed and tested for blank DOC and EEMs. Artificial rain was made with NH4NO3, CaSO4, MgSO4, K2SO4,
and Na2SO4 dissolved in Milli-Q water and adjusted to pH=5.24 with 6NHCl to simulate natural precipitation
in Denali National Park-Mount McKinley from National Atmospheric Deposition Program averaged for the last
35 years. Samples were thawed in a refrigerator at 4°C for 1 day to collect initial pore water. Then, surface soil
samples were leached with artificial rain at a rate of ~14mL/h at 20°C. As shown in Figure 2, the artificial pre-
cipitation was dripped at a constant rate onto soils using a peristaltic pump. Leachates were filtered by 0.7μm
Glass fiber filter and collected in 40mL amber vials. Syringes were also wrapped in aluminum foil to minimize
any possible photochemical reactions. Leachates were collected every 20mL. Ten milliliters of each leachate
were stored frozen for analyses, while the other 10mL were temporarily stored in refrigerator before perco-
lated through corresponding deep soils. In Stage 1, 11 leachates were collected for each surface soil sample,

Figure 2. Leaching column design, as modified from Hodson and
Langan [1999].

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003754

ZHANG ET AL. CHANGES OF OC IN ARCTIC SOIL LEACHATE 798



while 6 surface leachates were collected in Stages 2 and 3 using the same method. In Stage 1, every other
10mL of surface leachate, starting from the first collection (total of 6), was used to sequentially leach deep
soils. In Stages 2 and 3, 10mL surface leachates from all collections were used to leach deep soil
sequentially. Deep soil samples were leached in a 4°C cold room in darkness at the same rate as leaching
upper soils. Samples used for FT-ICR-MS analysis were the first collected leachates in Stage 1 and
combined leachates in Stage 3, based on the sample size requirement of OC.

The difference of results in surface and deep leachates were calculated as

ΔX ¼ XD � XS (1)

where XD is the amount of X (a parameter) in deep soil leachate (output) and XS is the amount of X in surface
soil leachate (input); a negative ΔX indicates retention, and a positive ΔX means releasing of materials from
deep soils.

2.3. Total Organic Carbon, Total Nitrogen, and Dissolved Organic Carbon

Total organic carbon (TOC) and total nitrogen (TN) of soil samples were analyzed in the Light Stable Isotope
Mass Spectrometry Lab at the University of Florida. Freeze-dried samples were decarbonated using HCl fumi-
gation for 8 h [Harris et al., 2001] and then dried at 60°C for 24 h. DOC concentrations of leachates were mea-
sured on a Shimadzu TOC-VCSN/TNM-1, using high-temperature catalytic oxidation [Guo et al., 1994]. DOC
concentrations were calculated from three to five injections, and the coefficient of variance was less than 2%.

2.4. UV-Vis Absorption and Fluorescence EEMs

UV-vis absorbance of leachates was measured between 200 nm and 600 nm on a Shimadzu UV-1800 spectro-
photometer with 1 nm increments. Specific UV absorbance at 254 nm (SUVA254) was calculated by dividing
UV absorbance at 254 nm by DOC concentrations, resulting in units of m2 g C�1

, as an indication of the per-
centage DOM aromaticity [Traina et al., 1990; Weishaar et al., 2003]. The absorption coefficient at 350 nm
(a350) was calculated as follows:

a350 ¼ 2:303 � A350= r (2)

where A is the absorbance measured across the path length r in meters. a350 has been used as an indicator for
dissolved lignin phenol and CDOM concentrations [Hernes and Benner, 2003]. Spectral slope ratio (SR), the

Figure 3. Leaching experimental procedure used in this experiment. Ten milliliters of each top leachate was used to leach
deep soil. In stage 1, only top leachates from first, third, fifth, seventh, ninth, and eleventh collections were used. Due to
absorption of water in the deep soils, only five deep leachates were collected in stage 1. For consistency, five deep lea-
chates were collected in stages 2 and 3. Volumetric calculations were done on the input of top leachates to deep soils.
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ratio of spectral slope S275-295 over S350-400, was determined via linear regression from the natural logarithm
of absorbance between 275 and 295 and 350 and 400 nm, respectively. SR was used as an index for DOM
molecular weight [Helms et al., 2008].

EEMs were generated by scanning excitation spectra (220–450 nm) and emission spectra (280–600 nm) at 5
and 1 nm increments on a Hitachi F-7000 Fluorescence Spectrophotometer, respectively. Parallel-factor
analysis (PARAFAC) allowed for the separation of EEMs spectra into distinct components and estimates of
the relative intensity of each component [Stedmon et al., 2003]. PARAFAC modeling was executed via
drEEM toolbox for MATLAB [Murphy et al., 2013], and five components were validated using split half analysis
(Figures S1 and S2).

2.5. FT-ICR-MS Sample Preparation and Analysis

Leachates were acidified with 6NHCl to pH ~2–3, concentrated on Agilent Bond Elute PPL cartridges
(200mg), rinsed with acidified Milli-Q water (pH= 2), and eluted with one cartridge volume of methanol.
The eluate was blown down to ~1mL with gentle flow of nitrogen gas. The extracted samples were then
directly infused into a 12 Tesla Bruker SolariX FT-ICR-MS (Bruker daltonics Inc, Billerica, MA, USA) with an elec-
trospray ionization source and analyzed in negative ion mode. All samples were analyzed at a resolving
power of 400,000 (m/Δm50% at m/z 400) with mass range of 114 to 1200m/z. For each sample, 144 scans
were collected.

Data analysis software (Bruker Daltonik version 4.2) was used to convert raw spectra to peak lists by applying
Fourier transformmass spectrometry peak picker with signal-to-noise (S:N) threshold of 7 and absolute inten-
sity threshold of 100 with the following requirement C0-100H0-200O0-50N0-10S0-2P0-2, H/C< 2.2, O/C< 1.2, and
N/C< 0.5 [Koch and Dittmar, 2006]. The observed masses in each sample were internally calibrated using an
organic matter homologous series. The mass measurement accuracy after internal calibration was <1 ppm.
Subsequently, elemental formulas were assigned using in-house built software, following the Compound
Identification Algorithm, described by Kujawinski and Behn [2006]. Chemical formulas were assigned based
on the following criteria: S/N> 7, mass measurement error <0.5 ppm. In addition, formulas that generated
noninteger double-bond equivalences (DBEs) were not considered [Koch and Dittmar, 2006]. Double-bond
equivalence (DBE) is computed as follows, based on Dittmar and Koch [2006]:

DBE ¼ 1þ 0:5 2C� Hþ Nþ Pð Þ (3)

Hydrophobicity, molecular weight distribution, and compound classes of samples were used to examine
changes in molecular composition. Hydrophobic compounds were defined as NSO:C ≤ 0.1 (molecular
mass> 850 amu), and moderately hydrophobic compounds were defined as 0.1<NSO:C< 0.49 (molecular
mass< 850 amu); hydrophilic compounds were defined as NSO:C ≥ 0.49 (molecular mass< 850 amu); where
NSO:C is the ratio of number of nitrogen, sulfur, and oxygen atoms over number of carbon atoms in a com-
pound [Liu and Kujawinski, 2015]. FT-ICR-MS formulas were assigned to the following compound classes:
lipids, proteins, carbohydrates, amino sugars, lignin, tannins, and condensed hydrocarbons, based on ele-
mental ratios of H:C and O:C [Minor et al., 2014] (Figure S3a). Formulas with DBE:C = 0.3–0.68, DBE:H = 0.2–
0.95, and DBE:O = 0.77–1.75 were assigned to be carboxylic-rich alicyclic molecules (CRAMs) [Hertkorn et al.,
2006]. The relative abundance of different compound classes was assessed using peak count and intensity-
weighted percentage, which are the ratio of summed number and intensity of formulas in each class over
the summed number and intensity of all formulas [Sleighter and Hatcher, 2008].

3. Results and Discussion
3.1. Bulk Mobilization of DOC

Cumulative DOC leached by artificial rain, percolated through pure organic surface soils (>40% TOC),
approached asymptotic levels during the Stage 2, and remained stable until the end of Stage 3 (Figures 4a
and 4b). Leaching removed 3.7 to 6.5% of OC in surface soil as DOC during the experiment (Table S1), which
is higher than the soil DOC yield reported from other high-latitude tundra soils in short-term and long-term
leaching experiments [Neff and Hooper, 2002; Guo et al., 2007]. To confirm surface soil variability, we leached
the surface sample (10–20 cm) from a third landscape replicate core, leading to 5.2% flux of soil OC (detailed
data not shown here). Leaching of deep soils of this core was not possible because of their low permeability.
For perspective, our field site receives an average of 245mm of precipitation during the growing season
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which is equal to 121mL of leachate in our experiment. After 121mL of leaching, 1.4%–3.0% of soil organic
carbon (SOC) was leached from surface soils. In comparison, organic permafrost soils from around the Arctic
respired an average of 6% OC when incubated in the laboratory at 5°C for 1 year [Trucco et al., 2012; Schädel
et al., 2014]. While this value is difficult to compare to incubated soil losses, the relative magnitudes highlight
the importance of quantifying lateral fluxes, in addition to heterotrophic respiration, when considering the C
balance of Arctic ecosystems—especially at smaller scales (e.g., observational plots or local watersheds).
Moreover, the effects of plant productivity and soil heterotrophs may enable more sustained DOC releases
in field conditions compared to the asymptotic decrease in flux observed here. Finally, we note that
despite temporal and spatial heterogeneity, the average water table depth for these soils is below the soil
surface [Schädel et al., 2016], so we can safely assume that the majority of precipitation flows either vertically
(i.e., infiltration) or laterally (i.e., runoff) through surface soils.

The negativeΔOC in the first two stages indicated retention of DOC coming from surface soils (Figures 5a and 5b).
At the beginning of Stage 3, deep soils appeared to be saturated as bulk DOC outputs matched inputs. At the
end of the experiment, the total retention of OC from surface leachates by deep soils ranged from 2.4 to 3.2%

Figure 4. (a) Cumulative OC, (c) average fluorescent intensity, and (e) relative abundance of each component in surface
soils from core E1. SOC in cumulative OC units means soil organic carbon. Relative abundance of five components was
calculated by fluorescent intensity of each component divided by total fluorescent intensity. (b) Cumulative OC, (d) average
fluorescent intensity, and (f) relative abundance of each component in surface soils from core E2. Dash lines indicate
freezing overnight.
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in the pure organic deep soil (E2; ~44% TOC), and 19.0 to 27.3% in the organic-rich soil (E1; ~25% TOC, Table S2).
The observed saturation during Stage 3 may also be a result of the low DOC inputs at that time, suggesting
that the retentive capacity of deeper soils may be higher than observed here. Interestingly, these results
suggest that retention of DOC in deep organic soils will likely increase with the deepening of the active
layer, exposing more organic soils to thaw—at least on short timescales observed here. This clearly
impacts the fate of DOC transported to streams/rivers in the Arctic [Spencer et al., 2015]. To our knowledge,
this is the first evidence for DOC retention in the organic soil column in Arctic soils, which is key to
understand the behavior of DOC in different soil layers. Furthermore, these preliminary findings provide a
mechanistic framework for predicting and understanding DOC export in different seasons, since thaw
depth and precipitation varies throughout the year.

3.2. Spectrofluorometric Signatures of Soil DOM

SUVA254, an indicator of DOM aromaticity, had values (0.9 ± 0.8m2 g C�1) in surface soils much lower than
most Arctic river waters which is normally above 2m2 gC�1 [Spencer et al., 2008; Stedmon et al., 2011;
Mann et al., 2012; Wickland et al., 2012; Mann et al., 2016], indicating the abundance of nonchromophoric
DOM in fresh and early-decomposed plant leachate (Figure 6a). Even though SUVA254 was variable in surface
soil leachates, a350 decreased with leaching time and reached an asymptotic state in Stage 2—similar to
cumulative DOC (Figure 6c). The value of a350 at the beginning of leaching experiment was an order of mag-
nitude higher than what commonly found in Arctic river DOM [Walker et al., 2013] and decreased to riverine
DOM values in Stage 3, reflective of the high amounts of aromatic compounds found in fresh and early-
decomposed plant leachates. This also agrees with the relatively high a350 observed during spring freshet,
when surface runoff only reacts with surface soils [Mann et al., 2016].

Figure 5. ΔOC in deep soils from cores (a) E1 and (b) E2. SOC in the unit means soil organic carbon.Δfluorescent intensity of
each component in deep soils from cores (c) E1 and (d) E2. Dash lines indicate freezing overnight.
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In deep soils, SUVA254 increased with leaching time in both cores E1 (r2 = 0.7, p< 0.05) and E2 (r2 = 0.8,
p< 0.05) (Figures 6b, S4a, and S4b) when the input of surface leachate had stable SUVA254 values, indicating
preferential leaching of CDOM. Recent work has shown a robust relationship between broad-scale CDOM and
DOC comparisons in Arctic rivers, sampled at similar times with comparable procedures (e.g., the Arctic Great
Rivers Observatory) [Mann et al., 2016]. However, independent studies within a particular river basin (with
more extensive sampling) have shown many cases with no significant relationship between CDOM and
DOC, reflective of variable inputs of nonchromophoric DOM across Arctic watersheds [Mann et al., 2016].
This discrepancy between CDOM and bulk DOC may be related to the selective transport of DOM (preferen-
tial leaching of CDOM) observed here, and may be variable due to site- and season-specific differences in
hydrologic flow paths through watershed soils.

The CDOM-based index for molecular weight (SR), showed increasing trends in surface leachate across Stages
1 and 3 in cores E1 and E2 (Figure 6e), indicating shifts from higher molecular weight (HMW) to lower mole-
cular weight (LMW) CDOM. Interestingly, this shift to LMW with leaching time in surface soils corresponds

Figure 6. Scatter plots of (a) SUVA254, (c) a350, and (e) SR from surface soils in cores E1 (black) and E2 (red). Scatterplots of
(b) SUVA254, (d) a350, and (f) SR from deep soils in cores E1 (black) and E2 (red). Dash lines indicate freezing overnight.
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with Arctic river water molecular weight distributions during the spring freshet [Spencer et al., 2009; Mann
et al., 2012], when most hydroflow only percolates through surface soils. More specifically, the increase of
SR during freshet from 0.8 to 1.0 [Mann et al., 2012] agree with the increase of SR in our leaching experiment
at surface soils from 0.7 to 1.1 at E1 and 0.9 to 1.0 at E2 across Stages 1 and 3.

Deep-soil leachates from the two cores exhibited clearly opposite SR trends, with E1 decreasing over time and
E2 increasing (Figures 6f, S4e, and S4f). However, these trends converged toward the same SR value by the
end of leaching and, given that surface SR values (i.e., inputs) were similar, suggested the presence of a
LMW pool of CDOM in E1 that was removed during the experiment. The low value of SR in E2 (pure organic,
~44% TOC) at the beginning of leaching experiment was consistent with the high abundance of HMW poly-
mers in the initially degraded organic debris. Moreover, the fact that the deep cores started at very different
SR values and converged toward the end of the experiment suggests that similar leaching processes were
likely operating in both cores.

PARAFAC modeling of EEMs spectrum yielded five components (Figure S1 and Table S3) that resembled
literature spectra of humic, fulvic, and amino acids, etc. However, the potentially dubious nature of “geopo-
lymers” [Schmidt et al., 2011; Lehmann and Kleber, 2015], young age of these surficial organic soils [Hicks Pries
et al., 2013], and slowed processing of OC during cold winter temperatures lead us to conclude that the
observed components are likely compounds released from the early decomposition of plant tissues (e.g., lig-
nin, tannin, and proteins). Although there were distinct changes in relative intensity of different components
over time (Figures 4e and 4f), their unequivocal identification caused us to use a pooled fluorescence inten-
sity as our primary FDOM metric.

The net retention of bulk DOC in deep soils corresponded to a net FDOM release of 107.2 ± 17.0% and 52.9
± 1.7% in cores E1 and E2, respectively (Figures 5a and 5b and Table S4). Bulk DOC showed variable retention
and release during Stages 1 and 2 but remained stable during Stage 3, while net FDOM showed retention
during Stage 1 and release during Stages 2 and 3 (Figures 5c and 5d). Stage 1 unambiguously retained both
bulk DOC and FDOM indicating an abundance of reactive sites that allowed for adsorption. We interpret
Stage 2 to be approaching a short-term equilibrium where selective retention and release began to occur
as the reactive surface sites in the deep-soil approached saturation, consistent with the then-continuous
release of FDOM and the variable retention of bulk DOC. By Stage 3, an apparent bulk DOC equilibrium
was reached, with concurrent increases in the release of FDOM, indicating exchange on reactive surfaces
resulting in the selective release of FDOM—consistent with the increase of SUVA254 in deep soils. We contend
that this large increase in fluorescent intensity during Stage 3 from surface to deep leachates (81.0 ± 10.2%),
along with an equilibrium in bulk DOC, strongly indicates that nonfluorescent DOMmust have been retained.
This effect is especially relevant as the composition of exported DOM affects its apparent reactivity in streams
and rivers [Vonk et al., 2013b;Mann et al., 2014]. In addition, the underlying process may help to explain why
relict permafrost soils (i.e., yedoma) are depleted of phenolics [Spencer et al., 2015], which we observed to
trend toward preferential release with leaching. Additionally, the composition of leachates in our study did
not appear to be impacted by overnight freezing, based on DOC, SUVA254, and FDOM data in surface soils
between leaching stages.

3.3. Molecular Character of DOM

Molecular data derived from FT-ICR-MS analyses were used to investigate the overall trends observed in
bulk and spectroscopic data sets by leachate from Stages 1 and 3. In general, there were decreases in total
peak counts (58 ± 13%) and assigned formulas (59 ± 13%), respectively (Table S5)—corresponding to a
decrease in bulk DOC between two time points. However, peak counts and assigned formulas increased
from surface to deep soils by 17.6% to 184.3% and 21.0% to 192.7% (Table S5), respectively, indicating that
the deep soils exported a greater diversity of formulas. This was likely related to the depolymerization of
plant tissues and transport of microbial biomass associated with degradation during the soil development
[Lehmann and Kleber, 2015]. This increase in peak counts occurred even during Stage 3, when bulk DOC
was at an apparent equilibrium, which further supports the notion that exchange was occurring between
liquid (leachate) and solid (soil) phases, as documented earlier using our spectroscopic techniques. In
general, the hydrophilic fraction of compounds decreased during leaching, with moderately hydrophobic
fraction increasing in both surface and deep soils (Figures 7a and 7b), reflective of preferential leaching of
hydrophilic compounds.
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Molecular weight distributions of the leachate shifted to lower molecular weight (LMW) compounds
(Figure S5) in surface soils by Stage 3, indicating preferential leaching of higher molecular weight (HMW)
compounds during the experiment. It is also possible that the presence of some “humic” substances may
have solubilized some of the hydrophobic HMW compounds, as humics have been known to enhance
the solubility of hydrophobic substances in natural systems [Chiou et al., 1987; Kim and Lee, 2002].
Hydrophobic substances can be incorporated into hydrophobic space of a large humic micelle [Wershaw,
1986; Von Wandruszka, 2000]. However, this did not agree with optical data likely due to difference in the tar-
get compound classes between those techniques. The reasons for the discrepancy include the following: (1)
optical techniques only detect compounds which have chromophores or fluorophores (nonchromophoric
DOM is not detectable), while mass spectroscopic can only analyze compounds which can be ionized [Oss
et al., 2010; Pereira et al., 2014], and (2) selective loss of compounds during cartridge extraction for FT-ICR-
MS analysis [Dittmar et al., 2008; Chen et al., 2016].

Compound classes were assigned based on elemental ratios of H:C and O:C [Minor et al., 2014] (Figure S3a), of
which lignin-like compounds were the major fraction (Figures 7c and 7d). These classifications are operation-
ally defined and are ambiguous—as multiple chemical structures can have the same elemental formula.
While all leachates were consistently dominated by lignin-like formulas, the percentage of lignin-like formu-
las in deep soils increased by 13.3% and 11.9% in peak count percentage and 13.1% and 13.0% in intensity-

Figure 7. Intensity-weighted percentage of hydrophobic, moderately hydrophobic, and hydrophilic formulas in surface
and deep leachates in core (a) E1 and (b) E2. Intensity-weighted percentage of different compound classes in surface
and deep leachates in core (c) E1 and (d) E2. “Cond. Hydro.” is short for “condensed hydrocarbon,”while “Carbo.” is short for
“carbohydrates.” (e) Intensity-weighted percentage of CRAM formulas for surface and deep samples in cores E1 and E2.
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weighted percentage from Stage 1 to Stage 3 (Figures 7c and 7d and Tables S5 and S6), respectively, which
was consistent with CDOM and FDOM results of increasing aromatic contributions. This was also supported
by an increase of the intensity-weighted percentage of lignin from surface leachate to deep soil leachates in
Stage 3 in both cores E1 (by 118%) and E2 (by 47%) (Figures 7c and 7d and Table S6). The higher increase of
lignin percentage in organic-rich soil (E1, ~25% TOC) than pure organic soils (E2, ~44% TOC) agreed with FI
percentage change as discussed before, indicating enhanced fractionation by minerals. While lignin-like for-
mulas increased through time, the percentage of tannin-like formulas decreased by 3.6% and 5.7%, while the
percentage of protein-like formulas decreased by 0.1% and 1.5% in intensity-weighted percentage, respec-
tively (Table S6). Tannin-like compounds, especially, resemble dissolved lignin using spectroscopic techni-
ques. Thus, the significant and consistent decrease of tannin-like compounds likely corresponded to
PARAFAC components that decreased through time (e.g., C4, C5, see Figures 4e and 4f), which supported
observations reported for litter and soils [Hernes et al., 2001]. However, our operational definitions of
tannin- and lignin-like compounds most likely also include polyphenols released from Sphagnummoss litter
[Verhoeven and Liefveld, 1997], which are abundant in our surface soils.

Carboxyl-rich alicyclic molecules (CRAMs) accounted for a substantial fraction of molecular formulas in soil
leachates. The fraction of CRAM in peak count percentage were 51.0 ± 7.1% and 53.2 ± 6.5% in cores
E1 and E2, respectively, while the fraction in intensity-weighted percentage were 35.1 ± 14.7% and 27.7
± 7.1% in cores E1 and E2, respectively (Figure 7e and Tables S5 and S6). Interestingly, this supports recent
work that showed CRAM as a major component of DOM collected from the Yukon River [Cao et al., 2016].
The intensity-weighted percentage of CRAM increased with depth in the leaching experiment (Figure 7e),
which autocorrelates with the increase of lignin and tannin compounds with depth—due to their large over-
lap in van Krevelen space [Stubbins et al., 2010]. Despite representing a significant class of DOM compounds
in aquatic systems [Leenheer, 1994; Hertkorn et al., 2006], the biological origin of CRAM still remains poorly
understood. Recent work in the Yukon River suggests that the CRAM in river DOM is largely derived from
microbes [e.g., Amon et al., 2012]. While we can only speculate at this time, the increase of CRAM from
Stages 1 to 3, in both surface and deep soils, may reflect an increase in microbial activities with time of
leaching.

The preferential leaching of aromatic components would likely result in higher amount of aromatic DOM in
river water in summer than spring—when deep soils were thawed. However, other findings have shown that
Arctic DOM in streams and rivers, during the spring freshet, tend to be enriched in aromatics and are young in
age [Raymond et al., 2007; Aiken et al., 2014]. The seasonal pattern of riverine aromatic content is highly vari-
able and suggests additional processes [Striegl et al., 2007;Mann et al., 2012]. This could be explained by long
residence time and high temperature in the summer which enhance the microbial and photochemical
decomposition of organic molecules [Striegl et al., 2005; Wickland et al., 2007].

3.4. Effect of Fractionation on Ecosystem Carbon Balance

The deep soils used in our experiment were located at the base of the contemporary active layer and are only
exposed to hydroflow during the later growing season. As the active layer depth increases, deep soils will
experience a greater portion of the seasonal hydroflow due to both thaw occurring earlier in the growing
season as well as lengthening growing seasons with climate change [Barichivich et al., 2013]. While the fate
of leached OC in surface soil remains uncertain, we contend that a given parcel of surface leachate will be
heavily altered during transport across the landscape. Our most quantitative representation of aromaticity,
SUVA254, is highly consistent with an initial increase in aromatic content during lateral transport and com-
pares well with the higher values observed in Arctic rivers that have already passed through the landscape’s
soils [Mann et al., 2012, 2014].

Fractionation of DOC by deep soils must, over time, influence the solid-phase composition of the deep soils as
lignin and other aromatics are preferentially leached and other compounds are left behind. In addition, the
retention of a portion of DOC, in either the solid-phase or the pore waters of deep soils, may also result in
the accumulation of OC in deep soils. This vertical dissolved-phase OC translocation is consistent with obser-
vations of OC-enriched deep soils throughout high-latitude permafrost and supports other evidence for this
phenomenon—such as the physical translation of solid soils due to cryoturbation [Bockheim, 2007; Kaiser
et al., 2007; Xu et al., 2009; Gentsch et al., 2015]. Sustained preferential leaching of aromatic contents may also,
in part, explain for the aromatic-poor and aliphatic-enriched composition of leachates derived from yedoma
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soils [Vonk et al., 2013a; Mann et al., 2015; Spencer et al., 2015]. The molecular character of retained DOM,
which we only begin to infer, will be important to explore as the translocation of surface leachates may
“prime” subsurface heterotrophic activity and result in enhanced soil degradation [Fontaine et al., 2004;
Hartley et al., 2010].

4. Conclusion and Possible Implications

Our leaching experiment highlighted the potential release of DOM from surface soils, net retention of bulk
surface soil DOM by deep soils, and indicated fractionation of compounds in soil leachate. We observed pre-
ferential leaching of aromatic compounds (e.g., lignin) and retention of nonchromophoric compounds from
deep organic soils. This work highlights the importance of lateral flux of soil OC, due to leaching, when con-
sidering ecosystem carbon balances. Despite the difference in initial OC composition, similar processes were
apparently operating in organic-rich and pure organic soils resulting in comparable FT-ICR-MS molecular
weight and compound-class distributions and optical EEM, SUVA254, and SR indices. This fractionation of
compounds during leaching may in part explain the composition of yedoma soils, which have undergone
subsequent leaching, characterized by a depletion of aromatics and enrichment of aliphatics. These com-
pounds, which are largely nonchromophoric, are important sources of DOC in streams/rivers in a thawing
Arctic. This work also suggests the potential role of leachate export as an important mechanism of C losses
from Arctic soils, in comparison the more traditional pathway from soil to atmosphere in a warming Arctic.

Future research is needed to understand the fate of leached surface DOM during lateral transport to streams
and rivers as well as the portion retained by deep soils. The total retentive capacity of deep active layer soils is
only hinted at with our results, and further, the integration of a watershed’s active layer soils presents com-
pelling mass balance questions when considering landscape-scale lateral DOM fluxes. Deep organic soils
have the potential to act as chromatographic media that selectively retain and release components of
DOM, but this behavior on the watershed level as well as in soils of varying parent material is almost certainly
highly variable. In addition, surface leachate DOM retained in the solid-phase is subject to in situ degradation
by soil heterotrophs and, as such, these translocations may not result in the sequestration of surface DOM,
especially in a warming climate. Improving our understanding of watershed-level chromatography is of
utmost importance for interpreting DOM signatures observed in Arctic rivers and coasts.

References
Aiken, G. R., R. G. M. Spencer, R. G. Striegl, P. F. Schuster, and P. A. Raymond (2014), Influences of glacier melt and permafrost thaw on the age

of dissolved organic carbon in the Yukon River basin, Global Biogeochem. Cycles, 28, 525–537, doi:10.1002/2013GB004764.
Amon, R. M. W., A. J. Rinehart, S. Duan, P. Louchouarn, A. Prokushkin, G. Guggenberger, D. Bauch, C. Stedmon, P. A. Raymond, and

R. M. Holmes (2012), Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim. Acta, 94, 217–237.
Barichivich, J., K. R. Briffa, R. B. Myneni, T. J. Osborn, T. M. Melvin, P. Ciais, S. Piao, and C. Tucker (2013), Large-scale variations in the vegetation

growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, Global Change Biol., 19(10),
3167–3183.

Bockheim, J. G. (2007), Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils, Soil Sci. Soc. Am. J., 71(4),
1335–1342.

Bohan, L., H. M. Seip, and T. Larssen (1997), Response of two Chinese forest soils to acidic inputs: Leaching experiment, Geoderma, 75(1–2),
53–73.

Cao, X., G. R. Aiken, R. G. M. Spencer, K. Butler, J. Mao, and K. Schmidt-Rohr (2016), Novel insights from NMR spectroscopy into seasonal
changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River, Geochim. Cosmochim. Acta, 181,
72–88.

Chen, M., and R. Jaffé (2014), Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface
waters in a subtropical wetland, Water Res., 61, 181–190.

Chen, M., S. Kim, J. E. Park, H. J. Jung, and J. Hur (2016), Structural and compositional changes of dissolved organic matter upon solid-phase
extraction tracked by multiple analytical tools, Anal. Bioanal. Chem., 408(23), 6249–6258.

Chiou, C. T., D. E. Kile, T. I. Brinton, R. L. Malcolm, J. A. Leenheer, and P. MacCarthy (1987), A comparison of water solubility enhancements of
organic solutes by aquatic humic materials and commercial humic acids, Environ. Sci. Technol., 21(12), 1231–1234.

Coble, P. G. (1996), Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem.,
51(4), 325–346.

Dittmar, T., and G. Kattner (2003), The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review, Mar. Chem., 83(3),
103–120.

Dittmar, T., and B. P. Koch (2006), Thermogenic organic matter dissolved in the abyssal ocean, Mar. Chem., 102(3), 208–217.
Dittmar, T., B. Koch, N. Hertkorn, and G. Kattner (2008), A simple and efficient method for the solid-phase extraction of dissolved organic

matter (SPE-DOM) from seawater, Limnol. Oceanogr. Methods, 6(6), 230–235.
Fontaine, S., G. Bardoux, L. Abbadie, and A. Mariotti (2004), Carbon input to soil may decrease soil carbon content, Ecol. Lett., 7(4), 314–320.
Frey, K. E., and J. W. McClelland (2009), Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Processes, 23(1),

169–182.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003754

ZHANG ET AL. CHANGES OF OC IN ARCTIC SOIL LEACHATE 807

Acknowledgments
Special thanks to Alexander L. Kholodov
and Justin Ledman for their assistance
during the sampling trip. FT-ICR-MS
analysis was done at the Environmental
Molecular Sciences Laboratory, a DOE
user facility at Pacific Northwest
National Laboratory. All other analyses
were funded by the Jon and Beverly
Thompson Chair in the department of
Geological Sciences at University of
Florida. The data used in the manuscript
are available from the corresponding
author (xz510@ufl.edu) and PANGAEA
Data Archiving and Publication, and
supporting data are included as six
tables in a supporting information file.

https://doi.org/10.1002/2013GB004764
mailto:xz510@ufl.edu


Gentsch, N., et al. (2015), Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic,
Biogeosciences, 12(14), 4525–4542.

Guéguen, C., L. Guo, D. Wang, N. Tanaka, and C. C. Hung (2006), Chemical characteristics and origin of dissolved organic matter in the Yukon
River, Biogeochemistry, 77(2), 139–155.

Guo, L., and R. W. Macdonald (2006), Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope
(δ
13
C, Δ

14
C, and δ

15
N) composition of dissolved, colloidal, and particulate phases, Global Biogeochem. Cycles, 20, GB2011, doi:10.1029/

2005GB002593.
Guo, L., C. H. Coleman, and P. H. Santschi (1994), The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico,Mar. Chem.,

45(1), 105–119.
Guo, L., C. L. Ping, and R. W. Macdonald (2007), Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing

climate, Geophys. Res. Lett., 34, L13603, doi:10.1029/2007GL029582.
Harris, D., W. R. Horwáth, and C. van Kessel (2001), Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13

isotopic analysis, Soil Sci. Soc. Am. J., 65(6), 1853–1856.
Hartley, I. P., D. W. Hopkins, M. Sommerkorn, and P. A. Wookey (2010), The response of organic matter mineralisation to nutrient and

substrate additions in sub-arctic soils, Soil Biol. Biochem., 42(1), 92–100.
Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper (2008), Absorption spectral slopes and slope ratios as indicators

of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 53(3), 955–969.
Hernes, P. J., and R. Benner (2003), Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of

terrigenous dissolved organic matter in marine environments, J. Geophys. Res., 108(C9), 3291, doi:10.1029/2002JC001421.
Hernes, P. J., R. Benner, G. L. Cowie, M. A. Goñi, B. A. Bergamaschi, and J. I. Hedges (2001), Tannin diagenesis in mangrove leaves from a

tropical estuary: A novel molecular approach, Geochim. Cosmochim. Acta, 65(18), 3109–3122.
Hertkorn, N., R. Benner, M. Frommberger, P. Schmitt-Kopplin, M. Witt, K. Kaiser, A. Kettrup, and J. I. Hedges (2006), Characterization of a major

refractory component of marine dissolved organic matter, Geochim. Cosmochim. Acta, 70(12), 2990–3010.
Hicks Pries, C. E., E. A. Schuur, and K. G. Crummer (2012), Holocene carbon stocks and carbon accumulation rates altered in soils undergoing

permafrost thaw, Ecosystems, 15(1), 162–173.
Hicks Pries, C. E., E. A. Schuur, and K. G. Crummer (2013), Thawing permafrost increases old soil and autotrophic respiration in tundra:

Partitioning ecosystem respiration using δ
13
C and Δ

14
C, Global Change Biol., 19(2), 649–661.

Hicks Pries, C. E., R. S. Logtestijn, E. A. Schuur, S. M. Natali, J. H. Cornelissen, R. Aerts, and E. Dorrepaal (2015), Decadal warming causes a
consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems, Global Change Biol.,
21(12), 4508–4519.

Hodson, M., and S. Langan (1999), A long-term soil leaching column experiment investigating the effect of variable sulphate loads on soil
solution and soil drainage chemistry, Environ. Pollut., 104(1), 11–19.

Intergovernmental Panel on Climate Change (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., 1535 pp., Cambridge Univ. Press,
New York.

Kaiser, C., H. Meyer, C. Biasi, O. Rusalimova, P. Barsukov, and A. Richter (2007), Conservation of soil organic matter through cryoturbation in
arctic soils in Siberia, J. Geophys. Res., 112, G02017, doi:10.1029/2006JG000258.

Kaiser, K., and K. Kalbitz (2012), Cycling downwards–dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32.
Kellerman, A. M., D. N. Kothawala, T. Dittmar, and L. J. Tranvik (2015), Persistence of dissolved organic matter in lakes related to its molecular

characteristics, Nat. Geosci., 8(6), 454–457.
Kim, Y., and D. Lee (2002), Solubility enhancement of PCDD/F in the presence of dissolved humic matter, J. Hazard. Mater., 91(1), 113–127.
Koch, B. P., and T. Dittmar (2006), From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter,

Rapid Commun. Mass Spectrom., 20(5), 926–932.
Kujawinski, E. B., and M. D. Behn (2006), Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass

spectra of natural organic matter, Anal. Chem., 78(13), 4363–4373.
Kujawinski, E. B., P. G. Hatcher, and M. A. Freitas (2002), High-resolution Fourier transform ion cyclotron resonance mass spectrometry of

humic and fulvic acids: Improvements and comparisons, Anal. Chem., 74(2), 413–419.
Leenheer, J. A. (1994), Chemistry of dissolved organic matter in rivers, lakes, and reservoirs, in Environmental Chemistry of Lakes and

Reservoirs, Adv. Chem. Ser., vol. 237, edited by L. Baker, pp. 195–221, Am. Chem. Soc., Washington, D. C.
Lehmann, J., and M. Kleber (2015), The contentious nature of soil organic matter, Nature, 528(7580), 60–68.
Liu, Y., and E. B. Kujawinski (2015), Chemical composition and potential environmental impacts of water-soluble polar crude oil components

inferred from ESI FT-ICR MS, PLoS One, 10(9), e0136376.
Mann, P. J., A. Davydova, N. Zimov, R. G. M. Spencer, S. Davydov, E. Bulygina, S. Zimov, and R. M. Holmes (2012), Controls on the composition

and lability of dissolved organic matter in Siberia’s Kolyma River basin, J. Geophys. Res., 117, G01028, doi:10.1029/2011JG001798.
Mann, P. J., W. V. Sobczak, M. M. LaRue, E. Bulygina, A. Davydova, J. E. Vonk, J. Schade, S. Davydov, N. Zimov, and R. M. Holmes (2014),

Evidence for key enzymatic controls on metabolism of Arctic river organic matter, Global Change Biol., 20(4), 1089–1100.
Mann, P. J., T. I. Eglinton, C. P. McIntyre, N. Zimov, A. Davydova, J. E. Vonk, R. M. Holmes, and R. G. Spencer (2015), Utilization of ancient

permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun., 6, doi:10.1038/ncomms8856.
Mann, P. J., R. G. M. Spencer, P. J. Hernes, J. Six, G. R. Aiken, S. E. Tank, J. W. McClelland, K. D. Butler, R. Y. Dyda, and R. M. Holmes (2016),

Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements, Front. Earth Sci., 4, 25.
Mikan, C. J., J. P. Schimel, and A. P. Doyle (2002), Temperature controls of microbial respiration in arctic tundra soils above and below

freezing, Soil Biol. Biochem., 34(11), 1785–1795.
Minor, E. C., M. M. Swenson, B. M. Mattson, and A. R. Oyler (2014), Structural characterization of dissolved organic matter: A review of current

techniques for isolation and analysis, Environ. Sci.: Processes Impacts, 16(9), 2064–2079.
Murphy, K. R., C. A. Stedmon, D. Graeber, and R. Bro (2013), Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods,

5(23), 6557–6566.
Natali, S. M., E. A. Schuur, E. E. Webb, C. E. H. Pries, and K. G. Crummer (2014), Permafrost degradation stimulates carbon loss from

experimentally warmed tundra, Ecology, 95(3), 602–608.
Neff, J. C., and D. U. Hooper (2002), Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils,

Global Change Biol., 8(9), 872–884.
Neff, J. C., J. C. Finlay, S. A. Zimov, S. P. Davydov, J. J. Carrasco, E. A. G. Schuur, and A. I. Davydova (2006), Seasonal changes in the age and

structure of dissolved organic carbon in Siberian rivers and streams, Geophys. Res. Lett., 33, L23401, doi:10.1029/2006GL028222.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003754

ZHANG ET AL. CHANGES OF OC IN ARCTIC SOIL LEACHATE 808

https://doi.org/10.1029/2005GB002593
https://doi.org/10.1029/2005GB002593
https://doi.org/10.1029/2007GL029582
https://doi.org/10.1029/2002JC001421
https://doi.org/10.1029/2006JG000258
https://doi.org/10.1029/2011JG001798
https://doi.org/10.1038/ncomms8856
https://doi.org/10.1029/2006GL028222


O’Donnell, J. A., G. R. Aiken, M. A. Walvoord, P. A. Raymond, K. D. Butler, M. M. Dornblaser, and K. Heckman (2014), Using dissolved organic
matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska, J. Geophys. Res. Biogeosci., 119, 2155–2170,
doi:10.1002/2014JG002695.

Oss, M., A. Kruve, K. Herodes, and I. Leito (2010), Electrospray ionization efficiency scale of organic compounds, Anal. Chem., 82(7),
2865–2872.

Osterkamp, T. E. (2007), Characteristics of the recent warming of permafrost in Alaska, J. Geophys. Res., 112, F02S02, doi:10.1029/
2006JF000578.

Pereira, R., C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and
T. Wagner (2014), Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest head-
water river, Geophys. Res. Lett., 41, 1202–1208, doi:10.1002/2013GL058658.

Raymond, P. A., J. W. McClelland, R. M. Holmes, A. V. Zhulidov, K. Mull, B. J. Peterson, R. G. Striegl, G. R. Aiken, and T. Y. Gurtovaya (2007),
Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers,
Global Biogeochem. Cycles, 21, GB4011, doi:10.1029/2007GB002934.

Rowland, J. C., et al. (2010), Arctic landscapes in transition: Responses to thawing permafrost, EOS Trans. AGU, 91(26), 229–236.
Schädel, C., E. A. G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. Lee, Y. Luo, G. R. Shaver, and M. R. Turetsky (2014), Circumpolar

assessment of permafrost C quality and its vulnerability over time using long-term incubation data, Global Change Biol., 20(2),
641–652.

Schädel, C., E. A. G. Schuur, M. Taylor, M. Mauritz, S. Natali, and J. Ledman (2016), Eight Mile Lake Research Watershed, Carbon in Permafrost
Experimental Heating Research (CiPEHR): Seasonal water table depth data, 2016, Bonanza Creek LTER - Univ. of Alaska Fairbanks. BNZ:554,
doi:10.6073/pasta/8547cdc619095555620e7f3573435e72.

Schmidt, M. W., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, and D. A. Manning
(2011), Persistence of soil organic matter as an ecosystem property, Nature, 478(7367), 49–56.

Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp (2009), The effect of permafrost thaw on old carbon
release and net carbon exchange from tundra, Nature, 459(7246), 556–559.

Schuur, E. A. G., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, and D. M. Lawrence (2015),
Climate change and the permafrost carbon feedback, Nature, 520(7546), 171–179.

Sistla, S. A., J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel (2013), Long-term warming restructures Arctic tundra without
changing net soil carbon storage, Nature, 497(7451), 615–618.

Sleighter, R. L., and P. G. Hatcher (2007), The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the
molecular characterization of natural organic matter, J. Mass Spectrom., 42(5), 559–574.

Sleighter, R. L., and P. G. Hatcher (2008), Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the
lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry,
Mar. Chem., 110(3), 140–152.

Spencer, R. G., G. R. Aiken, K. P. Wickland, R. G. Striegl, and P. J. Hernes (2008), Seasonal and spatial variability in dissolved organic matter
quantity and composition from the Yukon River basin, Alaska, Global Biogeochem. Cycles, 22, GB4002, doi:10.1029/2008GB003231.

Spencer, R. G., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter
measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River,
Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/2008GL036831.

Spencer, R. G., P. J. Mann, T. Dittmar, T. I. Eglinton, C. McIntyre, R. M. Holmes, N. Zimov, and A. Stubbins (2015), Detecting the signature of
permafrost thaw in Arctic rivers, Geophys. Res. Lett., 42, 2830–2835, doi:10.1002/2015GL063498.

Stedmon, C. A., S. Markager, and R. Bro (2003), Tracing dissolved organic matter in aquatic environments using a new approach to
fluorescence spectroscopy, Mar. Chem., 82(3), 239–254.

Stedmon, C. A., R. M. W. Amon, A. J. Rinehart, and S. A. Walker (2011), The supply and characteristics of colored dissolved organic matter
(CDOM) in the Arctic Ocean: Pan Arctic trends and differences, Mar. Chem., 124(1), 108–118.

Striegl, R. G., G. R. Aiken, M. M. Dornblaser, P. A. Raymond, and K. P. Wickland (2005), A decrease in discharge-normalized DOC export by the
Yukon River during summer through autumn, Geophys. Res. Lett., 32, L21413, doi:10.1029/2005GL024413.

Striegl, R. G., M. M. Dornblaser, G. R. Aiken, K. P. Wickland, and P. A. Raymond (2007), Carbon export and cycling by the Yukon, Tanana, and
Porcupine rivers, Alaska, 2001–2005, Water Resour. Res., 43, W02411, doi:10.1029/2006WR005201.

Stubbins, A., R. G. Spencer, H. Chen, P. G. Hatcher, K. Mopper, P. J. Hernes, V. L. Mwamba, A. M. Mangangu, J. N. Wabakanghanzi, and J. Six
(2010), Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed
by ultrahigh precision mass spectrometry, Limnol. Oceanogr., 55(4), 1467–1477.

Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov (2009), Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cycles, 23, GB2023, doi:10.1029/2008GB003327.

Traina, S. J., J. Novak, and N. E. Smeck (1990), An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic
acids, J. Environ. Qual., 19(1), 151–153.

Trucco, C., E. A. G. Schuur, S. M. Natali, E. F. Belshe, R. Bracho, and J. Vogel (2012), Seven-year trends of CO2 exchange in a tundra ecosystem
affected by long-term permafrost thaw, J. Geophys. Res., 117, G02031, doi:10.1029/2011JG001907.

Verhoeven, J. T. A., and W. M. Liefveld (1997), The ecological significance of organochemical compounds in Sphagnum, Acta Bot. Neerl., 46(2),
117–130.

Von Wandruszka, R. (2000), Humic acids: Their detergent qualities and potential uses in pollution remediation, Geochem. Trans., 1(1), 1.
Vonk, J. E., P. J. Mann, S. Davydov, A. Davydova, R. G. Spencer, J. Schade, W. V. Sobczak, N. Zimov, S. Zimov, and E. Bulygina (2013a), High

biolability of ancient permafrost carbon upon thaw, Geophys. Res. Lett., 40, 2689–2693, doi:10.1002/grl.50348.
Vonk, J. E., P. J. Mann, K. L. Dowdy, A. Davydova, S. P. Davydov, N. Zimov, R. G. M. Spencer, E. B. Bulygina, T. I. Eglinton, and R. M. Holmes

(2013b), Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw, Environ. Res. Lett., 8(3), 035023.
Walker, S. A., R. M. Amon, and C. A. Stedmon (2013), Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of

large Arctic rivers, J. Geophys. Res. Biogeosci., 118, 1689–1702, doi:10.1002/2013JG002320.
Ward, C. P., and R. M. Cory (2015), Chemical composition of dissolved organic matter draining permafrost soils, Geochim. Cosmochim. Acta,

167, 63–79.
Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper (2003), Evaluation of specific ultraviolet absorbance as an

indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37(20), 4702–4708.
Wershaw, R. L. (1986), A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or

sediment-water systems, J. Contam. Hydrol., 1(1–2), 29–45.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003754

ZHANG ET AL. CHANGES OF OC IN ARCTIC SOIL LEACHATE 809

https://doi.org/10.1002/2014JG002695
https://doi.org/10.1029/2006JF000578
https://doi.org/10.1029/2006JF000578
https://doi.org/10.1002/2013GL058658
https://doi.org/10.1029/2007GB002934
https://doi.org/10.6073/pasta/8547cdc619095555620e7f3573435e72
https://doi.org/10.1029/2008GB003231
https://doi.org/10.1029/2008GL036831
https://doi.org/10.1002/2015GL063498
https://doi.org/10.1029/2005GL024413
https://doi.org/10.1029/2006WR005201
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1029/2011JG001907
https://doi.org/10.1002/grl.50348
https://doi.org/10.1002/2013JG002320


Wickland, K. P., J. C. Neff, and G. R. Aiken (2007), Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and
biodegradability, Ecosystems, 10(8), 1323–1340.

Wickland, K. P., G. R. Aiken, K. Butler, M. M. Dornblaser, R. G. M. Spencer, and R. G. Striegl (2012), Biodegradability of dissolved organic carbon
in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen, Global Biogeochem. Cycles, 26, GB0E03,
doi:10.1029/2012GB004342.

Xu, C., L. Guo, C.-L. Ping, and D. M. White (2009), Chemical and isotopic characterization of size-fractionated organic matter from
cryoturbated tundra soils, northern Alaska, J. Geophys. Res., 114, G03002, doi:10.1029/2008JG000846.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003754

ZHANG ET AL. CHANGES OF OC IN ARCTIC SOIL LEACHATE 810

https://doi.org/10.1029/2012GB004342
https://doi.org/10.1029/2008JG000846


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


