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Compensatory water effects link yearly global land 
CO2 sink changes to temperature
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Large interannual variations in the measured growth rate of 
atmospheric carbon dioxide (CO2) originate primarily from 
fluctuations in carbon uptake by land ecosystems1–3. It remains 
uncertain, however, to what extent temperature and water 
availability control the carbon balance of land ecosystems across 
spatial and temporal scales3–14. Here we use empirical models 
based on eddy covariance data15 and process-based models16,17 to 
investigate the effect of changes in temperature and water availability 
on gross primary productivity (GPP), terrestrial ecosystem 
respiration (TER) and net ecosystem exchange (NEE) at local 
and global scales. We find that water availability is the dominant 
driver of the local interannual variability in GPP and TER. To a 
lesser extent this is true also for NEE at the local scale, but when 
integrated globally, temporal NEE variability is mostly driven by 
temperature fluctuations. We suggest that this apparent paradox can 
be explained by two compensatory water effects. Temporal water-
driven GPP and TER variations compensate locally, dampening 
water-driven NEE variability. Spatial water availability anomalies 
also compensate, leaving a dominant temperature signal in the year-
to-year fluctuations of the land carbon sink. These findings help to 
reconcile seemingly contradictory reports regarding the importance 
of temperature and water in controlling the interannual variability 
of the terrestrial carbon balance3–6,9,11,12,14. Our study indicates that 
spatial climate covariation drives the global carbon cycle response.

Large interannual variations in recently measured atmospheric CO2 
growth rates originate primarily from fluctuations in carbon uptake by 
land ecosystems, rather than from the oceans or variations in anthro-
pogenic emissions1–3. There is a general consensus that the tropical 
regions contribute the most to terrestrial carbon variability1,8,18,19. The 
observed positive correlation between mean tropical land temperature  
and CO2 growth rate3,5,6,12,13 implies smaller land carbon uptake and 
enhanced atmospheric CO2 growth during warmer years, with a 
 sensitivity of about 5 gigatonnes of carbon per year per K. There is a 
tight relationship between this sensitivity on interannual timescales and 
long-term changes in terrestrial carbon per degree of warming across 
multiple climate carbon-cycle models6.

Despite this strong emergent relationship with mean tropical land 
temperature, several studies suggest that variations in water availability 

have an important8,10,11,14, even a dominant role4,9, in shaping the inter-
annual variability (IAV) of the carbon balance of extensive semi-arid 
and sub-tropical systems. Furthermore, the recent doubling of the 
tropical carbon cycle sensitivity to interannual temperature variability  
has been linked to interactions with changing moisture regimes13.  
A full understanding of the processes governing the climatic controls of 
terrestrial carbon cycling on interannual timescales and across spatial 
scales is therefore still lacking. Here we show that the ‘temperature 
versus water’ debate can be resolved by simultaneously assessing the 
carbon-cycle response to fluctuations in both temperature and water 
availability at both local and global scales.

Using both machine learning algorithms and process-based global 
land models, we derived spatial and temporal patterns of the IAV 
of CO2 uptake by plants via photosynthesis (GPP) and of CO2 loss 
through respiration (TER). NEE equals TER minus GPP, thus allowing 
analysis of the IAV of NEE for CO2.

Machine learning algorithms were used to translate gridded inputs of 
daily air temperature, water availability and radiation, among  others15, 
into time-varying 0.5° grids of TER and GPP for the 1980–2013 period 
(FLUXCOM; see Methods). Three machine learning algorithms were 
trained on FLUXNET20-based in situ TER and GPP flux estimates 
from two flux partitioning methods21,22. These three fitting algorithms 
 combined with two partitioning methods provided six sets of GPP 
and TER estimates each, which combined yield 36 FLUXCOM NEE 
 ensemble members.

In a complementary approach, we examined simulations of GPP 
and TER from an ensemble of seven global land surface or dynamic 
vegetation models16,17 (TRENDYv3, see Methods). These process-based 
model simulations follow a common protocol and used the same 
 climate-forcing data set as the observation-based FLUXCOM models. 
Both sets of results are expected to be more uncertain in the tropics 
owing to the less reliable climate- and satellite-based inputs and a sparse 
coverage of flux measurements23.

We analysed FLUXCOM and TRENDYv3 simulations independently, 
but in a consistent manner. We derived NEE as the difference between 
TER and GPP, that is, a positive value of NEE indicates a flux of carbon 
from the land to the atmosphere. To isolate IAV we detrended GPP 
and TER for each grid cell and month (see Methods). We find that 
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Figure 1 | Climatic controls on NEE IAV at global and local scales 
for the period 1980–2013 derived from machine-learning-based 
(FLUXCOM) and process-based (TRENDY) models. a, b, The 
comparison of globally integrated annual NEE anomalies with NEE 
anomalies driven only by temperature, water availability and radiation  
(all normalized by the standard deviation (s.d.) of globally integrated NEE) 

reveals temperature to be the dominant global control. R2 values between 
the climatic NEE components and total NEE are given. c, d, Mean  
grid-cell IAV magnitude (see equation (3) in Methods) of NEE 
components for latitudinal bands reveals water to be the dominant  
local control. Uncertainty bounds where given as shaded area reflect the 
spread among FLUXCOM or TRENDY ensemble members (± 1 s.d.).
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Figure 2 | Effects of spatial covariation and scale on temperature 
versus water control of NEE IAV for FLUXCOM and TRENDY models. 
Spatial patterns of the first EOF of annual NEETEMP (a, b), and NEEWAI 
(c, d) anomalies (see Methods) show large spatial coherence for NEETEMP 
(dominant positive values) and anti-correlated patterns for NEEWAI 
(positive and negative values are shown on the colour scale; magnitudes 
are not informative and were omitted for clarity). This is underpinned in 
the inset pie charts which show the proportion of total positive (black) and 
negative (grey) covariances among grid cells for NEETEMP and NEEWAI 

anomalies (see equations (4) and (5) in Methods). e, f, The relative 
dominance (see equation (6) in Methods) of NEETEMP (green) increases 
with successive spatial aggregation, while the relative dominance of 
NEEWAI (blue) decreases. Outer uncertainty bounds in e and f given as 
shaded area refer to the spread among respective ensemble members  
(± 1 s.d.); inner uncertainty bounds refer to ± 1 s.d. with respect to the 
change of relative dominance with spatial aggregation (see equation (7)  
in Methods).
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global patterns of NEE IAV are consistent between FLUXCOM and 
TRENDYv3 (Extended Data Fig. 1 and Supplementary Information 
section 1). Both approaches reproduce (r ≈  0.8) the globally  integrated 
NEE IAV derived from atmospheric CO2 concentration measurements 
and transport24. Both approaches also show the largest IAV in the 
 tropics (Extended Data Fig. 1). To obtain the contributions of different 
environmental variables to IAV, we decomposed carbon flux anomalies  
(Δ FLUX) of each year, month, and grid cell (subscripts y, m and s) 
into their additive components forced by detrended anomalies of 
 temperature (Δ TEMP), shortwave incoming radiation (Δ RAD), and 
soil-moisture-related water availability (Δ WAI; see Methods):

ε

Δ = ×Δ + ×Δ

+ ×Δ +

Δ ≈Δ +Δ +Δ

a a

a

FLUX TEMP RAD

WAI

FLUX FLUX FLUX FLUX

(1)
s,m,y s,m
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TEMP

s,m,y
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s,m,y
WAI

Here as,m represents the estimated sensitivity of the flux anomaly, 
ΔFLUXs,m,y (GPP or TER) to each respective climate-forcing anomaly 
(Δ TEMP, Δ RAD, Δ WAI) for a given grid cell and month, and εs,m,y is 
the residual error term. The product of a given sensitivity (for  example, 
aTEMP) and corresponding climate-forcing anomaly (for example,  
Δ TEMP) constitutes the flux anomaly component driven by this 
 climate factor (for example, GPPTEMP). Thus, equation (1)  estimates 
the contributions of temperature, radiation, and water availability  
 anomalies to the carbon flux anomalies (see Supplementary 
Information section 2 for verification).

Our analysis reveals a contrasting pattern of NEE IAV controlled 
by temperature or moisture, depending on spatial scale. At the global 
scale, temperature drives spatially integrated NEE IAV (Fig. 1a and b, 
compare green and black curves), in line with previous findings based 
on correlations between anomalies in temperature and CO2 growth 
rate3,5,6,12,13. Globally integrated NEE anomalies due to variations in 
radiation (NEERAD) and water availability (NEEWAI) play only a minor 
part (compare red, blue and black curves in Fig. 1a and b). The domi-
nant global influence of temperature is in contrast to the dominant 
local influence of water availability when analysing all grid cells indi-
vidually (Fig. 1c and d; compare blue and black curves of zonal mean 
of grid-cell IAV).

Radiation causes the smallest NEE IAV at the grid-cell level (red 
curve in Fig. 1c and d) but there are indications based on other 
 climate-forcing data that radiation could have a more important role 
than temperature locally (Supplementary Information section 3). 
Temperature variations are important for NEE IAV (green curve in 
Fig. 1c and d) in high latitudes and the inner tropics, but in general, the 
grid-cell average water-related NEE variability (NEEWAI, blue curve) 
is larger. Water-related NEE variability peaks at subtropical latitudes 
where semi-arid ecosystems dominate. This finding is consistent with 
studies emphasizing the role of water-limited semi-arid ecosystems on 
global NEE IAV4,9. We now assess how this can be reconciled with the 
emergent temperature control of globally integrated NEE IAV. Going 
from grid-cell to global scale shifts the emerging controls on NEE IAV 
from water availability (local) towards temperature (global).
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Figure 3 | Latitudinal patterns of water and temperature driven  
IAV of gross carbon fluxes (GPP and TER) and NEE for FLUXCOM  
and TRENDY models. The IAV magnitude (see equation (3) in  
Methods) of the WAI component is much larger than the IAV of  
the TEMP component for gross fluxes (a–d), while this difference is 
smaller for NEE (e, f) owing to compensation. Uncertainty bounds as 
shaded area reflect the spread among FLUXCOM or TRENDY ensemble 
members (± 1 s.d.).
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Figure 4 | Spatial patterns of covariance and correlation of WAI- and 
TEMP-driven GPP and TER IAV for FLUXCOM models. Maps of 
the covariance of annual anomalies (see equation (8) in Methods) of 
GPP and TER climatic components show large compensation effects 
(positive covariance) for WAI (a) but nearly no covariance for TEMP (c). 
Correlations between GPPWAI and TERWAI are large and ubiquitously 

positive (b) while correlations among GPPTEMP and TERTEMP are weaker, 
with a distinct spatial pattern of negative correlations in hot regions (d). 
All results refer to the mean of all FLUXCOM ensemble members.  
See Extended Data Fig. 3 for equivalent TRENDY results, and Extended 
Data Fig. 4 for uncertainties.
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We hypothesized that the dominance of temperature in globally 
 integrated NEE IAV results from a stronger compensation of positive 
and negative NEEWAI anomalies between different grid cells compared 
to NEETEMP when going from the local to the global scale. To test this, 
we first illustrate the dominant spatial patterns of temperature  versus 
water compensation using empirical orthogonal functions (EOF) of 
the annual NEETEMP and NEEWAI anomalies (Fig. 2a–d). Here, the 
leading EOF of NEEWAI (about 10% variance explained) has strong 
anti-correlated spatial patterns of positive and negative values (Fig. 2c 
and d), which correspond to El Niño/Southern Oscillation imprints on 
moisture effects (R2 with Niño 3.4 SST index25 of 0.75).

In comparison, the leading EOF of NEETEMP (about 22% variance 
explained) shows a more spatially uniform response, in particular 
across the tropics (Fig. 2a and b). This pattern of much larger  spatial 
coherence of NEETEMP anomalies, compared to NEEWAI anomalies, is 
also evident in their respective sums of positive and negative covari-
ances among all grid cells (see the inset pie charts in Fig. 2a–d). For 
NEETEMP the sum of positive covariances is far larger than the negative 
ones (79% versus 21%), whereas positive and negative covariances are 
almost in balance (53% versus 47%) for NEEWAI. As a consequence 
of the larger spatial coherence of NEETEMP anomalies, as compared 
to NEEWAI anomalies, we observe a shift of the dominant NEE IAV 
control from water at the local scale to temperature at the global scale. 
We  illustrate this change in Fig. 2e and f by presenting the relative 
dominance of water- and temperature-related NEE IAV for increasing 
levels of spatial aggregation. This is a robust feature within and among 
FLUXCOM and TRENDY approaches (Extended Data Fig. 2). We also 
find that the rise and decay of NEETEMP and NEEWAI dominance respec-
tively with spatial scale occurs in all major biomes (Supplementary 
Information section 4). This pattern is probably related to the different 
climatic characteristics of precipitation and air temperatures, with the 
former, but not the latter, being associated with moisture conservation 
and offsetting spatial anomaly patterns.

We next assess how local water- and temperature related NEE IAV 
emerges from the interaction of photosynthesis (GPP) and respira-
tion (TER) processes. We compare the magnitudes of water- versus 
 temperature-driven GPP and TER variability and find that WAI is 
overall the most important factor controlling the local IAV of both 
gross fluxes (Fig. 3a–d), with particularly large variability in both fluxes 
in semi-arid regions (Supplementary Information section 4 and 5). 
However, the local IAV of NEE related to WAI (NEEWAI, Fig. 3e, f) is 
reduced compared to the components GPPWAI and TERWAI.

Our results indicate that, in addition to the spatial compensation of 
NEEWAI discussed above, there is also a local compensation  mechanism, 
whereby GPPWAI and TERWAI covary and thus locally counterbalance 
each other (Fig. 4a, b). This is probably due to the concomitant positive 
relationship of soil moisture with productivity and with respiration. 
The combined effect is a smaller net effect of WAI on NEE. Specifically, 
two-thirds of the WAI effect on GPP is offset by the WAI effect on TER 
(0.67 ±  0.33 for FLUXCOM, 0.69 ±  0.14 for TRENDY; mean slope ±  s.d. 
across ensemble members of global TERWAI versus GPPWAI). These  
patterns are qualitatively consistent between the data-driven 
FLUXCOM (Fig. 4) and process-based TRENDY models (Extended 
Data Fig. 3) and agree with previous observations of simultaneous 
declines of GPP and TER during droughts26–30. However, magnitudes 
of TERWAI versus GPPWAI covariances differ substantially among model 
ensemble members (Extended Data Fig. 4). This probably reflects 
the large uncertainty of respiration processes to moisture variations, 
whereas flux partitioning uncertainties seem negligible (Supplementary 
Information section 6).

In contrast to offsetting NEE water effects, our analysis indicates a 
weak local temperature amplification effect of GPP and TER IAV in the 
tropics. Local temperature effects on GPP and TER IAV are inversely 
correlated over the tropics (Fig. 4d). This is because GPP decreases 
with increasing temperature, probably because the thermal optimum 
of photosynthesis has been exceeded, whereas respiration increases 

with temperature. Thus increasing temperatures in the tropics increase 
NEE by reducing GPP and increasing TER. However, owing to lower 
variances of the temperature components of GPP and TER (Fig. 3a–d), 
this local temperature amplification effect in the tropics is quantita-
tively negligible (Fig. 4c) compared to the local water compensation 
effect (Fig. 4d). Overall, this causes the difference of temperature-forced  
versus water-forced variability of NEE to be smaller compared to 
the influence of these drivers on the gross fluxes (compare distance 
between blue and green curves in Fig. 3a–d versus Fig. 3e and f).

Our analysis shows water availability as the overall dominant driver 
of the IAV of photosynthesis and respiration at local scales, even though 
this water signal is effectively absent in the globally integrated NEE 
IAV. This pattern is driven by: (1) the local compensatory effects of 
water availability on GPP and TER, and (2) the spatial anti- correlation 
of water-controlled NEE anomalies; and thus a compensation in 
space. These two compensatory water effects leave temperature as 
the  dominant factor globally, which resolves why there have been 
 conflicting conclusions surrounding whether NEE IAV is forced 
 thermally or hydrologically.

These findings suggest that climate does not only force the carbon 
cycle locally, but that, perhaps more importantly, the spatial covari-
ation of climate variables drives the integrated global carbon-cycle 
response. Consequently, any analysis conducted on integrated signals 
over larger regions precludes inferences on the driving mechanisms at 
the  ecosystem scale. Likewise, the apparent temperature-dominated 
IAV of the residual land sink, a traditional target of global carbon-cycle 
 modellers, contains little information on local carbon-cycle processes. 
Our findings suggest that potential changes in spatial covariations 
among climate variables associated with global change may drive 
 apparent changes of carbon-cycle sensitivities and perhaps even the 
strength of climate-carbon cycle feedbacks.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
The FLUXCOM global carbon flux data set. Three machine learning  methods 
were trained on daily carbon flux estimates from 224 flux tower sites using 
meteorological measurements and satellite data as inputs15: Random Forests31, 
Artificial Neural Networks32, Multivariate Adaptive Regression Splines33. Models 
were trained separately for two variants of GPP and TER, derived from the flux 
partitioning methods of refs 22 and 21. Each method used the same 11 input 
driver data listed in Supplementary Information section 7. This set of driver data 
was obtained from an extensive variable selection analysis15,34. Details, along with 
extensive model evaluation based on cross-validation are given in ref. 15.

To produce spatio-temporal grids of carbon fluxes, the trained machine 
 learning algorithms require only spatio-temporal grids of its input driver data35. 
We forced the models with grids of 0.5° spatial resolution and daily time step 
for the period 1980–201336. High-resolution satellite-based predictor variables  
(see Supplementary Information section 7) were tiled by plant functional type, 
that is, grids for each plant functional type containing the mean value per plant 
functional type and time step at 0.5° were created. The distribution of plant func-
tional type originates from the majority class of annually resolved MODIS land 
cover product (collection 5)37 for each high-resolution pixel. Climatic predictor 
variables are based on CRUNCEPv6 (http://esgf.extra.cea.fr/thredds/catalog/
store/p529viov/cruncep/V6_1901_2014/catalog.html) to be consistent with the 
TRENDY ensemble. CRUNCEPv6 is based on a merged product of Climate 
Research Unit observation-based monthly 0.5° climate variables38 (1901–2013) 
and the high temporal (6-hourly) resolution National Centers for Environmental 
Prediction (NCEP) reanalysis. The variables affected by the climate forcing data set 
are marked in Supplementary Information section 7. Of the 11 predictor variables, 
only temperature, radiation and water availability can generate IAV. The water 
availability index (WAI, see supplement 3 in ref. 15) is based on a simple dynamic 
soil water balance model, which was driven with daily precipitation and potential 
evapotranspiration by CRUNCEPv6 (see Supplementary Information section 8 
for cross-consistency with TRENDY-based soil moisture). The machine learning 
 models were run for each plant functional type separately, and a weighted mean 
over the fractions of plant functional type was obtained for each grid cell. The 
distribution of plant functional type is representative of the period 2001–2012; no 
land cover change was considered. Empirical models were run to spatially  estimate 
GPP and TER. Then NEE was derived by the carbon mass balance approach 
(NEE =  TER minus GPP), which allows us to decompose precisely how NEE IAV 
emerges from (co-)variations of TER and GPP. We verify that NEE IAV derived 
as ‘TER minus GPP’ is consistent with upscaling NEE directly (Supplementary 
Information  section 6). Overall, 36 combinations of NEE were derived by 
 considering all possible combinations of ‘TER minus GPP’ realizations, resulting 
from  different machine learning approaches and flux partitioning variants. The 
 individual model runs were finally aggregated to monthly means.
The TRENDY global carbon flux data set. We used simulations of seven dynamic 
global vegetation models from the TRENDY v3 ensemble16,17 for the period 
1980–2013, which have a spatial resolution of 0.5° (model simulations with coarser 
 resolution were omitted): CABLE39, ISAM40, LPJ41, LPJ-GUESS42, ORCHIDEE43, 
VEGAS14, VISIT44. These models were forced by a common set of input data sets 
and experimental protocol (experiment ‘S2’)16,17. Climate forcing (CRUNCEPv6) 
is the same as for FLUXCOM. Global atmospheric CO2 was derived from ice 
core and NOAA monitoring station data, and provided at annual resolution over 
the period 1860–201316. The dynamic global vegetation models were run from 
 preindustrial steady state (NEE =  0) with changing fields of climate and atmos-
pheric CO2  concentration over the twentieth century. Land use and land cover 
changes were not considered. For consistency with FLUXCOM, NEE was derived 
as the difference between TER and GPP, that is, fire emissions available from some 
models were not included. TER was calculated as the sum of simulated autotrophic 
and heterotrophic respiration.
Anomalies and decomposition. Detrended monthly anomalies were obtained 
by removing the linear trend over years for each pixel and month (least-squares 
fitting), which also centres the mean to zero for a given pixel and month. This 
procedure was applied consistently to GPP, TER, shortwave radiation (RAD), 
air temperature (TEMP) and water availability (WAI), in both FLUXCOM and 
TRENDY simulations. For TRENDY models the simulated soil moisture was 
used instead of WAI. The resulting IAV of GPP and TER was decomposed into 
the contributions forced by TEMP, RAD and WAI following equation (1) using 
a multiple linear (ordinary least-squares) regression with zero intercept for each 
pixel and month. NEE sensitivities and NEE components were derived from GPP 
and TER results, which is equivalent to decomposing NEE (= TER −  GPP) directly. 
We validate and discuss the approximation of IAV contributions using equation (1)  
in Supplementary Information section 2.
Notation. All analysis is based on detrended monthly anomalies (equation (1)  
aggregated to annual means). For simplicity, we omit the Δ  notation for 

 ‘anomaly’ in the following. Superscripts TEMP, WAI and RAD refer to surface air 
 temperature, water availability, and incoming shortwave radiation of a respective 
carbon flux anomaly, respectively. Subscripts s, y and e refer to indexes of grid cell, 
year and ensemble member, respectively. The mean and standard deviation are 
denoted μ and σ respectively, where the subscripts of these operators tell whether 
the operation is done over grid cells (for example, μs is an average over all grid 
cells), years (for example, σy is the standard deviation over the years), or ensemble 
members. All main results refer to the mean of FLUXCOM or TRENDY ensemble 
members (μe) and the standard deviation (σe) is used as uncertainty estimate. 
Whenever we calculated a mean over 0.5° grid cells (μs) we accounted for different 
grid cell areas (area-weighted mean) and used a consistent mask of valid values 
between FLUXCOM and TRENDY. Because several analyses are referenced with 
respect to the sum of climatic components of NEE we denote NEE*  as:

= + +∗NEE NEE NEE NEE (2)s,y s,y
TEMP

s,y
WAI

s,y
RAD

Spatial patterns of IAV magnitude. (See, for example, Fig. 1c and d, and 3.) To 
describe spatial patterns of IAV magnitude M of climatic components of carbon 
fluxes (for example, GPPWAI) we computed the standard deviation of its annual 
values (σy) for each grid cell ‘s’. This standard deviation was then normalized by the 
mean (μs) temporal standard deviation (σy) of NEE*  to provide a relative metric of 
IAV magnitude, where values above 1 indicate IAV magnitudes larger than average 
NEE*  IAV. This scaling accounts for the known underestimation of IAV magnitude 
in the upscaling approach35 but does not change any patterns.
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Figure 1c and d shows mean and standard deviations across ensemble members 
(μe and σe) for NEE components for latitudinal bins of 5°. The same holds for  
Fig. 3, which also shows GPP and TER components.
EOFs and spatial covariances. (See Fig. 2a–d.) We first calculated mean 
 spatio-temporal grids of NEE climatic components across ensemble members 
μ( )( )NEEe s,y,e

COMP . We then multiplied those with grid-cell areas to convert flux 

densities into fluxes per grid cell, and normalized them by the standard deviation 
of NEE*  across time and space, σ μ ∗( )( )NEEs,y e s,y,e . EOFs were then computed for 
each climatic component without additional scaling in MATLAB using the ‘pca’ 
function. The spatial pattern of first principal components (leading EOFs) of 
NEETEMP and NEEWAI was plotted with the same colour scale. The values on the 
colour bar themselves are not informative and were therefore omitted for clarity. 
The leading EOF explains about 22% of spatial NEETEMP variance and about 10% 
of spatial NEEWAI variance in both FLUXCOM and TRENDY ensemble means.

To quantify the degree of spatial covariance of NEE climatic components (inset 
pie charts in Fig. 2a–d) we calculated a large covariance matrix of all grid cells 
versus all grid cells for each NEE climatic component (annual anomalies multiplied 
with grid cell area), where the elements of this covariance matrix ( )ci j,

COMP  were 
calculated according to equation (4):

=c cov (NEE , NEE ) (4)i j y i y j y,
COMP

s ,
COMP

s ,
COMP

Here i and j index the two grid cells for which the covariance is calculated. By 
 definition the variance of the globally integrated anomalies equals the sum of 
all terms in the covariance matrix. To determine the share of positive versus 
 negative spatial covariance of the total variance, we summed positive and negative 
 covariance terms respectively (equation (5)). The sum of variances (the diagonal 
of the covariance matrix where i =  j) was omitted in the pie charts because they 
accounted for less than 1% of the total covariance (tcov) budget.
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Scale dependence of relative dominance of NEETEMP and NEEWAI. (See Fig. 2e 
and f.) We defined relative dominance D of a climatic component (COMP) of NEE 
(for example, NEETEMP) as the mean variance (μs) of annual anomalies (σy

2) of this 
component divided by the mean variance of NEE* :
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To illustrate how this relative dominance changes systematically with spatial scale 
we aggregated NEE components successively to coarser spatial resolutions starting 
at 0.5° (around 54,000 grid cells) and ending with ‘global’(one grid cell at 360° 
resolution) and recomputed relative dominance for each spatial resolution. In total 
24 levels of spatial resolution were used: 0.5°, 1°, 1.5°, 2.5°, 3°, 4°, 4.5°, 5°, 6°, 7.5°, 
9°, 10°, 12°, 15°, 18°, 20°, 22.5°, 30°, 36°, 45°, 60°, 90°, 180° and 360°.

These computations were carried out for each ensemble member separately and 
the mean across ensemble members (μe) was plotted for each spatial resolution as 
dots connected with a line. The uncertainty reflected by the spread of ensemble 
members (σe) was plotted as light shaded area. This uncertainty is dominated by 
the uncertainty of the mean relative dominance and not by the uncertainty on the 
systematic change with spatial aggregation. To visualize that, we provided a dark-
shaded area in the plots, representing the uncertainty on the shape of the curve  
(‘U’ in equation (7)). This is based on the standard deviation across ensemble 
members after subtracting the mean relative dominance over all spatial resolutions 
(l in equation (7) for each ensemble member (equation (7)). Figure 2e and f shows 
the effect of shifting the relative dominance of NEEWAI versus NEETEMP with spatial 
resolution considering the entire global vegetated area, but we repeated this analysis 
for different biomes (see Supplementary Information section 4) by considering 
only grid cells belonging to a specific biome.

σ μ= −U D D( ( )) (7)l e l e l l e, ,

Covariance of the TEMP and WAI components of GPP and TER. (See Fig. 4.)  
We computed the correlation coefficient and covariance between GPP and 
TER  components (for example, GPPTEMP versus TERTEMP) for each grid cell 
and  ensemble member. The covariance terms were normalized to the mean 
variance of NEE*  (equation (8)). Figure 4 shows the mean across the ensemble 
members (μe) for FLUXCOM, and Extended Data Fig. 3 shows the mean for the 
TRENDY ensemble. Extended Data Fig.4 shows latitudinal patterns of the spread 
among ensemble members (σe) for FLUXCOM and TRENDY. The robustness 
of FLUXCOM results with respect to different NEE flux partitioning methods is 
assessed in Supplementary Information section 6. The normalized covariance of 
the temperature- and water-availability components of GPP and TER is as follows:

μ σ
=

∗( ) ( )
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Comparison with atmospherically based data. (See Extended Data Fig. 1.) We 
used three data sources of atmospherically based net CO2 flux exchange. The first is 
based on the annually resolved global carbon budget (GCP)13, which uses measure-
ments of atmospheric CO2 growth rate and estimates of fossil-fuel emissions, ocean 
uptake, and land-use-change emissions to derive the global land flux as a residual. 
The second is based on the Jena CarboScope atmospheric transport  inversion24 
(Jena Inversion, version s81_3.7) covering the full time period of the study. 
The third is an ensemble of ten atmospheric inversions19 used for the REgional 
Carbon Cycle Assessment and Processes (RECCAP) activity covering the period 
1990–2012, with each inversion covering a different time period. Four versions 
of the Jena Inversion have been removed from the original 14 member RECCAP 
ensemble to make it an independent assessment. We used globally integrated net 
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(2013).
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land CO2 flux estimates from the three data sources to assess globally integrated 
NEE IAV of FLUXCOM and TRENDY. For the Jena and RECCAP inversions, we 
additionally calculated the integrated net land CO2 flux for areas north and south 
of 30° N. All time series were detrended. For RECCAP inversions we calculated 
the median estimate of the available inversion estimates per year. All time series 
were normalized by the standard deviation of the respective globally integrated 
annual net land CO2 flux.
Data availability. The FLUXCOM data that support the findings of this study are 
available from the Data Portal of the Max Planck Institute for Biogeochemistry 
(https://www.bgc-jena.mpg.de/geodb/projects/Home.php) with the identifier 
doi:10.17871/FLUXCOM_RS_METEO_CRUNCEPv6_1980_2013_v1. The 
TRENDY v3 data that support the findings of this study are available from S.S. 
(s.a.sitch@exeter.ac.uk) upon reasonable request. The source data for Fig. 1a–d, 
Fig. 2e and f, and Fig. 3a–f are additionally provided as Excel spreadsheets with 
the online version of the paper.
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Extended Data Figure 1 | Global patterns of NEE IAV for FLUXCOM 
(left) and TRENDY (right). Maps of NEE IAV magnitude (mean of 
ensemble members; a, b) defined as standard deviation of annual NEE 
normalized by the mean standard deviation (values above 1 indicate 
above-average IAV). Dashed lines separate areas north and south of 
30° N. Time series of integrated NEE over broad latitudinal bands (c–f) 
or global (g, h) for 1980–2013 normalized by the standard deviation (s.d.) 

of globally integrated NEE. Black lines show the mean of FLUXCOM or 
TRENDY ensemble members and the shaded area refers to the ensemble 
spread (1 s.d.). Independent estimates from the GCP, the Jena and the 
RECCAP inversions (see Methods) are presented with coloured lines 
(see key); correlation coefficients with those are given in the same colour. 
See Supplementary Information section 1 for further cross-consistency 
analysis.
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Extended Data Figure 2 | Local versus global dominance of NEETEMP 
versus NEEWAI for FLUXCOM and TRENDY ensemble members. Dots 
show individual ensemble members and the crosses show ensemble means 
with one standard deviation. Plotted is the difference of local NEEWAI 
and NEETEMP dominance (the difference of the leftmost blue and green 
data points in Fig. 2e and f) against the difference of global NEEWAI and 
NEETEMP dominance (the difference of the rightmost blue and green 
data points in Fig. 2e and f). The majority of ensemble members as well 
as ensemble means fall in the lower right quadrant, meaning an overall 
agreement that NEEWAI dominates at individual grid cells (local) but 
NEETEMP dominates the globally integrated flux anomaly (global).
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Extended Data Figure 3 | Spatial patterns of covariance and correlation 
of WAI- and TEMP-driven GPP and TER IAV for TRENDY models. 
Maps of the covariance of annual anomalies (see equation (8) in Methods) 
of GPP and TER climatic components show large compensation effects 
(positive covariance) for WAI (a) but nearly no covariance for TEMP 
(c). Correlations between GPPWAI and TERWAI are large and everywhere 

positive (b) while correlations among GPPTEMP and TERTEMP are weaker 
with a distinct spatial pattern of negative correlations in hot regions (d). 
All results refer to the mean of all TRENDY ensemble members. See 
Fig. 4 for equivalent FLUXCOM results, and Extended Data Fig. 4 for 
uncertainties.
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Extended Data Figure 4 | Ensemble spread of covariation between 
TEMP and WAI components of GPP and TER for FLUXCOM and 
TRENDY. Plots show mean covariance (left) and correlation (right) 
between GPPTEMP and TERTEMP and GPPWAI and TERWAI for latitudinal 
bins of 5° for individual ensemble members (thin dotted lines) and 
ensemble mean (thick solid line with shaded area for 1 s.d.). Despite 

uncertain magnitudes of GPPTEMP and TERTEMP correlation (large green-
shaded area in right panels, b and d) their covariance is negligible (small 
green-shaded area in left panels, a and c). In comparison, there is large 
positive covariance of GPPWAI and TERWAI but its magnitude differs 
substantially among ensemble members (large blue-shaded area in left 
panels, a and c).
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	Compensatory water effects link yearly global land CO2 sink changes to temperature

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ |﻿﻿ ﻿ Climatic controls on NEE IAV at global and local scales for the period 1980–2013 derived from machine-learning-based (FLUXCOM) and process-based (TRENDY) models.
	﻿Figure 2﻿﻿ |﻿﻿ ﻿ Effects of spatial covariation and scale on temperature versus water control of NEE IAV for FLUXCOM and TRENDY models.
	﻿Figure 3﻿﻿ |﻿﻿ ﻿ Latitudinal patterns of water and temperature driven IAV of gross carbon fluxes (GPP and TER) and NEE for FLUXCOM and TRENDY models.
	﻿Figure 4﻿﻿ |﻿﻿ ﻿ Spatial patterns of covariance and correlation of WAI- and TEMP-driven GPP and TER IAV for FLUXCOM models.
	﻿Extended Data Figure 1﻿﻿ |﻿﻿ ﻿ Global patterns of NEE IAV for FLUXCOM (left) and TRENDY (right).
	﻿Extended Data Figure 2﻿﻿ |﻿﻿ ﻿ Local versus global dominance of NEETEMP versus NEEWAI for FLUXCOM and TRENDY ensemble members.
	﻿Extended Data Figure 3﻿﻿ |﻿﻿ ﻿ Spatial patterns of covariance and correlation of WAI- and TEMP-driven GPP and TER IAV for TRENDY models.
	﻿Extended Data Figure 4﻿﻿ |﻿﻿ ﻿ Ensemble spread of covariation between TEMP and WAI components of GPP and TER for FLUXCOM and TRENDY.

	Compensatory water effects link yearly global land CO2 sink changes to temperature

	Authors
	Abstract
	References
	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ Climatic controls on NEE IAV at global and local scales for the period 1980–2013 derived from machine-learning-based (FLUXCOM) and process-based (TRENDY) models.
	﻿Figure 2﻿﻿ Effects of spatial covariation and scale on temperature versus water control of NEE IAV for FLUXCOM and TRENDY models.
	﻿Figure 3﻿﻿ Latitudinal patterns of water and temperature driven IAV of gross carbon fluxes (GPP and TER) and NEE for FLUXCOM and TRENDY models.
	﻿Figure 4﻿﻿ Spatial patterns of covariance and correlation of WAI- and TEMP-driven GPP and TER IAV for FLUXCOM models.
	﻿Extended Data Figure 1﻿﻿ Global patterns of NEE IAV for FLUXCOM (left) and TRENDY (right).
	﻿Extended Data Figure 2﻿﻿ Local versus global dominance of NEETEMP versus NEEWAI for FLUXCOM and TRENDY ensemble members.
	﻿Extended Data Figure 3﻿﻿ Spatial patterns of covariance and correlation of WAI- and TEMP-driven GPP and TER IAV for TRENDY models.
	﻿Extended Data Figure 4﻿﻿ Ensemble spread of covariation between TEMP and WAI components of GPP and TER for FLUXCOM and TRENDY.
	Abstract




