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Abstract. The land surface provides a boundary condition
to atmospheric forward and flux inversion models. These
models require prior estimates of CO2 fluxes at relatively
high temporal resolutions (e.g., 3-hourly) because of the high
frequency of atmospheric mixing and wind heterogeneity.
However, land surface model CO2 fluxes are often provided
at monthly time steps, typically because the land surface
modeling community focuses more on time steps associated
with plant phenology (e.g., seasonal) than on sub-daily phe-
nomena. Here, we describe a new dataset created from 15
global land surface models and 4 ensemble products in the
Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP), temporally downscaled from monthly to
3-hourly output. We provide 3-hourly output for each indi-
vidual model over 7 years (2004–2010), as well as an ensem-
ble mean, a weighted ensemble mean, and the multi-model
standard deviation. Output is provided in three different spa-
tial resolutions for user preferences: 0.5◦× 0.5◦, 2.0◦× 2.5◦,
and 4.0◦× 5.0◦ (latitude× longitude). These data are pub-
licly available from doi:10.3334/ORNLDAAC/1315.

1 Approach

This technical note describes the methodological approach
employed with temporally downscaling monthly terrestrial
biosphere model (TBM) net ecosystem exchange (NEE) (i.e.,
net CO2 flux between the land and atmosphere) output to 3-
hourly time steps (Fisher et al., 2014). These data were cre-
ated initially for NASA’s Carbon Monitoring System (CMS)

and are useful to the broader land surface and atmospheric
scientific community (Fisher et al., 2011, 2012). The general
downscaling approach follows Olsen and Randerson (2004)
with modifications. The logic takes the components of NEE,
i.e., gross primary production (GPP) and ecosystem respira-
tion (Re), and links them with incident shortwave solar ra-
diation (I ) and near-surface (2 m) air temperature (Ta), re-
spectively. I and Ta are provided at 6-hourly time steps from
CRU-NCEP (Wei et al., 2014a, b), which we interpolated to
3-hourly time steps following cosines of solar zenith angle
for I and linear interpolation for Ta. Hence, GPP and Re are
temporally downscaled to 3-hourly and re-combined to form
NEE at 3-hourly time steps.

The 6-hourly to two 3-hourly time steps from the solar
zenith angle cosine interpolation follows this equation:

It1 =
It × coszt1(

coszt1+coszt−t1
2

) , It−t1 =
It × coszt−t1(
coszt1+coszt−t1

2

) , (1)

where z is solar zenith angle and It is in units of W m−2. As
an example, if the 0–6 h It were 100 W m−2, the 0–3 h zt1
were 0 (i.e., cos(zt1)= 1), and the 4–6 h zt−t1 were 60 (i.e.,
cos(zt−t1)= 0.5), then the 0–3 h It1 would be 133.3 W m−2,
and the 4–6 h It−t1 would be 66.7 W m−2.

To scale GPP and Re to 3-hourly time steps, we followed
Olsen and Randerson (2004) with modifications starting first
with the calculation of scale factors based on I and Ta:

Q103 h = 1.5
Ta,3 h−30

10 , (2a)
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Figure 1.The original downscaling approach of Olsen and Randerson (2004) used monthly fixed 2 
values, which led to a “stair-stepping” behavior between months (red). This was eliminated by 3 
using a 30-day moving window and interpolating monthly input values to 3-hourly time steps 4 
(black). Example shown for LPJ model global mean year 2005.  5 
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Figure 1. The original downscaling approach of Olsen and Randerson (2004) used monthly fixed values, which led to a “stair-stepping”
behavior between months (red). This was eliminated by using a 30-day moving window and interpolating monthly input values to 3-hourly
time steps (black). Example shown for Lund–Potsdam–Jena (LPJ) model global mean year 2005.

Tscale =Q103 h

/∑
30 day

Q103 h, (2b)

Iscale = I3 h

/∑
30 day

I3 h, (3)

where Q10 is the temperature dependency of Re, and Ta is
in degrees Celsius (converted from kelvin, as provided by
CRU-NCEP). Note that Olsen and Randerson (2004) origi-
nally used time integral periods of calendar months, but we
observed that this caused unrealistic distinct shifts between
months. Instead, we modified the integral period to a 30-day
moving window (Fig. 1). For the first 15 days of January of
the record and the last 15 days of December of the record,
we used the last 15 days of December and the first 15 days of
January, respectively, within the first (2004) and last (2010)
years to complete the 30-day window.

The 3-hourly resolution scale factors are then multiplied
by GPP and Re for each 3-hourly time step each month:

Re3 h = Tscale×Remonth, (4)
GPP3 h = Iscale×GPPmonth. (5)

We modified Remonth and GPPmonth from Olsen and Ran-
derson (2004) to be given at a 3-hourly time step, linearly
interpolated to 3-hourly time steps based on the present,
previous, and subsequent month, maintaining the original
units (g C m−2 months−1). Re3 h and GPP3 h are in units of
g C m−2 3 h−1. This modification avoided using the same
monthly value for the multiplier for all 3-hourly time steps
per month as per Olsen and Randerson (2004) and instead
provided a smooth transition from one month to the next.
The result of this modification was to eliminate a “ramp-
ing” effect whereby values would, for example, increase
steadily within a month, then suddenly shift to a new starting
point at the beginning of the next month (Fig. 1). Note that

the original nomenclature of Olsen and Randerson (2004)
used [(2×NPPmonth)−NEPmonth] in place of Remonth and
(2×NPPmonth) in place of GPPmonth, where NPP is net pri-
mary production (GPP minus autotrophic respiration) and
NEP is net ecosystem production (approximately equiva-
lent to the inverse sign of NEE, with caveats; Hayes and
Turner, 2012). The assumption here, therefore, is that GPP=
2×NPP and Re= (2×NPP)−NEP. The Re assumption
misses CO2 emissions other than respiration, e.g., fire, which
we correct for at a later step.

The initial NEE calculation simply subtracts GPP from
Re:

NEE3 h = Re3 h−GPP3 h, (6)

where NEE3 h is calculated in units of g C m−2 3 h−1. How-
ever, we applied an additional unit conversion for the pub-
licly available data to kg C km−2 s−1, as these units are more
readily ingestible by atmospheric inversion models (Deng et
al., 2014).

Because the downscaling approach uses Re (e.g., au-
totrophic plus heterotrophic respiration) as the primary CO2
efflux term, other ecosystem CO2 loss components, such as
fire and other disturbances (Hayes and Turner, 2012), are
excluded in the downscale. Hence, the sum of the down-
scaled 3-hourly NEE fluxes in a given month did not neces-
sarily equal the original monthly NEE flux. So, we included
a per-pixel correction whereby we (i) calculated the differ-
ence between the sum of the downscaled 3-hourly NEE in
a given month and the original monthly NEE, (ii) divided
that difference by the total 3-hourly time steps in the month,
and (iii) added that difference to each 3-hourly NEE flux. In
so doing, the sum of the downscaled 3-hourly NEE fluxes
subsequently summed exactly to the original monthly NEE.
Nonetheless, this assumption smooths what could otherwise
be punctuated fire or disturbance effluxes, so caution should
be given when assessing these effluxes at 3-hourly time steps
(e.g., relative to observations).
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Figure 2. Vegetation productivity (e.g., blues/greens) follows the course of the sun for a single 6 
day of net ecosystem exchange (NEE or net CO2 flux; g C m-2 3hr-1) for each 3-hourly period. 7 
Shown here, for example, is July 1, 2007 for the weighted ensemble mean product.  8 
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Figure 2. Vegetation productivity (e.g., blues/greens) follows the course of the Sun for a single day of net ecosystem exchange (NEE or net
CO2 flux; g C m−2 3 h−1) for each 3-hourly period. Shown here, for example, is 1 July 2007 for the weighted ensemble mean product.

All input data were given in a spatial resolution of
0.5◦× 0.5◦ (latitude× longitude); hence, we provide the 3-
hourly NEE output at 0.5◦× 0.5◦ (Fig. 2). We also pro-
vide two additional sets of spatially upscaled NEE output
at 2.0◦× 2.5◦ and 4.0◦× 5.0◦. These resolutions are used
by the atmospheric modeling community, i.e., the GEOS-
Chem atmospheric CO2 transport model in the NASA CMS
(Liu et al., 2014). To generate the coarser-resolution data, we
(i) multiplied each pixel value by the land area of that pixel;
(ii) summed the flux from all pixels that represent one pixel at
coarser resolution (e.g., 8× 10 pixels from 0.5◦× 0.5◦ com-
prise 1 pixel in 4.0◦× 5.0◦); (iii) calculated the total area
covered by the pixels summed in step (ii); and (iv) divided
the value in step (ii) by the value in step (iii). The regrid-
ding preserved the total sum flux of the finer grid cells as
well as the total global flux. We provide a file containing
the land area contained in each latitudinal band for each of
the three resolutions (folder name: “latitude_area”). We pro-

vide two versions of the 2.0◦× 2.5◦ and 4.0◦× 5.0◦ resolu-
tion products – one version with consistent global resolu-
tion, and another that conforms to the GEOS-Chem setup
whereby the northern- and southern-most latitudinal bands
for the 2.0◦× 2.5◦ resolution are 1.0◦× 2.5◦, and for the
4.0◦× 5.0◦ resolution they are 2.0◦× 5.0◦. The orientation
of the global grid in the NetCDF files is transposed (i.e.,
90◦ S× 180◦W at top left). The time vector represents the
midpoint of each 3-hourly period.

Processing time in R, unparallelized, on a standard PC for
a single year for the forcing data was as follows:

– interpolation of 6-hourly I and Ta to 3-hourly time step:
1 h per variable;

– 30-day moving window for I : 48 h;

– 30-day moving window for Ta: 68 h;

www.biogeosciences.net/13/4271/2016/ Biogeosciences, 13, 4271–4277, 2016
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Figure 3. The observed net ecosystem exchange (NEE) (blue) and reproduced NEE (red) shown at the 3-hourly time step with daily moving
window overlaid for a single year from the Tonzi Ranch AmeriFlux/FLUXNET site (Baldocchi and Ma, 2013).

Figure 4. Observed versus reproduced net ecosystem exchange
(NEE) at the 3-hourly time step for a single year at the Tonzi Ranch
AmeriFlux/FLUXNET site (Baldocchi and Ma, 2013).

– total time to process forcing data for 7 years:
7× (1× 2+ 48+ 68)= 826 h.

Processing time for the application of the modified Olsen
and Randerson (2004) downscaling approach for a single
model for a single year was as follows:

– monthly interpolation to 3-hourly time steps for GPP:
1 h;

– monthly interpolation to 3-hourly time steps for Re: 1 h;

– GPP and Re downscaling: 2 h;

– monthly NEE closure correction: 1 h;

Table 1. Global terrestrial biosphere models from the Multi-scale
Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)
downscaled in this activity.

Model Reference

BIOME_BGC Thornton et al. (2002)
CLM Mao et al. (2012)
CLM4VIC Lei et al. (2014)
CLASS_CTEM Huang et al. (2011)
DLEM Tian et al. (2012)
GTEC Ricciuto et al. (2011)
ISAM Jain and Yang (2005)
LPJ-wsl Sitch et al. (2003)
ORCHIDEE Krinner et al. (2005)
SIB3 Baker et al. (2008)
SIBCASA Schaefer et al. (2008)
TEM6 Hayes et al. (2011)
TRIPLEX-GHG Peng et al. (2002)
VEGAS2.1 Zeng et al. (2005)
VISIT Ito (2010)

– NetCDF generation with additional spatial resolutions:
2 h;

– total time to process all 19 products for 7 years:
7× 19× (1+ 1+ 2+ 1+ 2)= 931 h.

The total storage size of the final NetCDF data products
for all 19 products (15 models+ 4 ensemble products) for all
7 years is 374 GB at 0.5◦× 0.5◦, 38 GB at 2.0◦× 2.5◦, and
10 GB at 4.0◦× 5.0◦.

We provide the data in NetCDF with a separate file
for each day per product at doi:10.3334/ORNLDAAC/1315
(Fisher et al., 2016). Each file contains the global gridded
data with the eight 3-hourly intervals in the day. Open-water
pixels are set to 0, as this was desired by the atmospheric
modeling community. However, we realize that NEE values
can conceivably be 0 (though unlikely as our precision is to
16 decimal places); nonetheless, there are some pixels over
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land that are calculated as 0, but this is due to missing forc-
ing data (e.g., I at the high latitudes during winter). Our code
is set up such that we can easily provide a different file out-
put structure and missing value mask by request (contact the
corresponding author: jbfisher@jpl.nasa.gov).

Model output (GPP, Re, and NEE) was from the Multi-
scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP) (Huntzinger et al., 2013, 2016), ver-
sion 1. Fifteen models were included: (1) BIOME_BGC,
(2) CLM, (3) CLM4VIC, (4) CLASS_CTEM, (5) DLEM,
(6) GTEC, (7) ISAM, (8) LPJ-wsl, (9) ORCHIDEE,
(10) SIB3, (11) SIBCASA, (12) TEM6, (13) TRIPLEX-
GHG, (14) VEGAS2.1, and (15) VISIT (Table 1). All mod-
els were driven by CRU-NCEP meteorological forcing data,
hence our use of the same data source for the downscaling
approach applied here. We note that there are other mete-
orological forcing datasets also available at 3-hourly time
steps for those interested in applying our downscaling ap-
proach with different data (Sheffield et al., 2006; Weedon
et al., 2011, 2014). Although some models are capable of
output at sub-monthly time steps, the standard MsTMIP out-
put is at the monthly time step. Additionally, four ensem-
ble products were included: (1) unweighted (naïve) ensemble
mean, (2) unweighted (naïve) ensemble standard deviation,
(3) weighted (optimal) ensemble mean, and (4) weighted
(optimal) ensemble standard deviation. Weights for model
ensemble integration were derived based on model skill in
reproducing GPP and biomass (Schwalm et al., 2015). Model
output was obtained from ftp://nacp.ornl.gov/synthesis/2009/
reutlingen/CMS/20141006/.

To test and confirm that our downscaling approach was
applied correctly, we tested our method on a set of ground-
truth data of measured NEE (and forcing variables) from the
FLUXNET database (Baldocchi et al., 2001). We show, for
example, a single year for a single site (3-hourly in back-
ground with daily-moving window overlaid) (Fig. 3) and the
scatterplot of calculated versus observed NEE values at the
3-hourly time step for that site and year (Fig. 4). A full un-
certainty analysis of the approach is beyond the scope of this
technical note, intended to describe the methodological detail
of the downscaling.

2 Data availability

The data are available for download in NetCDF at
doi:10.3334/ORNLDAAC/1315.
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