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Abstract. The structure and function of Alaska’s forests have changed significantly in response to a

changing climate, including alterations in species composition and climate feedbacks (e.g., carbon,

radiation budgets) that have important regional societal consequences and human feedbacks to forest

ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all

forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region.

We developed a conceptual framework describing climate drivers, biophysical factors and types of change

to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and

indirectly to a changing climate. We then identify the regional and global implications to the climate system

and associated socio-economic impacts, as presented in the current literature. Projections of temperature

and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal

forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected

increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and

severity of insect outbreaks and associated wildfires, and increase the probability of establishment by

invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant

biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers

and rising elevation of the winter snowline will alter discharge in many rivers, which will have important
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consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect

plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas

emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

assessment of current and future consequences of a changing climate, emphasizes regional differences in

biophysical factors, and points to linkages that may exist but that currently lack supporting research. The

framework also serves as a visual tool for resource managers and policy makers to develop regional and

global management strategies and to inform policies related to climate mitigation and adaptation.
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INTRODUCTION

Currently, climate changes are significantly
impacting Alaska’s ecosystems (ACIA 2005).
These impacts have been repeatedly synthesized
for arctic tundra (ACIA 2005, Hinzman et al.
2005, McGuire et al. 2009) and portions of the
boreal forest (Chapin et al. 2006a), but there has
been no comprehensive review of climate-change
impacts on the broad spectrum of Alaskan
forests, which is the goal of this review. Changes
in high-latitude forests have important implica-
tions both regionally and globally. Shifts in the
disturbance regimes of Alaska’s forests (boreal
and coastal-temperate rainforest biomes) at the
regional scale directly affect the global climate
system through greenhouse gas emissions (Tan et
al. 2007) and altered surface-energy budgets
(Chapin et al. 2000, Randerson et al. 2006).
Climate-related changes in Alaskan forests also
have important regional societal consequences,
and human responses to these changes may
amplify their impact on forest ecosystems.
Understanding the current and potential future
impacts of contemporary climate change is
important not only for regional-level adaptive
management, but also for national and interna-
tional decision- and policy-making related to
mitigation and adaptation strategies.

Alaska’s forests (Fig. 1A) cover one-third of the
state’s 172 million ha of land (Parson et al. 2001)
and are functionally significant, both regionally

and globally. Ninety percent of the forests are
classified as boreal (42 million ha), collectively
representing 4% of the world’s boreal forests
(Shvidenko and Apps 2006); these occur
throughout the Interior-, Southcentral- and Ke-
nai-boreal regions (Fig. 1B). Coastal-temperate
forests (5 million ha) comprise 10% of Alaska’s
forests and represent 19% of the world’s coastal-
temperate forests (NAST 2003). Forests in Alaska
play a large role in the economies and livelihoods
of people, as a result of their proximity to urban
and rural communities, and a diversity of
associated ecosystem services (MEA 2005).
Changes in forest structure and function will
not only directly impact the biological compo-
nents of these ecosystems, but will also have
important consequences for society (Flint 2006,
Chapin et al. 2008, Trainor et al. 2009).

Changes in boreal forests have the potential to
affect the global climate system for several
reasons. First, the boreal biome comprises one-
third of the Earth’s total forested area (Shvidenko
and Apps 2006) and is one of the biomes
expected to change most rapidly with future
climate change (Christensen et al. 2007). Second,
boreal ecosystems contain 40% of the earth’s
reactive soil organic carbon (McGuire et al. 1995).
Third, the age-dependent stand structures and
species compositions characteristic of boreal
forests modulate high-latitude energy budgets
by affecting surface albedo (Euskirchen et al.
2009a). And fourth, carbon cycling, albedo, and
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Fig. 1. Alaska maps illustrating (A) total forested area, (B) forest region boundaries of the: (1) Interior-boreal

forest that is bounded by the Brooks Range to the north, the Alaska Range to the south, and the Seward Peninsula

to the west; (2) Southcentral-boreal forest that includes the forests south of the Alaska Range, west of the Alaska-

Yukon border, and east of the Alaska Peninsula; (3) Kenai-boreal forest that includes the western side of the Kenai

Peninsula; and (4) Coastal-temperate forest that occurs on the Alaska Panhandle, the eastern portion of the Kenai

Peninsula, Prince William Sound, and the islands of the Kodiak archipelago, (C) average annual temperature from

1950–2008, and (D) length of growing season from 1950–2008. Length of growing season values were calculated as

the difference between the day of freeze (first Julian date when the temperature was ,08C) and day of thaw (Julian

date when the temperature was .08C). The data used to calculate the average annual temperature and length of

growing season were obtained from the Climatic Research Unit (CRU; http://www.cru.uea.ac.uk/).
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stand structure in the boreal forest are strongly
influenced by the frequency and severity of
wildfires (Randerson et al. 2006, Euskirchen et
al. 2009a, Johnstone et al. 2010a, Turetsky et al.
2011), and burning is an important disturbance
mechanism by which stored carbon is released to
the atmosphere (Amiro et al. 2001, Kasischke et
al. 2000, 2005).

Changes in coastal-temperate rainforests, al-
though confined to a relatively small footprint
(,0.5% of the Earth’s total forested area; Ecotrust
1992), also have potential global impacts, due to
the importance of coastal margins in global
matter and energy budgets and the delivery of
dissolved organic carbon to coastal oceans
(Muller-Karger et al. 2005). Small-scale natural
disturbances (e.g., windthrow, landslides, dis-
ease) dominate in these old-growth late-succes-
sional forests (Hennon and McClellan 2003). The
resulting old-growth forests accumulate carbon
for many centuries (Luyssaert et al. 2008), and
represent a large carbon pool (Waring and
Franklin 1979). Given their small areal coverage,
these ecosystems support a disproportionately
high diversity of plant and animal species
(Schoonmaker et al. 1997), and the adjacent
highly productive terrestrial-marine ecotone sup-
ports a diversity of fish, bird, and mammal
species (Simenstad et al. 1997).

In Alaska, climate change effects have already
occurred and, as a result of high-latitude ampli-
fication are expected to be greater than at lower
latitudes (Shulski and Wendler 2007, Karl et al.
2009). During the 20th century, boreal Alaska has
warmed twice as rapidly as the global average
(Hinzman et al. 2005, Wendler and Shulski 2009).
Mean annual air temperature in the Interior
increased by 1.38C during the past 50 years, with
the greatest warming occurring in winter (Hart-
mann and Wendler 2005, Shulski and Wendler
2007). Air temperature is projected to increase by
an additional 3 to 78C by the end of the 21st
century (Walsh et al. 2008, Scenarios Network for
Alaska and Arctic Planning [SNAP]; http://www.
snap.uaf.edu). Precipitation in this region has
increased by only 1.4 mm decade�1 (Hinzman et
al. 2006), thus, projected increases in precipita-
tion will likely be insufficient to offset increases
in summer evapotranspiration (Rouse 1998). The
Coastal-temperate forest may be particularly
sensitive to climate change, as winters have been

warmer since the 1970s (Fig. 1C; average annual
temperature .08C), with more precipitation
falling as rain (NAST 2003), and the region is
characterized by long growing seasons (Fig. 1D;
.240 days year�1).

In Alaska, warming since the 1950s appears to
be unprecedented in at least the last 400 years
(Overpeck et al. 1997, Barber et al. 2004, Kaufman
et al. 2009). Melting glaciers and ice fields in
Alaska have contributed more to sea level rise
over the past 50 years than any other glaciated
region measured outside of the Greenland and
Antarctic ice sheets (Arendt et al. 2002). In boreal
Alaska, water balance has decreased significantly
over the past several hundred years (Anderson et
al. 2007, Clegg and Hu 2010), causing a consis-
tent decrease in the number and area of closed-
basin ponds (Klein et al. 2005, Riordan et al.
2006). Across Alaska, observations indicate sig-
nificant shifts in vegetation composition and
production, including yellow-cedar decline
throughout the Coastal-temperate forest region
(Hennon et al. 2006), decreased spruce growth in
boreal Alaska (Barber et al. 2000, McGuire et al.
2010, Beck et al. 2011), woody vegetation
encroachment into wetlands (Berg et al. 2009)
and negative productivity throughout forested
Alaska (e.g., Goetz et al. 2005, Verbyla 2008, Beck
et al. 2011).

Recent changes in major disturbance regimes
in Alaska are linked to changes in climate.
Wildfire, the dominant driver of ecosystem
change in Interior forests, is strongly linked to
climate (Duffy et al. 2005). In the last decade,
annual area burned in this region has doubled
compared to any decade of the previous 40 years
(Kasischke et al. 2010). The life histories of
damaging insects (e.g., spruce beetle [Dendrocto-
nus rufipennis] and spruce budworm [Choristo-
neura fumiferan]) are tightly linked to summer
temperature (Holsten et al. 1985, Werner and
Holsten 1985, Han et al. 2000), and their recent
outbreaks have been attributed to climate change
(Werner 1994, 1996, Werner et al. 2006). Alaskan
forests are becoming increasingly susceptible to
non-native plant invasions as the climate warms
and the amount of land disturbance (anthropo-
genic and natural) increases, which could collec-
tively promote the establishment of invasive
plant species into remote regions of Alaska
(Villano and Mulder 2008). The rate of new
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introductions of exotic plant taxa has increased
from roughly one to three species per year (1941–
1968 and 1968–2006, respectively) (Carlson and
Shephard 2007).

This paper presents a comprehensive synthesis
of climate-change-related research in Alaskan
forests that extends previous synthesis efforts
and assesses the effects of climate change within
a conceptual framework. Specifically, in this
assessment of Alaska’s forest regions we: (1)
develop a conceptual framework to summarize
our current understanding of climate-change-
related research in each region and identify
knowledge gaps; (2) summarize the projected
changes in key climate and climate-related
abiotic characteristics of the environment that
control ecosystem processes; (3) evaluate the
global implications and feedbacks that may
either increase or decrease the rate of climate
and ecosystem changes; (4) summarize the key
regional societal consequences of climate-change
effects; and (5) discuss uncertainties, policy
options, and areas of future research.

METHODS

Study area
We broadly delineated Alaska’s forested area

(Fig. 1A) into either boreal or coastal-temperate
forest. The boreal forest was further divided into
three regions, designated as the: (1) Interior-
boreal forest; (2) Southcentral-boreal forest; and
(3) Kenai-boreal forest. The Coastal-temperate
forest was designated the fourth forest region
(Fig. 1B).

Climate and abiotic projections for Alaska’s
forest regions

We present climate projections for two time
slices (i.e., 2050 and 2100), as the biological and
social implications of these changes vary with the
temporal resolution. Many of these projections
were developed by SNAP (http://www.snap.uaf.
edu) and are based on output from global climate
models (GCMs) used by the Intergovernmental
Panel on Climate Change (IPCC) to prepare its
Fourth Assessment Report (IPCC 2007). The 15
GCMs utilized by the IPCC were evaluated and
ranked according to how accurately each model
predicted high-latitude mean monthly surface air
temperature, precipitation, and air pressure at

sea level (Walsh et al. 2008). The SNAP climate
projections utilize the intermediate A1B scenario
output from the five best performing GCMs
(Walsh et al. 2008). The output variables from the
GCMs were then downscaled with the delta
method (Hay et al. 2000, Hayhoe 2010) using
Parameter-Elevation Regressions on Independent
Slopes Model (PRISM; http://www.prism.
oregonstate.edu/) 1961–1990 climate normals as
the baseline climate at 2 km resolution. Where
data were available, references for climate pro-
jections from sources other than those generated
by SNAP are cited.

Creating a framework to evaluate current
and future effects of climate change

To evaluate the impact of climate changes in
Alaskan forests, we first identified the primary
climate drivers (e.g., wind, surface air tempera-
ture, precipitation) and the biophysical factors
(e.g., insects, disease, invasive species, perma-
frost, wildfire) that change in response to these
drivers. We then developed a conceptual frame-
work similar to that described by Overpeck et al.
(2005) and Francis et al. (2009), to synthesize our
current understanding of climate-related changes
in Alaskan forests. In our framework, we
envision two interacting subsystems—the bio-
physical and social subsystems (Fig. 2). These
two subsystems interact via the consequences of
ecosystem changes on the social subsystem and
the impacts of the social response to these
ecosystem changes on the biophysical subsystem.
We identify three elements of the biophysical
subsystem: climate drivers, biophysical factors,
and types of change (depicted in Fig. 2; defined
in Table 1). Our strategy was to concentrate on
what we viewed to be the most critical biophys-
ical factors for each forest region given a
changing climate. Based on an extensive litera-
ture review, we identified the types of change
that exert the greatest influence on the structure
and function of each forest region; an exhaustive
description of all underlying processes is beyond
the scope of this review. This literature review
provided the information to (1) identify key
climate variables that drive changes in each forest
region, (2) select biophysical factors that are
currently responding to climate changes and
exert the greatest influence on the types of
change observed, and as such will have the
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largest regional and global implications for the
social subsystem of our framework, and (3)
depict the interactions and feedbacks that link
the elements of the biophysical subsystem
through the use of arrow size, direction, and
color (Fig. 2). Finally, we utilize future projections
of climate and abiotic characteristics, as well as
suggestions from the literature, to hypothesize
specific biophysical factors that will become
important under various climate scenarios (Fig.
2). These regional depictions of the effects of
climate change were then used to describe the
consequences that changes in the biophysical
subsystem will have on the social subsystem, to
compare regional differences in climate drivers,
biophysical factors, and types of change, and to

identify the gaps in our knowledge of climate-

related changes in Alaska’s forest regions. We

emphasize the major elements (climate drivers,

biophysical factors, and types of change) of the

biophysical subsystem and the typology of their

interconnections (arrows) rather than the mech-

anisms that underlie each arrow (e.g., tempera-

ture effects on enzyme activity, drought, nutrient

supply). This emphasis reflects our primary goal

(i.e., to describe differences among forest re-

gions), and underscores the fact that biophysical

elements are better documented than is the

relative importance of underlying mechanisms

in most of these forests.

Fig. 2. Conceptual framework of Alaskan forests synthesizing the current understanding of climate-related

changes. The framework illustrates the interactions between the biophysical and social subsystems. These

subsystems interact via the consequences of ecosystem changes on the social subsystem, and the impacts of the

social response to ecosystem changes on the biophysical subsystem. There are interactions (see Fig. 3 for

description of arrow color, line type, and thickness) and feedbacks (green labeled arrows) that link the elements

of the biophysical subsystem: climate drivers (blue circles), biophysical factors (green circles) and types of change

(violet circles) (described in Table 1). The complex interactions occurring between the categories of the types of

change (changes in environment, succession and biota) are depicted with overlapping circles.
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RESULTS

Types of change in Alaskan forests
The types of change are the categories of

change (changes in environment, succession, and
biota) that occur in all forests (Fig. 3A–D). The
fact that some of the material could be presented
under multiple types of change categories em-
phasizes the complex interactions occurring
between the categories of change (Fig. 2).

Interior-boreal forest.—
1. Changes in environment.—In Interior Alaska,

local conditions that affect ground insulation,
such as snow depth, incident solar radiation,
vegetation cover, and depth of surface organic
soils, in part determine the distribution of
permafrost (Jorgenson et al. 2010). Variation in
topography, disturbance history, and ecosystem
and hydrological processes can lead to a spec-
trum of permafrost responses to climate warming
in this region (Jorgenson et al. 2010). Disturbance
to permafrost structure and distribution can

occur as a gradual change, such as a thickening
of the seasonally thawed active layer that can
eventually lead to the development of a talik, the
bottom of the deepened active layer that does not
refreeze during winter, or it can occur abruptly in
the form of catastrophic ground subsidence
(thermokarst) (Schuur et al. 2008). One primary
factor controlling ecosystem responses to perma-
frost degradation is the hydrologic regime
following thaw, particularly because permafrost
restricts drainage and can control surface hydrol-
ogy (Hinzman et al. 1998). Permafrost degrada-
tion can change surface hydrology substantially,
resulting locally in poorly drained wetlands and/
or thaw lakes (Smith et al. 2005). Alternately,
permafrost thaw can result in well-drained
ecosystems, where steeper slopes or more per-
meable soils and geologic substrates allow for
deeper flowpaths and better surface drainage.

Observational studies demonstrate some of the
disparate effects of permafrost thaw and their
implications for hydrology and biogeochemical

Table 1. Definitions of the elements in the biophysical subsystem of the conceptual framework of climate-related

changes in Alaskan forests (see Figs. 2 and 3).

Elements of
conceptual
framework Definition Variables/categories

Factors impacting the effect of
this element

Climate drivers Climate variables that directly or
indirectly affect the biophysical
factors and types of change
within the biophysical
subsystem

Surface air temperature,
precipitation, wind, cloud
cover

Implicit within the climate
drivers are the interactions that
occur among individual
climate variables (e.g.,
interactions between surface
air temperature and
precipitation)

Biophysical
factors

The primary categories of
disturbances and surface
characteristics in Alaskan
forests that have large
cascading and long-term
effects on the climate drivers
and/or types of change

Wildfire, permafrost thaw, insects
and diseases, invasive species,
snow and ice cover

A biophysical factor may change
directly as a result of changes
in climate, but may also
interact with another
biophysical factor to influence
the types of change observed
(e.g., interactions between
permafrost thaw and wildfire)

Types of change The categories of changes that
occur over different time scales
and levels of complexity that
apply to all Alaskan forests
(though their relative
importance may differ among
regions)

(1) Changes in environment
associated with permafrost
thaw, increased growing-
season length, and seasonal
timing of soil moisture
recharge; (2) Changes in
succession associated with
changes in wildfire, glacier
melt and insect/disease
outbreaks; and (3) Changes in
biota associated with
migration, altered species
composition and abundance,
and plant growth rates and
phenology.

Within the types of change are
the complex interactions that
occur between the three
categories that are critical to
understanding how forest
ecosystems are responding to
changes in climate. For
example, changes in
environment and biota interact
reciprocally to affect plant
phenological events (within-
year response) and succession
(multi-year response)
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Fig. 3. Regional diagrams of the biophysical subsystem of the conceptual framework (see Fig. 2 and Methods:

Creating a framework to evaluate current and future effects of climate change) depicting climate change impacts in the

(A) Interior-boreal; (B) Southcentral-boreal; (C) Kenai-boreal; and (D) Coastal-temperate forest regions of Alaska.

Interactions between elements within the biophysical subsystem (defined in Table 1) are supported by research

and may be positive (red arrows), negative (blue arrows), or complex (black arrows; i.e., the change in one

variable is contingent on the magnitude of change in the other variable).
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Fig. 3. Continued. The framework includes both current (solid-line circles) and potential (dashed-line circles)

biophysical factors, with larger circles influencing change more than smaller circles. Interaction arrows (either

red, blue or black) involving a potential biophysical factor are represented with dashed-line arrows. Where

multiple climate drivers interact with a biophysical factor the dominant climate driver is identified with a thicker

arrow (either red, blue or black, and solid or dashed). The conceptual framework depicts the complex interactions

that occur between the three categories of types of change (changes in environment, succession, and biota) that

are critical to understanding how forest ecosystems are responding to changes in climate (described in Table 1) as

overlapping circles.
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cycling. Creation of thermokarst wetlands and
open water can lead to increased methane
emissions and increased carbon uptake and
sequestration under anaerobic conditions
(Myers-Smith et al. 2007). In contrast, in low-
lands underlain by gravel, high-ice permafrost is
less common, and climate warming causes
drying of lakes due to increased evapotranspira-
tion, and in some situations, loss of permafrost
and internal drainage (Yoshikawa and Hinzman
2003, Riordan et al. 2006, Jorgenson et al. 2010).
With future permafrost thaw, drainage of lakes
during the winter will likely increase (Brabets
and Walvoord 2009). The eventual (decadal- to
century-scale) hydrological outcome is expected
to be an overall drying in this region, because
permafrost restricts surface drainage in many
locations on the landscape (Christensen et al.
2007).

Changes in surface hydrology will amplify the
direct effects of permafrost thaw on biogeochem-
ical cycles. In particular, large pools of carbon
previously stored in frozen soil are subject to
increased decomposition as permafrost thaws,
with regional and ecosystem effects on gross
primary productivity (Vogel et al. 2009) and
species composition (Schuur et al. 2007), leading
to feedbacks to the global carbon cycle (Schuur et
al. 2008). Permafrost thaw and ground subsi-
dence in uplands can have complex effects, as
initially increased carbon uptake by plants may
offset increased ecosystem respiration, creating a
carbon sink (Schuur et al. 2009, Vogel et al. 2009,
Lee et al. 2010) but eventually result in a net
source of carbon to the atmosphere as increased
old soil carbon losses offset increased carbon
uptake (Vogel et al. 2009).

Interactions between wildfire and permafrost
thaw impact soil organic dynamics (O’Donnell et
al. 2010). A distinguishing characteristic of much
of the boreal forest is the presence of a thick
continuous moss layer. This moss layer controls
many ecosystem processes (Turetsky et al. 2010).
For example, thermal properties of soil organic
layers mediate the effects of climate warming
(O’Donnell et al. 2009). The high water retention
of hummock-forming Sphagnum species may
reduce wildfire severity (Shetler et al. 2008)
through the maintenance of poor drainage
conditions that keep permafrost soils cool (Hard-
en et al. 2006). Following wildfire, permafrost

degradation or aggradation is determined by the
thickness of the soil organic layer (Yoshikawa et
al. 2003). Permafrost is maintained by the
positive feedbacks between cold temperature,
poor drainage, and the resistance of moss layers
to decomposition, resulting in the accumulation
of thick organic layers (Harden et al. 2006).
However, projected warming and/or an increase
in wildfire will increase permafrost thaw post-
fire, as wildfire is the dominant biophysical
factor in the Interior-boreal (Myers-Smith et al.
2008).

Research during the 1970s and 1980s deter-
mined that biogeochemical processes in the
Interior-boreal forest were largely limited by
temperature and nutrients (Van Cleve et al.
1986, 1991). However, more recent studies
indicate that nutrient limitations on tree growth
only occur during early spring when soils are
cold. As a result, moisture availability is now
considered the primary factor limiting forest
production late in the growing season when
precipitation and temperature interact to reduce
available soil moisture (Yarie and Van Cleve
2010).

2. Changes in succession.—Changes in fire
regime create opportunities for rapid plant
community reorganization (Chapin et al. 2006a).
Historically, black spruce forests burned during
stand-replacing fires every 70–130 years; low
severity wildfires in combination with plant
traits of black spruce and associated understory
species led to a resilient forest type in the
Interior-boreal forest (Johnstone et al. 2010a).
However, changes in the fire regime with climate
warming that are mediated by biogeochemical
and life-history feedbacks have the potential to
drive shifts in successional trajectories and break
the legacy lock of black spruce regeneration
(Johnstone et al. 2010b). Three of the largest
wildfire years in Alaska occurred in the last
decade (Kasischke et al. 2010). Warm dry
summers allow fires to continue burning late
into the summer, when soils are deeply thawed
and have lower soil moisture, and therefore burn
more deeply (Kasischke and Johnstone 2005),
creating a radically different soil environment for
seedling establishment (Epting and Verbyla 2005,
Johnstone and Kasischke 2005, Harden et al.
2006). Post-fire succession has shifted towards
deciduous-dominated forests with the recent
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increase in mineral soil seedbeds following high-
severity wildfires (Johnstone and Kasischke 2005,
Kasischke and Johnstone 2005, Johnstone and
Chapin 2006) and reduction in fire return interval
(Johnstone et al. 2010a, b, Bernhardt et al. 2011).

Interactions between wildfire, permafrost, and
soil organic layers also affect post-fire succes-
sional trajectories (Johnstone et al. 2010a). An
increase in the frequency and severity of wildfire
will likely decrease Sphagnum moss species,
while favoring feather moss species (Turetsky et
al. 2010). The low bulk density and susceptibility
of feather mosses to drying could increase
wildfire and permafrost degradation (Johnstone
et al. 2010a). In addition, depth of post-fire
organic layers acts as a threshold for deciduous
germination potential (Johnstone et al. 2010a). As
wildfire severity increases, we expect the depth
of the soil organic layer and permafrost to
decrease, creating a landscape susceptible to
large changes in successional trajectories.

3. Changes in biota.—Climate change effects on
vegetation growth and composition will have
variable effects on wildlife species in the Interior.
Predicted increases in wildfires (Kasischke et al.
2006) will increase the recruitment of deciduous
trees from seed on severely burned sites (John-
stone et al. 2010b), producing benefits to mam-
malian herbivores and secondary benefits to
numerous bird species. However, most moose
(Alces alces) populations in the Interior are
controlled by predation (Boertje et al. 2010) and
are thus unlikely to increase on account of more
abundant forage alone. For moose, a transition
from a largely coniferous landscape to one
dominated by deciduous trees is not a long-term
benefit unless disturbance is frequent and wide-
spread enough to maintain a large component of
young forest. Rather, the relative strengths
exerted by changing summer versus winter
conditions are likely to greatly influence the
population-level responses of numerous wildlife
species that stay active year-round. Moreover,
several wildlife species (e.g., red squirrels, spruce
grouse, cavity-nesting species, caribou) show
distinct preferences for forest types that are
predicted to decrease greatly (Pastor et al. 1996,
Rupp et al. 2006).

Adaptations of wildlife species in the Interior
are closely governed by the strong seasonality of
the environment, both in terms of climate and

resource availability. The observed temporal
shifts in snow accumulation and melt are likely
to have immediate effects on species whose
change of pelt color is tied to photoperiod (e.g.,
ptarmigan, the smaller mustelids, snowshoe
hares). Shallow or dense snow or mid-winter
icing could reduce the survival of small mam-
mals and gallinaceous birds that burrow into
low-density snow for thermoregulation during
extreme cold. Although some species are buff-
ered by changes in winter conditions per se (e.g.,
hibernating sciurids, bears, beavers), most spe-
cies are likely to benefit, at least temporarily,
from a longer growing season and greater
primary productivity.

In the Interior-boreal forest, there is a strong
coupling of spring temperatures with ice break-
up and budburst of deciduous trees. The date of
first frost in autumn is later and spring start is
earlier, increasing the growing season length by
.30 days over the past century (Wendler and
Shulski 2009). Temperature-dependent phenolog-
ical events are likely to occur earlier with warmer
springs. Earlier ice-out and warmer summer
water temperatures can lead to higher zooplank-
ton densities and increased growth of juvenile
salmon in lakes (Schindler et al. 2005). Spring
warming may enhance carbon uptake by Interi-
or-boreal forests, but this may vary by forest
type, as net carbon uptake increased by 40% at a
deciduous stand and only 9% at a black spruce
stand during a warm growing season (Welp et al.
2007).

Because of the association between warming
temperatures and increasing drought, most tree
species in the Interior exhibit negative growth
responses to warming (Juday et al. 2005,
McGuire et al. 2010, Beck et al. 2011), a pattern
that is consistent with declines in greenness
detected by remote sensing since 1990 (Goetz et
al. 2005, Lloyd and Bunn 2007, Verbyla 2008).
Dendrochronological, population-level, and ex-
perimental rainfall exclusion studies show that
individual white spruce trees exhibit a spectrum
of growth responses to warming and rainfall,
ranging from positive to negative; however,
negative growth responses to increased temper-
atures predominate (McGuire et al. 2010). Even
in cool environments such as at treeline, white
spruce are susceptible to drought-stress (Sullivan
and Sveinbjörnsson 2011), and a large proportion
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of trees exhibited decreased growth in response
to climate warming over the last 50 years
(Wilmking et al. 2004).

The recent increase of alder dieback and
mortality in Interior Alaska (Table 2) has been
linked to both the direct and indirect effects of
climate change. During the 1990s, thinleaf alder
(Alnus incana subsp. tenuifolia) expanded in both
old- and young-successional stands along the
Tanana River (Hollingsworth et al. 2010, Nossov
et al. 2011). However, in the last decade a large
increase in alder dieback and mortality has been
attributed to the canker-causing fungus Valsa
melanodiscus (anamorph Cytospora umbrina)
(Lamb and Winton 2010). Although little is
known about the cyclic dynamics of canker
infection, the increased presence of alder canker
in the last decade is likely related to alder’s
susceptibility to canker in drought years (Ruess
et al. 2009). In combination with the sensitivity of
alder to temperature, precipitation, and river-
level (Nossov et al. 2010), alder growth and
abundance may decline rapidly in the future. The
reductions in alder growth and nitrogen fixation
associated with alder canker are ecologically
important, as a result of alder’s role in nitrogen
accumulation during floodplain succession (Van
Cleve et al. 1971, Ruess et al. 2006, 2009). Green
alder (Alnus crispa) in uplands also interacts with
drought-mediated diseases (Mulder et al. 2008),
which has important implications for post-fire
nitrogen dynamics (Anderson et al. 2004, Mitch-
ell and Ruess 2009).

Table 2 summarizes the damage and ecological
implications of climate changes on insects and
diseases significantly impacting Interior-boreal
forests. Several invasive plant species invade
recently burned areas in the Interior-boreal forest
(Table 3; Villano and Mulder 2008, Cortés-Burns
et al. 2008); therefore, invasive plants may
increase in areal extent with the projected
increase in the frequency and severity of wildfire
in the Interior by facilitating the spread of non-
native plants into areas not adjacent to roads
(Villano and Mulder 2008).

Southcentral-boreal forest.—
1. Changes in environment.—Despite differenc-

es in climate between Southcentral- and Interior-
boreal forests, increasing temperatures are giving
rise to similar trends. For example, Southcentral-
boreal forest lakes and wetlands are exhibiting a

drying trend, consistent with more extensive
observations in the Interior-boreal forest (see
Interior-boreal forest: 1. Changes in environment)
and the Kenai lowlands (see Kenai-boreal forest: 1.
Changes in environment) (Riordan et al. 2006).
However, the Southcentral region experiences
warmer winters with greater snowfall and cooler
summers with greater rainfall than the Interior
and as a consequence growth of dominant tree
species, such as white spruce, tends to be greater
(Sveinbjörnsson et al. 2010). Although there is
some evidence of water limitation on south-
facing aspects near treeline (Dial et al. 2007),
drought stress is generally less common in the
Southcentral. The direct effects of rising temper-
atures could potentially lead to greater tree
growth, provided that water availability remains
sufficient; however, the indirect effects on water
and nutrient availability will likely determine the
future productivity of trees in the Southcentral.
Soil carbon sequestration and release are also
likely to be driven by the indirect effects of rising
temperatures such as snowpack depth. Recent
work demonstrates that belowground respiration
in Southcentral-boreal forests increases strongly
with soil temperature and is largely unrestricted
by soil water availability over its current range of
variability (Sullivan et al. 2010). During the
winter months, ecosystems that maintain rela-
tively deep snowpacks lose proportionately more
carbon than those with shallow snowpacks
(Sullivan et al. 2010). If the winter snowpack is
retained and summer water availability remains
sufficient, warming temperatures will lead to
increased soil respiration.

2. Changes in succession.—Insects are signifi-
cantly impacting forests in the Southcentral-
boreal (Table 2), changing succession through
direct impacts on vegetation and associated shifts
in the frequency and severity of wildfires (Berg et
al. 2006). In recent decades, warmer tempera-
tures contributed to the spruce beetle outbreaks
in the Southcentral- and Kenai-boreal forests
(Werner 1996) in part due to a reduction of the
beetle life cycle from 2 years to 1 year (Berg et al.
2006, Werner et al. 2006). This has led to white
spruce and Lutz spruce mortality throughout 1.2
million ha between 1990–2000 (Werner 1996,
Werner et al. 2006). In some watersheds of the
Copper River Basin, spruce bark beetles have
killed nearly every living mature white spruce
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Table 2. Insects (native and non-native) and diseases in Alaska’s forest regions, and associated damage and

ecological implications of changes in climate.

Common name Latin name Hosts Region
Damage and ecological

implications Source

Native insects
Spruce budworm Choristoneura

fumiferana
White, Sitka and

Lutz spruce
IB, SB Reduces tree growth and density;

life cycle events affected by
temperature; outbreaks in the
late-1990s and mid-1980s
attributed to warming that
increased the rate of larval
development; projected
increases in temperature will
likely increase the occurrence
and extent of outbreaks

1, 2, 3, 4, 5

Spruce beetle Dendroctonus
rufipennis

White, Sitka and
Lutz spruce

SB, KB See Results: Types of change in
Alaskan forests: Southcentral-
boreal forest and Kenai-boreal
forest: 2. Changes in succession

Aspen leaf miner Phyllocnistis
populiella

Aspen IB Prolonged outbreak since 2003;
conspicuous mines reduce
photosynthetic area and reduce
tree growth (especially during
drought); should drought
become the prevailing
condition this insect could
cause large-scale landscape
change through its effects on
tree growth and mortality

5, 6, 7

Non-native insects
Green alder sawfly Monsoma

pulveratum
Thinleaf alder IB, SB, KB Native of Europe and North

Africa; significantly defoliates
alder; coupled with extensive
dieback and mortality from
alder canker [see Types of
Change in Alaskan Forests:
Interior-boreal forest—Changes in
biota], riparian areas that are
dependent on nitrogen fixed
by alder may be threatened

8

Woolly alder sawfly Eriocampa ovata Thinleaf alder SB, KB Native of Europe; damage and
implications are the same as
for green alder sawfly

9

Diseases
Hemlock dwarf
mistletoe

Arceuthobium
tsugense

Western hemlock CT Parasitic higher plant causing
growth loss and tree mortality;
climate currently limits the
reproduction and dispersal of
the parasite; longer growing
seasons and reduced snow will
favor both the host and
parasite; competitive
advantages offered by climate
changes will likely be
mitigated by the disease

10, 11

Alder canker Valsa
melanodiscus

Thinleaf alder IB See Results: Types of Change in
Alaskan Forests: Interior-boreal
forest: 3. Changes in biota

Noninfectious diseases
Yellow-cedar decline Yellow-cedar CT See Results: Types of Change in

Alaskan Forests: Coastal-
temperate forest: 2. Changes in
biota

Notes: Abbreviations are: IB, Interior-boreal forest; SB, Southcentral-boreal forest; KB, Kenai-boreal forest; and CT, Coastal-
temperate forest. Sources are: 1, Swaine (1928); 2, Werner (1994); 3, Han et al. (2000); 4, Gray (2008); 5, http://agdc.usgs.gov/
data/projects/fhm/; 6, Krishnan et al. (2006); 7, Wagner et al. (2008); 8, Kruse et al. (2010); 9, Lamb and Wurtz (2009); 10, Hennon
et al. (2011); 11, Muir and Hennon (2007).
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Table 3. Invasive plant species in Alaska’s forest regions and ecological implications expected to increase with

projected changes in climate.

Invasive plant Latin name Region Ecological implication Source

Garlic mustard Alliaria petiolata CT Invades urban forest understory; could
eliminate native species through
competition and/or allelopathy

1, 2, 3

Siberian peashrub Caragana arborescens IB, SB Spreads aggressively on burned soil
adjacent to roads; has spread into
undisturbed forests away from
ornamental plantings

4, 5, 6

Narrowleaf hawksbeard Crepis tectorum IB Spreads aggressively on burned soil
adjacent to roads; invades lightly to
moderately burned forest soils

6

Knotweed complex Fallopia spp. CT Found along roadsides, stream banks,
and beach meadows; reduces nutrient
quality of litter input to aquatic
habitats; could depress cover and
density of native species and change
forest structure and function of
riparian forests and aquatic habitats

3, 7

Orange hawkweed Hieracium aurantiacum SB, CT Spreads vegetatively and by seed; forms
monospecific stands and displaces
native vegetation; currently spreading
into meadows and open areas where
it has escaped cultivation

4, 8

Narrowleaf hawkweed Hieracium umbulatum IB Spreads aggressively on burned soil
adjacent to roads

6

Purple loosestrife Lythrum salicaria SB Widely planted as an ornamental; forms
monospecific stands; could displace
native vegetation in wetlands

9

White sweetclover Melilotus alba IB, SB, CT Spreads aggressively; invades heavily
burned areas; decreases survival and
pollination of native plants; alters
primary succession on glacial
floodplains by modifying nitrogen
status

6, 10, 11, 12

Reed canarygrass Phalaris arundinacea KB, CT Planted along forestry roads; invades
wetlands and stream banks; out-
competes native vegetation; limits
riparian tree regeneration; spread
could alter riparian forest
regeneration and salmon habitat

3, 9, 13, 14

European bird cherry Prunus padus SB Escaped ornamental plantings;
replacing native trees in riparian
forests; foliage supports lower
biomass and taxa richness than native
species

9, 15, 16

European mountain ash Sorbus aucuparia CT Escaped from ornamental plantings;
now a dominant species of coastal
rainforest plant communities

17, 18

Bird vetch Viccia cracca IB, SB Spreads aggressively on burned soil
adjacent to roads; invades aspen and
south-facing bluff communities; could
change forest structure through
competition and/or altered soil
nitrogen

6, 19

Notes: Abbreviations are: IB, Interior-boreal forest; SB, Southcentral-boreal forest; KB, Kenai-boreal forest; and CT, Coastal-
temperate forest. Sources are: 1, Meekins and McCarthy (1999); 2, Prati and Bossdorf (2004); 3, Lamb and Shepard (2007); 4,
Lapina and Carlson (2004); 5, Viereck and Little (2007); 6, Cortés-Burns et al. (2008); 7, Urgenson et al. (2009); 8, IWAC (2006); 9,
Carlson et al. (2008); 10, Conn et al. (2008); 11, Spellman (2008); 12, Villano and Mulder (2008); 13, Lavergne and Molfsky (2004);
14, Spellman (2009); 15, Cortés-Burns and Flagstad (2010); 16, Roon et al. (2010); 17, Dickinson and Campbell (1991); 18, Rapp
(2006); 19, Conn et al. (2007).
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tree (P. F. Sullivan, personal communication).
Although the outbreak is within the historic
geographic range, the outbreak during the 1990s
exhibits greater spatio-temporal synchrony (i.e.,
more sites record high-severity infestations) than
at any other time in the last ;250 years (Sherriff
et al. 2011). The mortality of mature white spruce
in beetle-killed areas of the Southcentral-boreal
has impacted succession by reducing the struc-
tural complexity of stands to earlier successional
stages dominated by a more homogeneous
overstory composition (Allen et al. 2006).

In contrast to the spruce beetle outbreak in the
Kenai-boreal where the size and density of
spruce regeneration were reduced by competi-
tion from bluejoint grass (Calamagrostis canaden-
sis) and fireweed (Chamerion angustifolium) (see
Kenai-boreal forest: 2. Changes in succession), spruce
regeneration in the Southcentral-boreal appears
to be reduced by the low soil temperatures
associated with the abundance of moss cover in
the forest understory in this region (Allen et al.
2006). Spruce regeneration could be increased in
this region by applying high-intensity prescribed
burning (Goodman and Hungate 2006), which
reduces the moss layer thickness, resulting in soil
temperatures that are favorable for spruce
regeneration (Allen et al. 2006).

3. Changes in biota.—Changes in vegetation
composition and productivity created by climate
changes could affect wildlife reproduction. For
example, moose have exhibited greater repro-
ductive success in Denali National Park and
Preserve than in the Nelchina Basin, due to
nutritional differences in forage (McArt et al.
2009). Forage quality (e.g., content of crude
protein, indigestible fiber) is likely to be sensitive
to climate changes, and changes in these factors
can affect growth and fecundity of Alaskan
ungulates (Lenart et al. 2002, McArt et al. 2009).

Changing seasonality will be especially diffi-
cult for wildlife species that initiate life-history
events based on non-climatic cues (e.g., photo-
period), as such changes ultimately create ‘cli-
mate-phenology mismatches’ (Stenseth and
Mysterud 2002). For example, caribou herds that
utilize forests in the Southcentral-boreal are in
decline. Around the world, caribou and reindeer
(both Rangifer tarandus) herds are declining
synchronously, coincident with increasing tem-
peratures and precipitation. In turn, these cli-

matic trends, in combination with increased
anthropogenic landscape change, create changes
in phenology, spatio-temporal changes in species
overlap, and higher frequencies of extreme-
weather events (Vors and Boyce 2009). Another
concern for wildlife species in this and other
forest regions is the increased frequency of
freeze-thaw events during winter, which make
low-lying vegetation effectively inaccessible to
ungulates and other herbivores (Morrison and
Hik 2007).

The majority of goods are shipped to Alaska
via ports in the Southcentral region, thus invasive
plant species (Table 3) are an important biophys-
ical factor in these forests. As the frequency and
severity of wildfire on the landscape is projected
to increase in this region with a warming climate,
this can increase the numerous invasive plant
species known to establish on recently burned
sites (Table 3).

Kenai-boreal forest.—
1. Changes in environment.—The Kenai-boreal

region is generally considered to be permafrost-
free in the lowlands, but isolated permafrost does
exist (Hopkins et al. 1955). This permafrost is
typically overlain by an active layer .2 m (Berg
2009) and underlies small islands of black spruce
forest within a larger peatland complex. These
permafrost pockets occupy a very small fraction
of the landscape and might be expected to follow
similar trajectories as described for the Interior-
boreal forest through changes in the environment
and potential interactions with wildfire (see
Interior-boreal forest: 1. Changes in environment).

In the Kenai lowlands, evidence from historic
aerial photography and dendrochronology dem-
onstrate that a significant number of water
bodies experienced shrinkage and subsequent
invasion of woody vegetation (largely Betula nana
and P. mariana) since the 1950s (Klein et al. 2005).
Additional evidence suggests the process of
woody vegetation invasion has recently acceler-
ated, with a 56% decline in water balance since
1968, and a subsequent increase in woody
invasion of lowland wetlands in the Kenai-boreal
forest region (Berg et al. 2009). Recent work
along a hydrologic gradient in the Kenai low-
lands demonstrated that the combined effects of
wetland drying and vegetation succession have
turned wetlands from strong carbon sinks to
weak carbon sources, particularly in years with
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warm and dry summers (Ives et al., unpublished
manuscript).

2. Changes in succession.—Insect outbreaks in
the Kenai-boreal region are impacting forest
succession (Table 2). Warm temperatures were
an important element of the spruce beetle
outbreaks (1971–1996) in the Kenai-boreal forest
(Berg et al. 2006) (see Southcentral-boreal forest: 2.
Changes in succession). This massive outbreak
removed all suitable host trees from the land-
scape allowing little chance of a repeat for many
decades. However, with projected warming,
endemic levels of spruce beetles will likely be
high enough to perennially thin the forests as
trees reach susceptible size (Berg et al. 2006). The
outbreaks in the Kenai have impacted post-
disturbance succession by reducing both plant
diversity and the size and density of spruce, as a
result of competition from bluejoint grass and
fireweed (Holsten et al. 1995, Werner et al. 2006).

Changes in vegetation composition associated
with the spruce bark beetle outbreak in the
Kenai-boreal vary with the geographic location
(Boucher and Mead 2006). Forests in the south-
ern Kenai Lowland demonstrated the greatest
change in composition, with high white spruce
mortality (87% reduction in basal area) and an
increase in the percent cover of early successional
species. In contrast, forests in the northern Kenai
Lowland exhibited low levels of spruce mortality
(28% reduction in basal area), as white spruce in
this area was a secondary canopy species to
paper birch, black spruce, and aspen (Boucher
and Mead 2006).

Until recently, wildfire in the Kenai-boreal was
primarily restricted to poorly drained lowland
areas of black spruce, where the average fire
return interval was approximately 90 years (De
Volder 1999). Black spruce stands are the
dominant vegetation type in the northwest ice-
free areas of the region and are currently
expanding in the area due to encroachment into
wetlands (Berg et al. 2009). Wildfire is anticipat-
ed to increase in this region with the increase in
black spruce area, combined with the increased
fuel load resulting from beetle kill in white, Lutz
and Sitka spruce and projected increases in
summer temperature (Berg and Anderson 2006,
Berg et al. 2009). As a consequence, earlier
successional stages are anticipated to become
more prevalent in this region (Berg et al. 2006).

3. Changes in biota.—Fish and wildlife species
within the Kenai-boreal forest will be affected by
climate-related changes in the composition and
structure of forests. Modeling associated with the
ALCES (Alaska Landscape Cumulative Effects
Model; www.kenaiwatershed.org/alces.html)
project in the Kenai National Wildlife Refuge
suggests that the distribution of salmonids,
which constitute an important resource for
people throughout Alaska’s coastal areas (see
Coastal-temperate forest: 3. Changes in biota and
Discussion: Regional societal consequences: Coastal-
temperate forest), will likely be sensitive to rising
stream temperatures in the Kenai-boreal forest.
Additionally, many indirect effects of climate
changes on wildlife species in the Kenai-boreal
appear to be a function of recent insect outbreaks.

Invasive species will likely increase in impor-
tance in the Kenai-boreal with projected climate
changes. Alder may become more susceptible to
damage caused by the green and woolly alder
sawflies (Table 2), as a result of the recent dieback
and mortality associated with alder canker (see
Interior-boreal forest: 3. Changes in biota). Invasive
plant species (Table 3) may also increase with the
confluence of increasing human population, wild-
fire potential following the spruce bark beetle
outbreaks and the increased likelihood of invasive
plants establishing in recently burned areas.

Coastal-temperate forest.—
1. Changes in environment.—The Coastal-tem-

perate forest exhibits two distinct watershed
types: glacial-fed watersheds and non-glacial
watersheds supplied by annual precipitation
(predominantly snowpack), with both varying
in seasonality of discharge, chemistry, and
temperature (Hood et al. 2009). Glacial-fed
watersheds have permanent ice fields and dis-
charge patterns closely tied to surface air
temperature and cloud cover (IPCC 2007). At
present, approximately 47% of the water dis-
charged into the Gulf of Alaska comes from
glaciers and ice fields (Neal et al. 2010). The loss
of glacial inputs and changes in the timing of
surface runoff associated with changes in the
snowpack and snow/rain ratios are expected to
impact stream habitats and the annual pattern of
carbon and nutrient inputs to the freshwater and
marine systems (Hood and Berner 2009, Hood et
al. 2009). In contrast, non-glacial watersheds
have discharge patterns that are affected by both
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surface air temperature, and melting snow and
rainfall patterns (Edwards et al., in press). These
watersheds have peak discharge in the spring
during snow melt and during the fall rainy
season. Potential climate-associated changes will
shift non-glacial watersheds to rainfall-dominat-
ed discharge, and glacial-fed watersheds to
snowfall-driven discharge. These hydrological
changes have important consequences for fish
and wildlife habitat quality, distribution, and
access by altering the temporal balance of
freshwater discharge.

The high soil moisture conditions of Coastal-
temperate forests lead to the limitation of forest
productivity on sites and the accumulation of soil
organic material (Neiland 1971). Although
warmer temperatures promote greater decompo-
sition and associated forest growth (Davidson et
al. 2006), the impact of temperature increases
also depends on the soil moisture, and quality of
the organic material (Giardina and Ryan 2000,
Martin and Bolstad 2005, Davidson and Janssens
2006). Increasing temperatures must be associat-
ed with adequate soil moisture for tree roots to
access available nutrients (Litton et al. 2007).
However, the quality of the organic matter
mitigates the effects of temperature increases, as
recalcitrant compounds may not easily break
down, leading to a negative feedback to forest
growth (Heimann and Reichstein 2008).

2. Changes in succession.—The areal extent of
sites undergoing primary succession in the
Coastal-temperate forest region has changed
with the accelerated rate of glacier recession
observed since the mid 19th century following
advance during the Little Ice Age. Although
glacial advances were observed over the latter
part of the 20th century (Pelto and Miller 1990,
Hall et al. 1995, Miller et al. 2003), the termini of
most major glaciers extending from Glacier Bay
and the Juneau ice field have receded several
kilometers since 1750 (Motyka et al. 2002, Larsen
et al. 2005). The vegetation composition follow-
ing the exposure of glacial till and outwash is
related to the conditions present at the onset of
colonization (Fastie 1995), which ultimately
impacts forest succession.

Climate change may indirectly alter the struc-
ture and composition of Coastal-temperate for-
ests via its effects on the interaction between
wind disturbances and stem decay fungi. Wind-

storms are a major disturbance force that shapes
the age, structure, and function of forests in this
region (Nowacki and Kramer 1998). Widespread,
stand-replacing events occur at 100-year inter-
vals, with exposure to the prevailing southeast
storms increasing the likelihood of catastrophic
wind disturbance. Although the frequency and
intensity of windstorms are difficult to predict,
wind-protected landscapes support old-growth
stands with multi-aged structures where stem
decays and other disease agents produce fine-
scale disturbances involving the death of indi-
vidual or small groups of trees (Hennon 1995,
Hennon and McClellan 2003). Currently, stem-
decay fungi consume an estimated 31% of the
volume of live trees (Farr et al. 1976). Projected
increases in temperature and growing-season
length will increase growth rates of these fungi,
which combined with the susceptibility of de-
cayed trees to wind-breakage, could increase the
proportion of early-successional tree species.

3. Changes in biota.—Climate-change effects on
wildlife in Coastal-temperate forests will be
driven primarily by changes in snowpack and
growing season length. Snow depth and dura-
tion exert major effects on habitat for animals,
burying forage for herbivores such as black-
tailed deer (Odocoileus hemionus), moose, and
mountain goat (Oreamnos americanus), and pro-
viding protective cover for subnivean mammals
such as the Northwestern deermouse (Peromyscus
keeni ), long-tailed vole (Microtus longicaudus),
and common shrew (Sorex cinereus), and insula-
tion to denning black and brown bears (Ursus
americanus and U. arctos). Longer growing sea-
sons could benefit wildlife species such as black-
tailed deer by increasing the total area of snow-
free winter range, increasing winter energy
availability, decreasing winter energy expendi-
tures, and increasing the availability of high
quality foods in spring at a critical time of the
annual nutritional cycle (Parker et al. 1999),
thereby decreasing winter mortality. Increasing
populations of deer, on the other hand, are likely
to exert significant browsing pressure on the
vegetation of their habitat, changing vegetation
composition and structure (Hanley 1987). Deer,
vegetation, and wolves (Canis lupus) are likely to
interact in complex patterns in relation to a
changing climate, principally mediated through
snow regime; populations may grow during
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successive mild winters but crash more severely
during periodic cold winters.

The sharp elevational gradients characteristic
of the Coastal-temperate forest influence the
effect of climate changes on fish and wildlife
species. Warmer, wetter winters may mean less
snow at low-elevations, but may translate into
more snow at higher elevations. High-elevation
snowpack will affect some animals directly, such
as mountain goats (Oreamnos americanus). How-
ever, it will affect a wide range of low-elevation
animals indirectly through effects on stream-flow
and the production and availability of salmon
(Oncorhynchus gorbuscha, O. keta, O. kisutch, O.
nerka, and O. tshawytscha), which are a major
summer food resource for a diverse group of
mammals, birds, and insects (Gende et al. 2002).
Salmon play a critical role in body size, popula-
tion density, and productivity of brown bear
(Ursus americanus; Hilderbrand et al. 1999),
nesting success and productivity of bald eagle
(Haliaeetus leucocephalus; Hansen 1987), timing
and success of reproduction in mink (Ben-David
1997, Ben-David et al. 1997a), and body condition
and survival of American marten (Martes amer-
icana; Ben-David et al. 1997b). Due to the complex
life cycles of salmon, the difficulty of establishing
quantitative relationships between the support-
ing services of river systems and salmon returns
has been noted (Chittenden et al. 2009). In the
Coastal-temperate forest, as in other regions, the
responses of anadromous salmonids to climate
change differs among fish species and depends
on their life cycle in fresh water and at sea
(Bryant 2009).

Earlier snowmelt and later freeze-up (Juday et
al. 2005) resulting from climate change have
important implications for yellow-cedar decline.
The culturally and economically important yel-
low-cedar has been dying on over 200, 000 ha of
pristine forests for the past 100 years in this
region (Hennon et al. 2006). The onset of decline
in 1880 corresponds with the end of the Little Ice
Age (Hennon et al. 1990). The cause is complex
and includes a number of cascading landscape,
site, and stand factors (Hennon et al. 2008) that
interact with the physiological susceptibility of
yellow-cedar’s fine roots to spring freezing injury
(Schaberg et al. 2008). Although yellow-cedar
trees are tolerant of cold temperatures in fall and
early winter (Schaberg et al. 2005), its roots are

dehardened in late winter and early spring, at
which time soil temperatures below �58C are
lethal (Schaberg et al. 2008). When snow is
present, this temperature threshold is not crossed
(Hennon et al. 2010), due to the insulative effect
of snow. Warmer winters and reduced snow-
pack, but persistent early spring freezing events
throughout the 1900s were necessary conditions
for yellow-cedar decline (Beier et al. 2008). Thus,
a trend of continued yellow-cedar decline is
expected with projected warming temperatures.

Diseases and invasive plant species are pro-
jected to become important biophysical factors in
Coastal-temperate forests. Table 2 summarizes
the damage and ecological implications resulting
from hemlock dwarf mistletoe and yellow-cedar
decline in this forest region. Additionally, several
invasive plant species (Table 3) in this region
could reduce the growth and density of native
species via competition and alter forest structure
and function, and salmon habitat.

Projections of changes in key climate and
climate-related abiotic characteristics

Climate changes are projected to continue
throughout Alaskan forests. We present projec-
tions of key climate and climate related abiotic
characteristics of the environment which control
ecosystem processes (Table 4). Although aquatic
systems may appear peripherally related to the
impact of climate changes on forest ecosystems,
we include sea level and length of ice-free season
for rivers and lakes in our climate projections
(Table 4), as three of our four forest regions have
an intimate relationship with the ocean and
streams (Fig. 1B).

In Alaska, increases in surface air temperature,
growing season length as a result of later autumn
freeze-up and shorter snow season, length of ice-
free rivers and lakes, and river and stream
temperatures are expected in Alaska’s forest
regions (Table 4). In the Interior-boreal, the area
of permafrost degradation is projected to in-
crease, and in the Coastal-temperate forest
region, glacial coverage is expected to continue
to decrease.

Summary of regional conceptual
framework diagrams

Although surface air temperature is the pre-
dominant climate driver in Alaskan forests (Fig.
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Table 4. Projected changes in key climate and climate-related abiotic characteristics of the environment which

control ecosystem processes in Alaska’s forest regions for 2050 and 2100.

Climate/ecosystem
variable

General change
expected

Specific change expected
and reference period Patterns of change Source

Temperature Increase 2050: þ2.58C 6 1.58C (IB);
þ2.08C 6 1.58C (SB, KB);
þ1.58C 6 18C (CT); 2100:
þ4.08C 6 2.08C (IB, SB,
KB); þ3.58C 6 1.58C (CT)

More pronounced in autumn-
winter

1, 2

Snow Increased rate of
snowfall in winter,
but shorter snow
season (nearly zero
snow in some areas
of CT)

2050: 10–25% (IB); Winter
snowfall (IB, SB, KB, CT);
2100: 20–50% (IB); Winter
snowfall (IB, SB, KB, CT)

Cold season snow will increase,
but increased percent of
precipitation in spring/fall will
be rain. Mean April temperature
above freezing in Fairbanks by
2050; mean October temperature
above freezing by 2100 (IB);
increased precipitation will fall
as rain. Mean monthly
temperatures above freezing for
March and November in
Anchorage by 2100 (SB);
increased precipitation will fall
as rain. Mean monthly
temperatures above freezing for
all months in Homer by 2100
(KB); snow still expected in
mountains, but snowline will
occur at higher elevations. Mean
monthly temperatures above
freezing in Juneau for all months
by 2100 (CT)

2, 3

Length of ice-free
season for rivers
and lakes

Increase 2050: ;10 d (IB); 7–10 d (SB);
10–15 d (KB); 2100: ;20 d
(IB); 14–21 d (SB); variable,
with some areas freezing
only sporadically (KB, CT)

Continuation of recent changes
(IB); large increase near coasts
where sea ice retreats, open
water season lengthens (SB, KB);
mostly ice-free at lower and mid
elevations by 2100 (CT)

1, 2

River and stream
temperatures

Increase 2050: 1–38C (IB, SB, KB, CT);
2100: 2–48C (IB, SB, KB,
CT)

Consistent with earlier breakup
and higher temperatures (IB, SB,
KB, CT)

4

Growing season
length

Increase 2050: 10–20 d (IB, SB, CT);
;10 d (KB); 2100: 20–40 d
(IB, SB, CT); ;20 d (KB)

Continuation of recent changes
(IB); largest increase near coasts
(SB, KB, CT)

1, 2

Sea level Increase (SB, KB);
Uncertain due to
isostatic rebound
(CT)

2050: 8–61 cm (SB, KB); 2100:
18–183 cm (SB, KB)

Large uncertainties, especially at
the upper end of the range (SB,
KB); glacier melt may offset sea
level rise during this period (CT)

1

Permafrost Increased area of
permafrost
degradation (IB)

2100: Mean annual ground
temperature .08C at 2 m
(except isolated areas at
high elevation)

Permafrost degradation throughout
the region (IB); greatest changes
in mean annual ground
temperatures at 2 m depth by
2050 and 2100; increase in active
layer thickness by 2050 and 2100

2, 5

Glaciers and ice
caps

Continued shrinkage of
glaciers and ice caps
(CT)

2100: 0.026 6 0.007 m sea-
level equivalent

Continuation of volume losses
(CT)

6

Notes: Abbreviations are: IB, Interior-boreal forest; SB, Southcentral-boreal forest; KB, Kenai-boreal forest; and CT, Coastal-
temperate forest. Projected changes are for the mid-range greenhouse emission scenario (A1B). Sources are: 1, Field and
Mortsch (2007); 2, SNAP (see Methods: Climate and abiotic projections for Alaska forest regions); 3, AMAP (in press); 4, Kyle and
Brabets (2001); 5, Marchenko et al. (2008); 6, Radi�c and Hock (2011).
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3), the response of the biophysical factors
impacted by warming differs for each forest
region. The regional diagrams provide a frame-
work for assessing current and future conse-
quences of a changing climate, and emphasize
regional differences in biophysical factors and
point to linkages that may exist but have not
been studied in a particular region.

The Interior-boreal has the richest research
history of the four forest regions and as a result,
has a more detailed summary of climate-change
effects (Fig. 3A). Forecasted changes in future
climate may affect the stability of boreal forest
ecosystems directly, by warming permafrost in
undisturbed ecosystems, and indirectly, through
an increase in fire size and severity (Kasischke
and Turetsky 2006). While permafrost thaw may
occur directly as a result of changes in regional
and global climate, it is particularly prominent
following disturbance to the organic soil layer by
wildfire.

The Southcentral-boreal is the least studied of
the forest regions, and as a consequence, is the
region where we have the greatest gaps in our
understanding of the interactions governing the
types of change. Continued warming could result
in more extensive and more frequent spruce
beetle outbreaks than have been observed in the
Copper River area where larger white spruce are
present (Snyder et al. 2007). With the primary
entry of goods shipped to Alaska occurring via
ports in this region, the increase in the potential
for wildfire on the landscape following the
spruce beetle outbreaks and the occurrence of
invasive plant species in burned areas (Table 3),
we regard invasive species as an increasingly
important biophysical factor (Fig. 3B).

Although the Kenai-boreal contains only a
small fraction of Alaska’s forests, this region may
be particularly sensitive to climate changes, as all
of the biophysical factors play significant roles on
the landscape (Fig. 3C). The interaction of insect
disturbance with wildfire potential is particularly
important in this region given the confluence of
human population growth and changing bio-
physical factors.

The Coastal-temperate forest region is topo-
graphically complex. Snow and ice is regarded as
the dominant biophysical factor (Fig. 3D), as
elevation and slope influences the form of
precipitation received and the accumulation

and distribution of soil moisture. Temperature
increases have impacted forests in this region via
changes in hydrology resulting from melting
glaciers and lower levels of snow precipitation.

DISCUSSION

Global implications and feedbacks
Climate-related changes in Alaskan forests

have the potential to influence the global climate
system through numerous feedbacks. Currently,
Alaskan forests provide climate regulation as an
ecosystem service, but we do not yet understand
whether the net effect of the climate feedbacks
would enhance or mitigate warming (Euskirchen
et al. 2010). The largest and most rapid climate
feedbacks are positive feedbacks to warming
associated with earlier snowmelt in Alaska
(Euskirchen et al. 2009b, 2010). The subsequent
slower changes caused by changes in trace gas
fluxes, permafrost, fire regimes, and vegetation
constitute a complex mixture of positive and
negative feedbacks, whose net effects are uncer-
tain.

Climate feedbacks associated with carbon
dioxide (CO2) and methane (CH4) releases from
microbial decomposition related to permafrost
thaw are likely substantial and could potentially
impact the global climate system (Zhuang et al.
2007). Future changes in ecosystem carbon
storage in lowlands are likely to be a balance of
increased soil carbon storage at the surface that
may, in part, offset deep carbon losses from
newly thawed permafrost. In addition, extremely
warm, dry years with more extensive or severe
wildfires are also years when more permafrost
thaws than normal. This combination of thawing
and wildfires may expose and rapidly transfer
large amounts of carbon to the atmosphere,
exacerbating this positive climate feedback.
Permafrost thaw can also result in forests being
replaced by peatlands, bogs, and fens (Jorgenson
et al. 2001) that may accumulate more carbon,
but emit more CH4 compared to the forest.

In areas where forests remain, the CO2

released from permafrost thaw and resulting
positive climate feedback is likely to be only
slightly compensated for by the negative climate
feedback associated with an increased growing
season and greater CO2 uptake by these forests
(Schuur et al. 2008). Likewise, some research in
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Alaska demonstrates that warmer conditions and
longer growing seasons favor treeline advance,
either in latitude or elevation (e.g., Lloyd et al.
2002). This replacement of tundra with boreal
forest may result in greater carbon uptake during
the growing season, acting as a negative feed-
back to climate. However, forest ecosystems lose
more carbon during winter than adjacent tundra
(Sullivan 2010) and advance of the treeline will
likely reduce albedo, causing greater heat ab-
sorption, and a stronger positive feedback to
warming (Beringer et al. 2005). Nevertheless,
latitudinal treeline advance in Alaska may
proceed quite slowly due to limitations related
to seed dispersal and establishment, and physical
barriers (Rupp et al. 2001). Consequently, we
cannot rely on the negative climate feedback
related to potential future increases in vegetation
biomass of Alaskan forests to counteract the
potentially large positive feedback to climate due
to releases of carbon from permafrost thaw.

Another negative climate feedback may occur
due to the increase in deciduous stands across
the landscape under changes in wildfire frequen-
cy, severity and area. This increase in distribution
leads to an overall increase in albedo and a
decrease in heating relative to coniferous stands.
This negative feedback to atmospheric heating
(Randerson et al. 2006) has been shown to be
larger than the positive feedback from fire
emitted greenhouse gases over the course of an
80-year fire cycle in boreal Alaska (Randerson et
al. 2006). However, the strength of this negative
feedback may be reduced if late-season burning
increases, resulting in greater fire C emissions
(Turetsky et al. 2011). It may also be reduced if
lightly burned stands with a greater proportion
of spruce dominate the landscape (Barrett et al.
2011, Shenoy et al. 2011). Another study shows
that taking into account changes in successional
dynamics associated with a change in the future
fire regime (2003–2100) results in a decrease in
atmospheric heating due to an increase in early
successional stands with a greater albedo in the
boreal forests of Alaska and western Canada
(Euskirchen et al. 2009b). These results underline
a generally greater significance of changes in
albedo on climate feedbacks in Alaska than those
associated with changes in trace gases and
biogeochemistry, although, as discussed above,
the thawing of permafrost may, in the future

represent a strong positive feedback to warming.
Smoke and haze aerosols from boreal forest

fires in Alaska may also feedback to the climate
in other regions. While the impacts of aerosols on
climate are not well understood, it is generally
accepted that smoke cools the surface, acting as a
negative feedback to climate. During the summer
of 2004, large quantities of smoke from wildfires
in Alaska and northwestern Canada were dis-
persed throughout the Northern Hemisphere.
This smoke had a cooling effect in regions
outside of boreal Alaska, although this effect
was partially dampened by the absorption of
solar radiation by black carbon fire aerosols, and
by the greenhouse gas emissions from the fires
(Pfister et al. 2008, Stone et al. 2008).

Regional societal consequences
Our conceptual framework recognizes the

strong interaction between the biophysical and
social subsystems (Fig. 2). While we acknowl-
edge the complexity and dynamic interactions
within the social subsystem, the main focus of
this paper is on the biophysical subsystem. The
details of the interactions and feedbacks within
the social subsystem are therefore not elaborated
here. Alaskan forests will be impacted by land-
use, resource management, and evolving forest
policy. By 2030, the overall state population is
expected to increase by 25% relative to 2006, with
the greatest increase anticipated in Anchorage
(Southcentral-boreal forest), and a slight decrease
in the Coastal-temperate forest region. Migration
from rural communities to urban centers is the
most significant component of population
change and is highly variable with changing
economic opportunity (Huntsinger et al. 2007).
These population changes will likely lead to both
an increase in the wildland-urban interface (and
associated increased wildfire risk in relevant
regions), and an increase in demand for timber
and non-timber forest products. We expect
climate-related changes in Alaskan forests will
continue to have consequences for people,
economies and livelihoods through changing
ecosystem services, changing forest structure
and composition and related cascading events.
Here we synthesize societal consequences of
changes in the key biophysical factors for each
forest region.

Interior-boreal forest.—Changes in environment,
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ecosystems, and subsistence resources have
important implications for rural communities
throughout the state, where indigenous people
have historically led a subsistence lifestyle as
hunters and gatherers (Chapin et al. 2006b,
Kofinas et al. 2010). The three most prominent
social consequences of climate change in Interior-
boreal forests are related to changes in seasonal-
ity, permafrost thaw, and wildfire. In this region,
temperatures are warming most dramatically in
the winter, and growing season length has
increased. This poses safety hazards and chal-
lenges for winter travel on frozen rivers. Unpre-
dictable ice conditions increase risk and decrease
safety for winter travel. Increased evapotranspi-
ration and declining river discharge also reduce
opportunities for barge delivery of fuel and
increase the cost of living in remote villages
(Chapin et al. 2008, Fresco and Chapin 2009). The
ecological and hydrological changes related to
permafrost degradation will likely impact the
migration and distribution of subsistence and
recreational fishing and hunting species. In
addition, warming air and permafrost tempera-
tures have the potential to impact transportation,
water and sewer, and other public infrastructure
(Nelson et al. 2002, Larsen et al. 2008).

The frequency and severity of wildfire in the
Interior are expected to increase with climate
change and will likely result in increased fire
suppression activity near communities. This may
involve economic opportunities for both rural
communities and for Fairbanks as the regional
population hub with emergency fire fighting
crew deployment (Trainor 2006), equipment
rental, and other fire suppression activities.
However, increased severity and annual extent
of area burned will increase risk to life and
property, decrease hunting opportunities, and
likely increase both physical and mental health
effects from wildfire smoke (Chapin et al. 2008).
Increased wildfire in Alaska may also have
cascading repercussions for wildfire suppression
in other parts of the United States, as fire-fighting
resources are shared nation-wide (Trainor et al.
2009). Focus on structure protection rather than
fire suppression per se and adaptive land and
resource management that anticipates ecological
changes are two possibilities for adaptive re-
sponses in fire suppression and land manage-
ment. Potential exists for rural communities to

simultaneously decrease wildfire risk and in-
crease energy independence by utilizing hazard
fuels for heating and electrical power generation
(Chapin et al. 2008).

Southcentral-boreal and Kenai-boreal forests.—The
majority of Alaskan residents live in the South-
central- and Kenai-boreal forest regions. Spruce
bark beetle infestation in these regions has
increased wildfire risk and raised concern about
its consequences for recreation and aesthetic
values (Ross et al. 2001) and associated impacts
on humans (Berg and Anderson 2006). Flint
(2006) examined community perceptions regard-
ing the spruce beetle impact on selected social,
economic, and ecological parameters. This study
found a diverse array of perceived impacts and
risks across communities, which in some cases
varied with the stage of the outbreak near a
particular community. Concerns included imme-
diate risk to life and property as well as broader
concern about community and ecological well-
being (Flint 2006). In addition to increased risk of
wildfire, bark beetle mortality has implications
for management of federal lands, and additional
consequences may be experienced in the tourism
and recreation sectors.

The diverse landscape of the Southcentral- and
Kenai-boreal forests supports ecosystem services
that extend beyond the boundaries of these
regions. These include commercial endeavors
related to oil and gas production and transpor-
tation (largest), and commercial fishing, timber
harvesting, and tourism (fastest growing) (Kenai
Peninsula Borough Council 2011). Ecosystem
services also support non-commercial values
such as aesthetic, biological, cultural, economic,
future, historic, intrinsic, learning, life sustaining,
recreational, spiritual, subsistence, therapeutic,
and wilderness values (Alessa et al. 2008).
Climate changes will influence human-land use
choices and therefore also affect the forest
presence and successional trajectory. Agriculture
(via increased growing season and maximum
daily temperature) is anticipated to be favored by
temperature increases, especially in coastal areas
(Juday et al. 2005). Land use and permafrost
changes upstream are anticipated to impact the
timing and quality of surface water runoff (Juday
et al. 1997). Nutrient loads, sedimentation and
turbidity affects the ability of the freshwater,
near-shore, and off-shore aquatic ecosystems to

v www.esajournals.org 22 November 2011 v Volume 2(11) v Article 124

WOLKEN ET AL.



support a diversity and abundance of larval,
juvenile, and adult fish populations (Bryant et al.
2009). Salmonid populations in particular have
life history strategies such as timing of emer-
gence, run timing, and residence time in fresh-
water uniquely adapted to localized conditions.
The response of anadromous salmonids to
climate-driven changes depends upon their life
cycle in freshwater and will differ among species
(Bryant 2009).

Coastal-temperate forest.—Rapid glacial melt,
yellow-cedar decline and vulnerabilities to salm-
on and other important food resources, such as
deer (Brinkman et al. 2007) have been identified
as the most significant social consequences of
climate change in the Coastal-temperate forest
region. Climate variability influences snowpack,
and in turn, community energy availability to the
extent that hydropower is a prominent energy
source in many communities (REAP 2009;
Cherry et al., unpublished manuscript). Research
in other parts of the Pacific Northwest document
observed sensitivity of water resources, salmon,
and forests to climate variability as well as
continued consequences of projected climate
change requiring societal adaptation (Mote et
al. 2003). Salmon populations originating from
Coastal-temperate forests provide the foundation
for most Alaskan economies in this region, via
tourism, commercial fishing, processing stations,
and hatcheries. Climate change impacts on
salmon habitat, salmon associated species, water
abundance and seasonality, and the resulting
challenges for management, may therefore have
large repercussions for commercial, sport, sub-
sistence, and Native and local culture (C. Brown,
ADF&G, subsistence division, personal communi-
cation).

The decline in yellow-cedar reported in many
areas of the Coastal-temperate forest has both
market and non-market provisioning ecosystem
service impacts. Alaskan yellow-cedar is typical-
ly the highest valued commercial timber species
exported from the region (Robertson and Brooks
2001). This tree is also highly valued by Native
Alaskans for carving ceremonial and functional
items. Documented subsistence uses include fuel,
wood articles, clothing, baskets, bows, tea, and
medicine (Schroeder and Kookesh 1990, Pojar
and MacKinnon 1994).

Uncertainties, policy options and
future research

In addition to uncertainties inherent in climate
projections, there are uncertainties in determin-
ing how changes in climate will affect Alaskan
forests. There are numerous examples of these
uncertainties. First, whether the future fire
regime of the Southcentral-boreal will shift into
the frequent fire regime currently observed in the
Interior-boreal forest is unknown. The outcome
depends on whether precipitation, and particu-
larly summer precipitation, increases enough to
offset temperature increases. Second, the ability
to evaluate the role that stochastic disturbances
such as spruce beetles have played in changing
forests in the Southcentral- and Kenai-boreal in
recent decades, and the potential of future
outbreaks in the Interior-boreal is uncertain.
The occurrence of such disturbances suggests
predictions of future outbreaks should be made
cautiously (Berg et al. 2009, Klein et al. 2005).
Third, it is difficult to predict altered distribu-
tions of wildlife. The most fundamental manner
in which animals may be affected by climate
change is via altered species distributions, across
gradients of latitude, elevation, precipitation, or
temperature, often mediated by soil differences
(Post et al. 2009) and wildfire (Rupp et al. 2006).
However, the ability to predict altered spatial
distributions varies dramatically by species
(Poyry et al. 2008, Sekercioglu et al. 2008, Baselga
and Araujo 2009); this variability poses challeng-
es in developing and implementing blanket
policies that mitigate the effects of climate
changes on wildlife. Fourth, it is difficult to
quantify how widespread various reported insect
infestations were in the past. Records of insect
outbreaks in Alaska have been intermittent in
time and space. For example, spruce beetle
records date back only to 1920 (Holsten 1990),
and the spruce budworm has only been surveyed
in Alaska since the early 1950s (McCambridge
1954; Furniss, unpublished report). The accessibil-
ity to field sites in Alaska and specimen
collection also limits the examination of insect
population dynamics. Finally, increased use of a
transcontinental shipping route through the
Arctic Ocean and ocean- and road-based tourism
may affect invasive species (i.e., insects, diseases,
plants) expansion in unpredictable ways, result-
ing in a large delay between detection of exotic
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species and implementation of effective manage-
ment strategies.

Numerous opportunities exist to implement
policies that will mitigate the ecological and
societal impacts and consequences of climate
change (Chapin et al. 2004). The following
regional issues illustrate how state and federal
resource managers can plan for future conditions
and implement climate mitigation and adapta-
tion policies. First, post-fire plant communities
provide ideal moose habitat, but concomitantly
result in a loss of winter habitat for caribou. Both
moose and caribou are important food sources
for many Alaskan Native peoples, and subsis-
tence living is culturally important for many non-
Native Alaskan residents. Land-use and wildlife
policies could include guidelines for managing
wildfire in a manner that provides moose habitat,
yet preserves long-term winter habitat for cari-
bou. Second, the increased potential for invasive
species establishment, especially in the South-
central- and Kenai-boreal forests, suggests that
policies governing the import of goods shipped
to Alaska need to afford flexibility to land
managers to implement new prevention, detec-
tion and management strategies. Third, yellow-
cedar decline in the Coastal-temperate forest
region is most prevalent at low elevations. The
overall health and competitiveness of yellow-
cedar could be promoted in areas where it is not
declining to ensure that this culturally and
economically important tree species remains a
part of Alaskan forests.

Future research is required to address the gaps
in our knowledge of climate-related changes in
Alaskan forests. Continued detection and moni-
toring of invasive species is required in all forest
regions, in order to more effectively understand
the role of this biophysical factor in altering the
structure and function of Alaskan forests as the
climate changes. Research in the Interior-boreal
forest has been more extensive than in the other
regions, which is evident by comparing the
regional diagrams (Fig. 3A–D). In fact, we would
argue, as presented, the conceptual framework
for the Interior-boreal is the most complete,
based on our current state of knowledge.
Although the effects of wildfire and permafrost
on forests are well documented, interactions of
these biophysical factors on global carbon and
energy budgets and the associated consequences

for society are not fully understood. Additionally,
the degree to which recent changes in the fire
regime have altered forest composition in the
Interior-boreal is unknown (Barrett et al. 2011)
and requires further study. In contrast, one
defining feature of the Southcentral-boreal forest
is the lack of links between the biophysical
factors and types of change, which we attribute
to a lack of research in this region, rather than to
a lack of relationship. Hence, the greatest
research need in the Southcentral-boreal is to
initiate long-term monitoring of the mechanisms
underlying the structure and function of repre-
sentative mixed-species forest stands. Such re-
search and monitoring would enable assessment
of the current state of these forests and their
trajectory of change. The Kenai-boreal forest has
received greater research attention than the
Southcentral, but less than the Interior. Here, all
of the biophysical factors described in our
conceptual framework are currently altering the
structure and function of forest ecosystems.
These changes will likely be amplified by the
confluence of population growth and changing
biophysical factors in this region. We hypothesize
that, because this small region is experiencing
such a variety of biophysical factors, it could
potentially act as a ‘canary in the coal mine’ over
the next two decades, representing the Alaska
forest region where the greatest ecological
changes will occur in a relatively short period
of time. In addition, important issues such as
insect outbreaks, wildfire, land-surface drying,
and invasive species have often been addressed
separately. We suggest that the interactions
among these biophysical factors need to be more
explicitly addressed, along with their implica-
tions for wildlife, salmon, and human habitation.
In the Coastal-temperate forest, climate-change
effects on glacier melt and elevation of the
snowline are well-documented. The conceptual
diagram of the Coastal-temperate forest suggests
that this strong link between water, forests, and
people makes it the region where continued
research is required to address the cascading
effects of the associated changes in hydrology on
salmon and wildlife species and subsistence
harvesting.
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CONCLUSIONS

The conceptual framework we present pro-
vides a means of summarizing our current
understanding of the climate drivers and the
current and potential biophysical factors, and to
discuss how the feedbacks and interactions
within our framework affect the rate and types
of change in Alaska’s forest ecosystems. Within
each region, biophysical factors have the poten-
tial to alter forest composition and biogeochem-
ical cycles. In the Interior-boreal forest, changes
in the fire regime and thawing permafrost are
currently the most important biophysical factors.
An increase in the frequency of wildfires will
result in changes in forest composition and
structure, and continued and rapid thawing of
permafrost will significantly alter the soil mois-
ture, hydrology, and biogeochemical cycles of
forest ecosystems in this region. We regard the
increase in the frequency of insect outbreaks and
associated wildfire and potential increase in
invasive plant species establishment to be the
most important biophysical factors in the South-
central- and Kenai-boreal forests; changes in
these biophysical factors will alter forest compo-
sition and biogeochemical cycles. Finally, in the
Coastal-temperate forest region, we view chang-
es in snow and ice associated with melting
glaciers and changes in the elevation of the snow
line as the dominant biophysical factor. Future
changes in snow and ice will have cascading
effects on the composition and soil nutrient
cycling of Coastal-temperate forests.

Climate changes have impacted Alaskan for-
ests and are projected to increase over the next 50
to 100 years. These changes have important
consequences for Alaskan residents through the
socio-economic impacts associated with alter-
ations in fish and wildlife habitat and for the
global climate system via effects on carbon and
radiation budgets. The regional diagrams pre-
sented here provide a visual tool for resource
managers and policy makers to foster under-
standing of the complex interactions and feed-
backs occurring within Alaska’s forested
ecosystems. This knowledge of the underlying
processes and interactions is required to develop
regional and global management strategies and
to inform policies related to mitigation and
adaptation under changing climatic conditions.

ACKNOWLEDGMENTS

We thank Daniel Mann and John Laurence for
reviews of earlier drafts of the manuscript, Tom
Kurkowski for creating maps, Brooke Gamble for
arranging meetings, Kimberley Maher for work on
initial outlines of the paper, and the two anonymous
reviewers for their thoughtful and rigorous comments.
The research in this paper was supported by the Pacific
Northwest Research Station, USDA Forest Service JVA
(#09-JV-11261952-015). Additional support was pro-
vided by the Bonanza Creek LTER (Long-Term
Ecological Research) program funded jointly by the
National Science Foundation (grant DEB-0423442) and
the USDA Forest Service, Pacific Northwest Research
Station (grant PNW01-JV11261952-231).

LITERATURE CITED

ACIA. 2005. Impacts of a warming climate: arctic
climate impact assessment. Cambridge University
Press, Cambridge, UK.

Allen, J. L., S. Wesser, C. J. Markon, and K. C.
Winterberger. 2006. Stand and landscape level
effects of a major outbreak of spruce beetles on
forest vegetation in the Copper River Basin, Alaska.
Forest Ecology and Management 227:257–266.

Alessa, L., A. Kliskey, and G. Brown. 2008. Social-
ecological hotspots mapping: a spatial approach for
identifying coupled social-ecological space. Land-
scape and Urban Planning 85:27–39.

AMAP. In press. SWIPA (snow, water, ice and
permafrost in the Arctic) layman’s report. Cam-
bridge University Press, Cambridge, UK.

Amiro, B. D., J. B. Todd, B. M. Wotton, K. A. Logan, M.
D. Flannigan, B. J. Stocks, J. A. Mason, D. L.
Martell, and K. G. Hirsch. 2001. Direct carbon
emissions from Canadian forest fires, 1959-1999.
Canadian Journal of Forest Research 31:512–525.

Anderson, M. D., R. W. Ruess, D. D. Uliassi, and J. S.
Mitchell. 2004. Estimating N2 fixation in two
species of Alnus in interior Alaska using acetylene
reduction and 15N2 uptake. Ecoscience 11:102–112.

Anderson, L., M. B. Abbott, B. P. Finney, and S. J.
Burns. 2007. Late Holocene moisture balance
variability in the southwest Yukon territory, Can-
ada. Quaternary Science Reviews 26:130–141.

Arendt, A. A., K. A. Echelmeyer, W. D. Harrison, C. S.
Lingle, and V. B. Valentine. 2002. Rapid wastage of
Alaska glaciers and their contribution to rising sea
level. Science 297:382–386.

Barber, V. A., G. P. Juday, and B. P. Finney. 2000.
Reduced growth of Alaskan white spruce in the
twentieth century from temperature-induced
drought stress. Nature 405:668–673.

Barber, V. A., G. P. Juday, B. P. Finney, and M.

v www.esajournals.org 25 November 2011 v Volume 2(11) v Article 124

WOLKEN ET AL.



Wilmking. 2004. Reconstruction of summer tem-
peratures in interior Alaska from tree-ring proxies:
Evidence for changing synoptic climate regimes.
Climatic Change 63:91–121.

Barrett, K., A. D. McGuire, E. E. Hoy, and E. S.
Kasischke. 2011. Potential shifts in dominant forest
cover in interior Alaska driven by variations in fire
severity. Ecological Applications. [doi: 10.1890/
10-0896.1]

Baselga, A., and M. B. Araujo. 2009. Individualistic vs
community modelling of species distributions
under climate change. Ecography 32:55–65.

Beck, P. S. A., G. P. Juday, C. Alix, V. A. Barber, S. E.
Winslow, E. E. Sousa, P. Heiser, J. D. Herriges, and
S. J. Goetz. 2011. Changes in forest productivity
across Alaska consistent with biome shift. Ecology
Letters [doi: 10.1111/j.1461-0248.2011.01598.x]

Beier, C. M., S. E. Sink, P. E. Hennon, D. V. D’Amore,
and G. P. Juday. 2008. Twentieth-century warming
and the dendroclimatology of declining yellow-
cedar forests in southeastern Alaska. Canadian
Journal of Forest Research 38:1319–1334.

Ben-David, M. 1997. Timing of reproduction in wild
mink: The influence of spawning Pacific salmon.
Canadian Journal of Zoology 75:376–382.

Ben-David, M., T. A. Hanley, D. R. Klein, and D. M.
Schell. 1997a. Seasonal changes in diets of coastal
and riverine mink: The role of spawning Pacific
salmon. Canadian Journal of Zoology 75:803–811.

Ben-David, M., R. W. Flynn, and D. M. Schell. 1997b.
Annual and seasonal changes in diets of martens:
Evidence from stable isotope analysis. Oecologia
111:280–291.

Berg, E. E., and R. S. Anderson. 2006. Fire history of
white and Lutz spruce forests on the Kenai
Peninsula, Alaska over the last two millennia as
determined by soil charcoal. Forest Ecology and
Management 227:275–283.

Berg, E. E., J. D. Henry, C. L. Fastie, A. D. De Volder,
and S. M. Matsuoka. 2006. Spruce beetle outbreaks
on the Kenai Peninsula, Alaska, and Kluane
National Park and Reserve, Yukon Territory:
Relationship to summer temperatures and regional
differences in disturbance regimes. Forest Ecology
and Management 227:219–232.

Berg, E. E., K. M. Hillman, R. Dial, and A. DeRuwe.
2009. Recent woody invasion of wetlands on the
Kenai Peninsula Lowlands, south-central Alaska: a
major regime shift after 18 000 years of wet
Sphagnum-sedge peat recruitment. Canadian Jour-
nal of Forest Research 39:2033–2046.

Berg, E. 2009. Permafrost on the Kenai lowlands. US
Fish and Wildlife Service Kenai National Wildlife
Refuge, Refuge Notebook November 13, 2009.
http://kenai.fws.gov/overview/notebook/2009/
november/13nov2009.htm

Beringer, J., F. S. Chapin III, C. C. Thompson, and A. D.

McGuire. 2005. Surface energy exchanges along a
tundra-forest transition and feedbacks to climate.
Agricultural and Forest Meteorology 131:141–161.

Bernhardt, E. L., T. N. Hollingsworth, and F. S. Chapin
III. 2011. Fire mediates climate-driven shifts in
understorey community composition of black
spruce stands of interior Alaska. Journal of
Vegetation Science 22:32–44.

Boertje, R. D., M. A. Keech, and T. F. Paragi. 2010.
Science and values influencing predator control for
Alaska moose management. Journal of Wildlife
Management 74:917–928.

Boucher, T. V., and B. R. Mead. 2006. Vegetation
change and forest regeneration on the Kenai
Peninsula, Alaska following a spruce beetle out-
break, 1987-2000. Forest Ecology and Management
227:233–246.

Brabets, T. P., and M. A. Walvoord. 2009. Trends in
streamflow in the Yukon River Basin from 1944 to
2005 and the influence of the Pacific Decadal
Oscillation. Journal of Hydrology 371:108–119.

Brinkman, T. J., G. Kofinas, F. S. Chapin III, and D. K.
Person. 2007. Influence of hunter adaptability on
resilience of subsistence hunting systems. Journal
of Ecological Antrhopology 11:58–63.

Bryant, M. D. 2009. Global climate change and
potential effects on Pacific salmonids in freshwater
ecosystems of southeast Alaska. Climatic Change
95:169–193.

Bryant, M. D., M. D. Lukey, J. P. McDonell, R. A.
Gubernick, and R. S. Aho. 2009. Seasonal move-
ment of Dolly Varden and cutthroat trout with
respect to stream discharge in a second-order
stream in southeast Alaska. North American
Journal of Fisheries Management 29:1728–1742.

Carlson, M. L., and M. Shephard. 2007. Is the spread of
non-native plants in Alaska accelerating? Pages
117–133 in T. B. Harrington and S. H. Reichard,
editors. Meeting the challenge: invasive plants in
Pacific Northwest ecosystems. General Technical
Report PNW-GTR-694. USDA Forest Service, Pa-
cific Northwest Research Station, Portland, Oregon,
USA.

Carlson, M. L., I. V. Lapina, M. Shephard, J. S. Conn, R.
Densmore, P. Spencer, J. Heys, J. Riley, and J.
Nielson. 2008. Invasiveness ranking system for
non-native plants of Alaska. Technical Paper R10-
TP-143. USDA Forest Service, Alaska Region.

Chapin, F. S., III et al. 2000. Arctic and boreal
ecosystems of western North America as compo-
nents of the climate system. Global Change Biology
6:211–223.

Chapin, F. S., III et al. 2004. Resilience and vulnerabil-
ity of northern regions to social and environmental
change. Ambio 33:344–349.

Chapin, F. S., III., L. A. Viereck, P. Adams, K. Van
Cleve, C. L. Fastie, R. A. Ott, D. H. Mann, and J. F.

v www.esajournals.org 26 November 2011 v Volume 2(11) v Article 124

WOLKEN ET AL.



Johnstone. 2006a. Successional processes in the
Alaskan boreal forest. Pages 100–120 in F. S.
Chapin III, M. Oswood, K. Van Cleve, L. A.
Viereck, and D. Verbyla, editors. Alaska’s changing
boreal forest. Oxford University Press, New York,
New York, USA.

Chapin, F. S., III, M. D. Robards, H. P. Huntington, J. F.
Johnstone, S. F. Trainor, G. P. Kofinas, R. W. Ruess,
N. Fresco, D. C. Natcher, and R. L. Naylor. 2006b.
Resilience of Athabascan subsistence systems to
interior Alaska’s changing climate. American Nat-
uralist 168:S36–S49.

Chapin, F. S., III et al. 2008. Increasing wildfire in the
boreal forest: causes, consequences, and pathways
to the potential solutions of a wicked problem.
BioScience 58:531–540.

Chittenden, C. M., R. J. Beamish, and R. S. McKinley.
2009. A critical review of Pacific salmon marine
research relating to climate. ICES Journal of Marine
Science 66:2195–2204.

Christensen, J. H., et al. 2007. Regional climate
projections. Pages 847–940 in S. Solomon et al.,
editors. Climate change 2007: the physical science
basis. Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmen-
tal Panel on Climate Change. Cambridge Univer-
sity Press, New York, New York, USA.

Clegg, B. F., and F. S. Hu. 2010. An oxygen-isotope
record of Holocene climate change in the south-
central Brooks Range, Alaska. Quaternary Science
Reviews 29:928–939.

Conn, J. S., N. R. Werdin-Pfisterer, Z. Behr, and K.
Mohrmann. 2007. Susceptibility of Alaska plant
communities to invasion by bird vetch (Viccia cracca
L). Annual Alaska Committee for Noxious Plant
Management Workshop November 14–15, Fair-
banks, Alaska, USA.

Conn, J. S., K. L. Beattie, M. A. Shephard, M. L.
Carlson, I. Lapina, M. Hebert, R. Gronquist, R.
Densmore, and M. Rasy. 2008. Alaska Melilotus
invasions: Distribution, origin, and susceptibility of
plant communities. Arctic Antarctic and Alpine
Research 40:298–308.

Cortés-Burns, H., I. Lapina, S. C. Klein, M. L. Carlson,
and L. Flagstad. 2008. Invasive plant species
monitoring and control: areas impacted by 2004
and 2005 fires in interior Alaska: A survey of
Alaska BLM lands along the Dalton, Steese, and
Taylor Highways. Bureau of Land Management,
Alaska State Office, Anchorage, Alaska, USA.

Cortés-Burns, H., and L. Flagstad. 2010. Invasive plant
inventory and bird cherry control trials. Phase II:
bird cherry distribution, demography and repro-
duction biology along the Chester and Campbell
Creek trails, Anchorage, Alaska. The Alaska
Natural Heritage Program for the Municipality of
Anchorage and The Anchorage Parks Foundation,

Anchorage, Alaska, USA.
Davidson, E. A., and I. A. Janssens. 2006. Temperature

sensitivity of soil carbon decomposition and
feedbacks to climate change. Nature 440:165–173.

Davidson, E. A., I. A. Janssens, and Y. Q. Luo. 2006. On
the variability of respiration in terrestrial ecosys-
tems: moving beyond Q10. Global Change Biology
12:154–164.

De Volder, A. 1999. Fire and climate history of lowland
black spruce forests, Kenai National Wildlife
Refuge, Alaska. Thesis. Northern Arizona Univer-
sity, Flagstaff, Arizona, USA.

Dial, R. J., E. E. Berg, K. Timm, A. McMahon, and J.
Geck. 2007. Changes in the alpine forest-tundra
ecotone commensurate with recent warming in
southcentral Alaska: Evidence from orthophotos
and field plots. Journal of Geophysical Research:
Biogeosciences 112:G04015.

Dickinson, T. A., and C. S. Campbell. 1991. Population
structure and reproductive ecology in the Maloi-
deae (Rosaceae). Systematic Botany 16:350–362.

Duffy, P. A., J. E. Walsh, J. M. Graham, D. H. Mann,
and T. S. Rupp. 2005. Impacts of large-scale
atmospheric-ocean variability on Alaskan fire
season severity. Ecological Applications 15:1317–
1330.

Ecotrust. 1992. Coastal temperate rainforests: ecologi-
cal characteristics and distribution worldwide.
Occasional Paper Series. Ecotrust and Conservation
International, Portland, Oregon, USA.

Edwards, R. T., D. V. D’Amore, E. Norberg, and F. E.
Biles. In press. Riparian ecology, climate change,
and management in North Pacific Coastal Rain-
forests. In: Ecology and conservation of North
Pacific rainforests.

Epting, J., and D. L. Verbyla. 2005. Landscape-level
interactions of prefire vegetation, burn severity,
and postfire vegetation over a 16-year period in
interior Alaska. Canadian Journal of Forest Re-
search 35:1–11.

Euskirchen, E. S., A. D. McGuire, T. S. Rupp, F. S.
Chapin, and J. E. Walsh. 2009a. Projected changes
in atmospheric heating due to changes in fire
disturbance and the snow season in the western
Arctic, 2003-2100. Journal of Geophysical Research:
Biogeosciences 114:G04022.

Euskirchen, E. S., A. D. McGuire, F. S. Chapin III, S. Yi,
and C. C. Thompson. 2009b. Changes in vegetation
in northern Alaska under scenarios of climate
change, 2003-2100: Implications for climate feed-
backs. Ecological Applications 19:1022–1043.

Euskirchen, E. S., A. D. McGuire, F. S. Chapin, and T. S.
Rupp. 2010. The changing effects of Alaska’s boreal
forests on the climate system. Canadian Journal of
Forest Research 40:1336–1346.

Farr, W. A., V. J. LaBau, and T. H. Laurent. 1976.
Estimation of decay in old-growth western hem-

v www.esajournals.org 27 November 2011 v Volume 2(11) v Article 124

WOLKEN ET AL.



lock and Sitka spruce in southeast Alaska. Research
Paper PNW-204. USDA Forest Service, Pacific
Northwest Forest and Range Experiment Station,
Portland, Oregon, USA.

Fastie, C. L. 1995. Causes and ecosystem consequences
of multiple pathways of primary succession at
Glacier Bay, Alaska. Ecology 76:1899–1916.

Field, C. B., and L. D. Mortsch. 2007. North America.
Pages 617–652 in M. L. Parry, J. P. Canziani, J. P.
Palutikof, P. J. van der Linden, and C. E. Hansen,
editors. Climate change 2007: impacts, adaptation
and vulnerability. Contribution of Working Group
II to the Fourth Assessment Report of the Inter-
governmental Panel on Climate Change. Cam-
bridge University Press, Cambridge, UK.

Flint, C. G. 2006. Community perspectives on spruce
beetle impacts on the Kenai Peninsula, Alaska.
Forest Ecology and Management 227:207–218.

Francis, J. A., D. M. White, J. J. Cassano, W. J.
Gutowski, Jr., L. D. Hinzman, M. M. Holland,
M. A. Steele, and C. J. Vörösmarty. 2009. An arctic
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