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Abstract

The role of time in ecology has a long history of investigation, but ecologists have largely
restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes
of important ecological processes. Recently, however, ecologists have improved their understand-
ing of ecological processes by explicitly considering the effects of antecedent conditions. To
broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength
of memory with respect to the influence of antecedent conditions on current ecological dynamics.
We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic
approach for evaluating exogenous and endogenous process components of memory in a system
of interest. We designed SAM to be useful in revealing novel insights promoting further study,
illustrated in four examples with different degrees of complexity and varying time scales: stomatal
conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent
effects explained an additional 18–28% of response variation compared to models without ante-
cedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie
components of memory, thus revealing temporal properties that are not apparent from traditional
treatments of ecological time-series data and facilitating new hypothesis generation and additional
research.
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INTRODUCTION

Temporal phenomena are fundamental to ecology. The
growth patterns encoded in tree rings, the timing of flowering
and production within a season, and the scheduling of repro-
duction within an organism’s lifespan are examples from early
attempts to understand the role of time in ecology. Studies of
ecological succession in the early 1900s provide a process-
based interpretation of mechanisms underlying some ecologi-
cal patterns over time and of the importance of antecedent
events (Johnson & Miyanishi 2008). More recently, the timing
of migration, flowering, and pollination has taken on critical
importance given the potential for differences in activity
between mutualistic partners within a rapidly changing cli-
mate (Visser & Both 2005; Elzinga et al. 2007). Assuming
consistent relationships between space and time for evaluating
ecological phenomena has been useful for tackling scientific

challenges in ecology (Levin 1992), but ecological patterns
and processes are rarely static (Chave 2013), thus challenging
our approaches for addressing the importance of time in our
science.
Despite the long history of studying the role of time in ecol-

ogy, we still lack a solid understanding of the temporal link-
ages between abiotic events and biotic responses, their
interactions, and feedbacks to the environment (e.g. Bardgett
et al. 2005; Crooks 2005; Resco et al. 2009). For example,
how do different abiotic events interact over time to drive eco-
logical phenomena? How do ecological patterns and processes
respond to perturbations at different time scales? Abiotic
resources (e.g. water, nutrients) often are available to organ-
isms in ephemeral pulses, and changes in their timing, dura-
tion, and magnitude can lead to significant changes in
ecological structure and function (Schwinning & Sala 2004).
For example, the effects of multiple precipitation events may
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be additive when the interval between pulses is short, but this
effect decreases as the number of between-event dry days
increases (Loik et al. 2004). In addition, after an extended dry
period, the impact of a first pulse may or may not have conse-
quences for the impact of subsequent events; however, we
require better knowledge about the mechanisms relating
ecological responses to rainfall timing to generate general
principles.
Although precipitation, temperature, and other factors

affect plant and ecosystem processes at multiple time scales,
many analyses tend to assume, at least implicitly, that envi-
ronmental conditions impact biological processes concur-
rently. Ecological disturbances, however, are frequently
described in terms of time-since-disturbance (e.g. fire, flood,
frost, or storm damage). Presumably, we could gain a greater
understanding of the timing of many abiotic–biotic relation-
ships with careful consideration of how past perturbations
(resource pulses, disturbance, or environmental events) at dif-
ferent scales modify the response of biological processes to a
recent event. For example, in semi-arid systems, antecedent
temperature and water availability, averaged over several days
or weeks, may be more important than current conditions for
plant, soil, and ecosystem carbon exchange (Ogle & Reynolds
2002; Cable et al. 2008; Shim et al. 2009). Precipitation and
temperature patterns of past months, seasons, or years can
also impact soil respiration (Janssens et al. 2001; Fierer et al.
2006; Vargas et al. 2011), leaf-level gas exchange (Patrick
et al. 2009), annual tree growth (i.e. ring widths, Fritts 1966;
Graumlich 1991; Gagen et al. 2004), and ecosystem productiv-
ity (Leuning et al. 2005; Coops et al. 2007; Sala et al. 2012;
Reichmann et al. 2013).
Despite their importance, we lack analytical frameworks for

quantifying antecedent conditions and their effects on current
processes, thus lending insight into ecological memory. Tradi-
tional schemes to evaluate ecological time-series data for driv-
ers of current phenomena are often constrained by short-term
experimentation, space-for-time substitutions, or arbitrary des-
ignations of the relative importance of past conditions that
can introduce researcher bias. Here, we improve our capacity
to evaluate the role of the past by developing an analytical
framework for simultaneously quantifying the length, tempo-
ral patterns, and strength of ecological memory. Such a
framework is expected to elicit new experiments to test under-
lying mechanisms and to improve forecasts of ecological
responses to future environmental change by better contextu-
alising the role of time.

ECOLOGICAL MEMORY

Ecological memory has been defined as ‘the capacity of past
states or experiences to influence present or future responses
of the community’ (Padisak 1992), and as ‘the degree to which
an ecological process is shaped by its past modifications of a
landscape’ (Peterson 2002). Our definition of memory aligns
with these definitions, but we explicitly consider three primary
components: (1) the length of the memory, which quantifies
the time period(s) over which antecedent conditions or states
affect current processes or states, (2) the temporal pattern of
the memory, which is characterised by variation in the relative

importance of conditions occurring at different times into the
past, including potentially important time lags and (3) the
strength of the memory, which describes the degree to which
antecedent conditions affect the process of interest.
Furthermore, we find it convenient to distinguish between

exogenous and endogenous memory (Bengtsson et al. 2003;
Lundberg & Moberg 2003; Golinski et al. 2008; Schaefer 2009;
Barron-Gafford et al. 2014). Here, we use exogenous memory
to refer to the effects of past external factors (typically environ-
mental or abiotic) on the state of the system, as illustrated by
impacts of winter freeze–thaw dynamics on subsequent ecosys-
tem production (Kreyling et al. 2010). We use endogenous
memory to refer to how past states of the system of interest
influence current states of the same system, as in density depen-
dent population growth where the current population growth
rate and/or size depends are past population size (Golinski
et al. 2008). For ecosystem-level processes (e.g. soil organic
matter decomposition), the endogenous effects could reflect the
influence of past decomposition patterns or other, often biolog-
ically mediated, ecosystem feedbacks (e.g. past litter fall rates,
or past microbial biomass or activity). Endogenous effects,
however, are infrequently explored in plant physiological and
ecosystem ecology, which tend to emphasise exogenous factors,
but quantification of endogenous memory may lend insight
into potentially important biological feedbacks.
Our goal was to evaluate the length, temporal patterns, and

strength of memory in plant and ecosystem processes, and to
design a flexible quantitative framework that will enable us to
do so with different conceptualisations of important biological
dynamics. The framework should provide results that are
easily interpretable to ecologists while retaining general appli-

(a) (b)

Figure 1 (a) Four hypothetical weight functions for continuous time. The

weight function indicated by w1 has a short memory length (L) such that

conditions beyond L = ta units into the past do not affect the current

process. Moreover, w1 takes on its highest value at j = 0, thus, current

conditions are most important. The weight function given by w2 has a

long memory (L ≤ te), and current conditions are still most important.

The weight function given by w3 has a medium-length memory (L ≤ td)

and a lag (conditions experienced at j = tb are most important). And w4

indicates that current conditions are most important, but a minor lag

occurs around j = tc. (b) Discretised weights associated with weight

function w3 (red bars); the discretised weights w3(j) multiply X(t�j) to

determine Xant as illustrated in Box 1.
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cability. Here, we present a stochastic antecedent modelling
(SAM) framework and apply it to four different case studies
to illustrate how the framework can be used to reveal memory
characteristics for processes spanning a range of time scales
and system complexities: stomatal conductance, soil respira-
tion, ecosystem annual net primary production, and annual
tree growth. We use these examples to highlight issues sur-
rounding five primary questions: (1) Does memory matter? (2)
What are the temporal characteristics of memory? (3) What
time scales are important for quantifying memory? (4) What

features underlie memory? (5) What mechanisms govern mem-
ory? We end with a discussion about potential considerations
and extensions of the SAM framework beyond the illustrative
examples provided in the current treatment.

THE STOCHASTIC ANTECEDENT MODELLING

FRAMEWORK

Let Y(t) represent an observed value of an ecological response
of interest (e.g. population size, photosynthetic rate, plant bio-

Box 1 Description of the general SAM approach

Each node indicates a quantity in the model, and the directed edges connecting nodes indicate conditional relationships (e.g.
Xant depends on X and wX). The quantities can generally be classified as (1) stochastic data (e.g. the response of interest, Y), (2)
fixed data (e.g. the observed covariates, X, Z and E), (3) latent or unknown processes such as the predicted response (l) and
the antecedent exogenous (Xant) and endogenous (Eant) covariates, (4) data parameters (e.g. r) describing observation uncer-
tainty and (5) process parameters (e.g. a) giving rise to the latent processes.

Example data model: For observation or time t, and for some potential transformation of Y, g(Y), including g(Y) = Y, we might
assume:

g YðtÞð Þ�Normal lðtÞ; rð Þ
Note that we are not restricted to the normal distribution.

Example process model for l: The model for l has the general form:

lðtÞ ¼ f XantðtÞ;EantðtÞ;ZðtÞ; að Þ þ et

Where f is a function to be determined on a case-by-case basis, and e represents additional sources of uncertainty (e.g. random
effects that may be indexed by t or some other indexing variable, such as location, individual, etc.); for simplicity, we did not
include e in the above graphical model. A vector of parameters (a) describes the effects of Xant, Eant and Z on the response of
interest (Y or l).

Example process model for Xant and Eant: For time period j into the past (j = 0 = current time):

XantðtÞ ¼
XTlag

j¼0

Xðt� jÞ � wXðjÞ EantðtÞ ¼
XTlag

j¼0

Eðt� jÞ � wEðjÞ

Example priors: For the weight vectors (w) and element k in the a vector:

wXð1 : ðTlagþ 1ÞÞ;wEð1 : ðTlagþ 1ÞÞ�Dirichletð1; 1; . . .; 1Þ;
ak �Normalð0;SÞ; r�Uniformð0;AÞ

Values of S and A are typically chosen to achieve relatively non-informative priors, and the normal and uniform priors could
be exchanged for other distributions that may be more appropriate in particular cases.
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mass) measured at time t. We characterise the variability of
Y(t) about its mean (or latent process), l(t), with a probability
distribution, which we refer to as the ‘data model’ (see Box 1).
Next, we specify a model for l(t) (Box 1) that incorporates
the effects of antecedent exogenous (Xant; e.g. antecedent soil
water, temperature, precipitation), antecedent endogenous
[Eant; e.g. past values of Y or its latent value (l)] and current
conditions (Z). The effects of these variables on the current
process are captured by the process parameters (e.g. a, a
vector of effects parameters), and the magnitude and signifi-
cance of the antecedent effects (components of a) characterise
the overall strength of memory.
We define a stochastic model for each antecedent variable. A

simple model for Xant or Eant sums over past conditions,
weighted by their relative importance (w) (Fig. 1; Box 1).
Unlike previous approaches (e.g. Ogle & Reynolds 2002; Leu-
ning et al. 2005; Fierer et al. 2006; Cable et al. 2008), we do not
arbitrarily compute Xant or Eant by assuming fixed values for w
(e.g. such as computing the average of the past values over an
arbitrarily chosen time period). For each time step j into the
past, SAM allows data on Y to inform the unknown relative
importance, w(j)’s, of past exogenous, X(t�j), or endogenous, E
(t�j), variables for predicting the response at time t (Box 1). An
important aspect of the model(s) for Xant and Eant is the specifi-
cation of the time scales associated with computing the w(j)’s,
including determining the number of past time periods to sum
over (Tlag, Box 1), and the size of the time step j (e.g. every 6 h,
daily, weekly, etc.). We describe potential strategies to address-
ing these issues in Appendix S1.
The temporal pattern of the memory is revealed by variation in

the w(j)’s, and comparably high values for particular w(j)’s indi-
cate potential lag times (e.g. for daily time steps, a high value of
w(4) would indicate a 4-day lag). The length of the memory
describes the length of time over which past conditions signifi-
cantly influence the current process. For example, the memory
length (L) may be defined as the past time for which the cumula-
tive weights achieve some specified threshold (c) that is ‘close’ to
one, such that the solution for L satisfies

PL
j¼0 wðjÞ ¼ c. For

example, for daily time steps, if L = 10 (say, for c = 0.90), then
this indicates a memory of length 10 days such that conditions
occurring more than 10 days ago do not appreciably (< 10%
chance) affect the current process of interest.
We implement SAM in a Bayesian framework because of its

ability to accommodate the stochastic data model, the stochas-
tic antecedent model, the non-linear model for l that emerges
by making Xant and/or Eant stochastic and required constraints
on the w’s; we refer readers to Gelman et al. (2004) and Ogle
& Barber (2008) for a more thorough description of the Bayes-
ian approach. Our interpretation of the w’s as the relative
importance of past conditions requires that each be between 0
and 1 and that all sum to 1. Thus, in the Bayesian context, we
chose an appropriate prior (e.g. Dirichlet distribution, Gelman
et al. 2004) that obeys these constraints (Box 1).

EVALUATING ECOLOGICAL MEMORY WITH THE SAM

FRAMEWORK

We present four case studies to illustrate our SAM frame-
work. The first is based on annual aboveground net primary

productivity (ANPP, g m�2 year�1) of a shortgrass steppe
ecosystem in northern Colorado; ANPP data summaries (sam-
ple means) were extracted from the literature (Lauenroth &
Sala 1992). The second involves tree-ring widths (r, mm/year),
an index of annual tree productivity, of Pinus edulis (pinyon
pine) growing near Montrose, Colorado. The original r data
were downloaded from the International Tree-Ring Data
Bank (ITRDB 2007), and were contributed by Woodhouse
et al. (2006). The third uses original data on soil respiration
rates (Rs, lmol CO2 m�2 s�1) in two microhabitats (under
shrubs vs. bunchgrasses) occurring in the Sonoran Desert near
Tucson, Arizona (see Barron-Gafford et al. 2011, 2014). The
fourth focuses on leaf-level stomatal conductance (gs,
mol H2O m�2 s�1) of a common desert shrub (Larrea triden-
tata, creosotebush) growing in the Chihuahuan Desert in
southern New Mexico (see Ogle & Reynolds 2002).
These case studies were chosen because they represent pro-

cesses operating at different biological, temporal, and/or spa-
tial scales, as well as different complexities of endogenous
and exogenous processes. The ANPP and r examples repre-
sent relatively long time scales (yearly) and the Rs and gs
examples represent short time scales (instantaneous, sub-daily
rates). We use the ANPP case study to illustrate a simple
application of the SAM framework, and the associated
model code is provided in Appendix S2. The ANPP and r
case studies are used to demonstrate nested memory time
scales, and the r example also allows us to evaluate memory
properties at different levels of organisation (e.g. individuals
vs. populations). The gs example illustrates how different
memory components may operate at different, non-nested
time scales (e.g. sub-daily to weekly). The Rs and r case
studies both provide an evaluation of endogenous and exoge-
nous memory, and the Rs example also explicitly evaluates
the effects of current and antecedent factors, and their inter-
actions.
Descriptions of the data and processes associated with each

case study and the associated components comprising the
Bayesian SAM framework are highlighted in Box 2. For the
antecedent importance weights (w), it seems natural to us to
choose monthly and annual time steps for the annual produc-
tivity variables (r and ANPP), and sub-hourly, hourly, and/or
daily time steps for the fast (sub-daily) time-scale variables (gs
and Rs). The basic structure of the process model for l in the
gs example is motivated by the model described in Ogle &
Reynolds (2002), but we made significant modifications to
include the antecedent variables and their effects. The model
for Rs is described in detail in Barron-Gafford et al. (2014).
The models developed for the ANPP and r case studies have
not been previously described, but were motivated by empiri-
cal descriptions of the potential importance of past climate
conditions (Fritts 1966; Graumlich 1991; Lauenroth & Sala
1992; Druckenbrod 2005; Sherry et al. 2008). In each case
study, we opted for relatively simple models that are easy to
interpret, motivated by the original publications, and that
captured a significant amount of variation in the response var-
iable (e.g. Table 1). Other, potentially better models could be
applied, but a comprehensive examination of different models
is beyond the scope of this study. Importantly, each case
study and its associated SAM formulation offer unique attri-
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Box 2 Summary of four different case studies spanning a diversity of processes and time scales. The models follow the framework outlined

in Box 1, with modifications specific to each case study (see Box 1 for a description of the graphical model components).

Data and data models: The response variables are ANPP (annual net primary productivity), gs (stomatal conductance), r (annual
ring width) and Rs (soil respiration rate). The exogenous covariates are PPT (monthly precipitation), Tave (mean monthly tem-
perature), Ev0–5, Ev5–15, Ev15–30 and Ev>30 (amount of annual precipitation received as 0–5, 5–15, 15–30 and > 30 mm events
respectively), Ψpd (pre-dawn leaf water potential), Dleaf (leaf-to-air vapour pressure difference), Dair (atmospheric vapour
pressure deficit), Tair (air temperature), T (soil temperature) and SW, W30, and W60 (soil water content from 0–12, 0–30 and
30–60 cm respectively). The endogenous covariates are Age (tree age) and Amax (light-saturated photosynthesis). For
Y = ANPP, log(r), gs or log(Rs), year t (ANPP and r) or observation time t (gs and Rs) and tree core c (for r):

YðtÞ�Normal lðtÞ; r2� �
or Yðt; cÞ�Normal lðt; cÞ; r2� �

Process models for predicted response (l): The antecedent exogenous variables corresponding to PPT, Tave, Dair, Tair, SW, W30

and W60 are represented by PPTant, Tant, Dant, Tant, SWant, W30ant and W60ant respectively; Aant is antecedent Amax (endoge-
nous). The predicted response is denoted by l, and quantities defining l include the sensitivity of gs to changes in Dleaf (Sens),
reference gs at Dleaf = 1 kPa (gref), base-line Rs at a specific reference T (Rbase), and the temperature sensitivity of Rs (Tsens). The
process models for l are unique to each case study, but all incorporate the effects of antecedent variables:

ANPP model:

lðtÞ ¼ a0 þ a1 � Ev0�5ðtÞ þ a2 � Ev5�15ðtÞ þ a3 � Ev15�30ðtÞ þ a4 � Ev[ 30ðtÞ þ a5 � PPTantðtÞ
Ring-width model:

lðt; cÞ ¼ a0ðcÞ þ a1ðcÞ � Ageðt; cÞ þ a2ðcÞ � PPTantðtÞ þ a3ðcÞ � TantðtÞ þ a4ðcÞ � PPTantðtÞ � TantðtÞ þ a5ðcÞ � rðt� 1; cÞ
Soil respiration model: For Z = log(Rbase) with a = h or Z = Tsens with a = b, and f(T) is a non-linear function of T:

lðtÞ ¼ log RbaseðtÞð Þ þ TsensðtÞ � fðTðtÞÞ
ZðtÞ ¼ a0 þ a1 � AantðtÞ þ a2 � SWantðtÞ þ a3 � SWðtÞ þ a4 � SWantðtÞ � SWðtÞ

Stomatal conductance model: Where fS and fg are non-linear functions of their corresponding variables (current and antecedent
covariates) and parameters (h):
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butes that allow us to address the five aforementioned ques-
tions about ecological memory (see Ecological Memory sec-
tion).

Does memory matter?

If memory matters, then SAM’s stochastic antecedent effects
will improve our ability to predict the response variable of
interest. We compared a model with antecedent effects (SAM
approach) to a reduced model without antecedent effects;
both models retain current exogenous or endogenous vari-
ables. In each case study, the SAM approach resulted in supe-
rior model fit (Table 1). The reduced model explained 46–
47% (for gs, ANPP, and r) to 70% (for Rs) of the variation in
the observed data, whereas the SAM explained 70–75% (for
gs, ANPP, and r) to 88% (for Rs) of the variation. In addi-
tion, we computed the deviance information criterion (DIC,
Spiegelhalter et al. 2002), a model comparison index that
accounts for model fit while penalising model complexity.
Although SAM led to greater model complexity (with the

exception of Rs), in all four case studies, it notably improved
fit relative to the simple models as indicated by lower DIC
values (Table 1). This aligns with others studies that have also
shown improvement in model fits when including antecedent
variables (e.g. Oesterheld et al. 2001; Leuning et al. 2005;
Hawkins & Ellis 2010; Sala et al. 2012; Cable et al. 2013a;
Barron-Gafford et al. 2014). The improved model perfor-
mance yielded by SAM, however, is also accompanied by
details on the characteristics of memory (i.e. length, temporal
patterns and strength).
The strength of the memory response is quantified by the

magnitude and significance of the Xant and Eant effects param-
eters (i.e. subcomponents of a in Box 1 and Box 2). In all
four case studies, at least one or more of the antecedent driv-
ers was statistically significant such that the 95% credible
interval (CI) for its corresponding a term did not contain zero
(Table S1). For example, PPTant had a significant positive
effect on ANPP (Table S1 or Fig. 2). In the original study,
Lauenroth & Sala (1992) did not directly evaluate the impor-
tance of antecedent precipitation, but they hypothesised that

lðtÞ ¼ grefðtÞ þ SensðtÞ �DleafðtÞ
SensðtÞ ¼ fS WpdðtÞ;DantðtÞ;TantðtÞ; h

� �
grefðtÞ ¼ fg WpdðtÞ;TantðtÞ;W30antðtÞ;W60antðtÞ; h

� �

Process models for antecedent variables: The antecedent variables are defined similarly in all four examples, though, the time
scale over which each is computed may differ:

Climate variables (for ANPP and r): For X = PPT or Tave (P or T subscript on w), Xant = PPTant or Tant, year y into the past,
and month m:

XantðtÞ ¼
X4

y¼0

X12

m¼1

Xðt� y;mÞ � wX;moðmjyÞ � wX;yrðyÞ

wX,mo(m|y) is the relative importance of X occurring in month m conditional on year y.

Other variables (for gs and Rs): For X = Amax, Dair, Tair, SW, W30 or W60 (with related subscripting for w), Xant = Aant, Dant,
Tant, SWant, W30ant or W60ant, and time period j into the past:

XantðtÞ ¼
XTlag

j¼s

Xðt� jÞ � wXðjÞ

s = 1 for SW for Rs such that current SW is not included in SWant since it explicitly occurs in the l model for Rs; s = 0 for all
other variables. Tlag=5 days for Aant and SWant, 7 days for Tant and W30ant, 7 two-day blocks for W60ant and 6 half-hour blocks
for Dant.

Parameters and prior models: Variability in the observation errors is described by r; a is a vector of coefficients describing the
effects of the exogenous and endogenous covariates on l, where the core-level a’s in the r example vary around overall (mean)
effects (�a), and �r describes variability among cores. Similarly, h and b are vectors describing the effects of the covariates on the
latent components giving rise to l. The w’s are the weights describing the relative importance of the different antecedent covari-
ates occurring at different times into the past. The prior models are similar across all four examples. Let k denote an element of
each a, �a , �r, h, and b vector, then:

wmo 1 : 12jyð Þ;wyr 1 : 5ð Þ;wX 1 : ðTlagþ 1� sÞð Þ�Dirichletð1Þ; akðcÞ�Normal �ak; �rkð Þðfor r modelÞ
or ak �Normalð0;SÞ; �ak; hk; bk �Normalð0;SÞ; and r; �rk �Uð0;AÞ

Where 1 is a vector of ones whose length (12, 5 or Tlag+1- s) is consistent with its corresponding w. ‘Large’ values of S and A
were chosen for fairly non-informative priors; semi-informative priors were used for a subset of h’s and b’s in the Rs model (see
Barron-Gafford et al. 2014 for details).

Box 2 (Continued)
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ANPP exhibited time lags of several years in response to past
precipitation patterns, and reanalysis of this data found that
the current and previous year’s precipitation explained a sig-
nificant amount of variation in ANPP (Oesterheld et al.
2001). In the tree-ring example, r was significantly correlated
with PPTant, Tant, and the previous year’s ring width, r(t–1, c)
(Table S1). Higher precipitation in the past is expected to lead
to greater growth in the current time period. The positive cor-
relation between r(t,c) and r(t�1,c) is consistent with an auto-
regressive, AR(1), process, which is commonly used in

dendrochronological analyses (Monserud & Marshall 2001;
Griesbauer & Green 2010; Tingley et al. 2012), but which
lacks the memory interpretations of the SAM approach.

What are the temporal characteristics of memory?

Having determined that antecedent effects are significant, we
proceed to evaluate the length and temporal patterns of the
memory response. If an antecedent effect is not significantly
different from zero (i.e. it has weak memory or no memory),
then its corresponding w’s are meaningless. In all four case
studies, the posteriors for the w’s differed from the priors in
meaningful ways. In the ANPP case study, the posterior for
wP,yr (annual precipitation weights) was tighter than the prior,
as reflected by comparatively narrow posterior 95% CIs
(Fig. 2), and unlike the ‘flat’ prior, the posterior exhibited
notable temporal patterns. For example, precipitation received
1–2 years ago was significantly more important than that
received during the year of production or 4 years ago (i.e. the
95% CIs for wP,yr(1) and wP,yr(2) do not contain the posterior
means for wP,yr(0) and wP,yr(4), and vice versa). The moder-
ately low value for the current year’s precipitation weight was
not surprising since it sums over a subset of months that
occurred after the ANPP harvests (i.e. wP,mo = 0 for these
months). Differences between the prior and posterior w’s were
even more obvious for gs (Fig. 3) and r (Fig. 4); the posterior
CI widths were notably narrower than the prior CI widths,
and a subset of w’s – e.g. the importance of deep soil water
(W60) experienced 7–8 weeks ago (w60, j = 5; Fig. 3), and sev-
eral wP,mo’s associated with PPTant weights in the r model
(Fig. 4) – are associated with posterior estimates that are sig-
nificantly different from the prior.
Temporal patterns in the weights also revealed important

time lags. For example, gs exhibited a short lag with respect
to shallow soil water (W30), temperature (Tair) and vapour
pressure deficit (Dair) such that conditions occurring the day
prior to, the day of, or half-an-hour prior to the observed gs,
respectively, were most important for predicting gs (Fig. 3b–
d). Yesterday’s soil water conditions were also most important

Table 1 Summary of model comparison indices for the four case studies

in Box 2: stomatal conductance (gs), annual aboveground net primary

productivity (ANPP), soil respiration (Rs) and tree-ring widths (r)

Example Model R2 DIC Dbar pD

gs Reduced 0.46 �4735.0 �4764.0 28.7

SAM 0.72 �5240.0 �5334.0 93.9

Difference 0.26 �505.0 �570.0 65.2

ANPP Reduced 0.47 454.1 446.6 7.6

SAM 0.75 435.4 420.2 15.2

Difference 0.28 �18.7 �26.4 7.6

Rs Reduced 0.70 323.5 297.2 26.3

SAM 0.88 187.5 164.5 22.9

Difference 0.18 �136.0 �132.7 �3.4

r Reduced 0.47 �2422.0 �2488.0 65.6

SAM 0.70 �3413.0 �3518.0 105.1

Difference 0.23 �991.0 �1030.0 39.5

Model fit is evaluated via the R2 value obtained by regressing the pre-

dicted values (i.e. posterior means for l, Boxes 2 and 3) on the observed

data. The deviance information criterion (DIC) is the sum of two terms: a

‘model fit’ term (Dbar, lower values indicate better fit) and a ‘penalty’

term that represents the effective number of parameters in a model (pD,

higher values reflect a more complex or parameter-rich model). A differ-

ence in DIC > 10 between two models provides strong support for the

model with the lowest DIC (Spiegelhalter et al. 2002). For each example,

we compared a model that incorporated antecedent effects (via SAM) to

a reduced model that lacked antecedent effects. The difference between

each model comparison statistic (R2 or DIC) is provided as the SAM

minus the reduced model value. Comparisons of DIC and Dbar are only

relevant among models sharing the same data.
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for Rs (Fig. 5b). In other situations, recent conditions con-
veyed relatively low importance compared to conditions
occurring further in the past. For example, Rs exhibited an
c. 3-day lag response to photosynthesis (Amax, an endogenous
factor) in the shrub microsites (Fig. 5a and Barron-Gafford
et al. 2014), and gs exhibited a ≥ 7-week lag response to ‘deep’
soil water (W60) (Fig. 3a). Longer lags were apparent for both
annual productivity indices such that precipitation received 1–
2 years (or 12–30 months) prior to production was most
important for predicting r and ANPP (Figs 2 and 4).
Variation in the cumulative w’s provides insight into the

length of the memory. For example, the length of the ANPP
precipitation memory was c. 50 months, potentially spanning
42–57 months (Fig. 4). That is, precipitation occurring more
than c. 50 months ago – or more than 38 months
(c. 3.2 years) prior to the year of production – had little influ-
ence on the current year’s ANPP. In the r example, the length
of the memory varied depending on the driving variable (pre-
cipitation vs. temperature). The precipitation memory for r
was c. 45 months, spanning 36–54 months (Fig. 4), and was
slightly shorter than that of ANPP, but the temperature mem-
ory of r was comparatively long, c. 57 months, spanning a
narrower range of possible values (50–57 months) (results not
shown).

What time scales are important for quantifying memory?

Important to understanding the temporal features of memory
is the time scales specified for modelling the weights. Note
that we used nested weights in both the ANPP and r examples
– yearly weights and monthly weights within each year – to
account for memory patterns that reflect multiscale processes.
In the ANPP example, the yearly w’s are well resolved
(Fig. 2), while the monthly w’s are more uncertain (Fig. 4).
Conversely, in the r example, each scale’s patterns are well
resolved (e.g. Fig. 4), and the monthly w’s suggest temporal
memory variability linked to seasonal climate variability. For

example, precipitation received during the winter prior to ring
formation appears to be most important for understanding
variation in r for Pinus edulis at this site (Fig. 6). The monthly
w’s for temperature (wT,mo) are also fairly well resolved, but,
unlike precipitation, they indicate that temperatures experi-
enced during the previous summer are most important for
predicting r (Fig. 6). Thus, the nested weight model allows us
to identify coarse time-scale memory patterns (e.g. the impor-
tance of precipitation received during different years), and to
partition these into memory effects that operate at finer time
scales (e.g. the importance of precipitation received during dif-
ferent seasonal periods).
In the gs example, we took a different approach to accom-

modate varying time scales, which depends on the exogenous
driver of interest. For example, a ‘slow’ time scale was
assumed in computing antecedent deep soil water (W60ant)
because the amount of deep soil water is expected to change
relatively slowly, and the response of gs to W60ant is likely
mediated through ‘slow’ physiological and hormonal feed-
backs (Ju et al. 2006; Saha et al. 2008). Conversely, a ‘fast’
time scale is assumed for computing antecedent vapour pres-
sure deficit (Dant) because stomata are directly exposed to
atmospheric conditions, which vary at minute to hourly
scales, and they likely respond quickly to changes in vapour
pressure deficit (Damour et al. 2010). Following Barron-
Gafford et al. (2014), we only considered one time scale
(daily) for Rs, and lags of similar time scales have been esti-
mated for Rs in forest ecosystems (Vargas et al. 2011). We
have found it useful, however, to employ varying, driver-
dependent time scales, similar to the gs example, in other
analyses of temporally extensive soil and ecosystem respira-
tion data (e.g. Cable et al. 2013a), and for Rs data spanning
multiple years, longer (e.g. seasonal or yearly) memory effects
may emerge from interactions with annual plant productivity
dynamics (Janssens et al. 2001). In another study (Sondereg-
ger et al. 2013), we allowed the time steps to vary such that
we used relatively high resolution time steps for the recent
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past and coarser time steps for the more distant past (e.g.
j = 1, 2, 3 and 4 corresponding to 0–2, 2–6, 6–14 and 14–
22 weeks ago). We employed a similar approach in the r and
ANPP examples (see Appendix S1). Varying time scales and
time steps are straightforward to incorporate into the SAM
framework, and we highlight additional approaches to achiev-
ing this in the Appendix S1.

What features underlie memory?

Here, we highlight potentially important features that may
underlie memory patterns, including, but not limited to: inter-
actions between different antecedent drivers and/or between
antecedent and current drivers; endogenous vs. exogenous
antecedent effects; differential memory responses of

sub-component processes; and memory responses that vary at
different organisational levels.
In many cases, different antecedent drivers may interact to

affect the response variable, as was the case for r and Rs

(Table S1). For example, antecedent precipitation and temper-
ature (PPTant and Tant) interacted to influence r (Fig. 7) such
that the positive effect of PPTant on tree growth was reduced
under warmer conditions; i.e. when Tant exceeded c. 13.1 °C
(which occurred for c. 10% of the growth years), r was
expected to be reduced by higher PPTant. In the Rs example,
antecedent (SWant) and current (SW) soil water content inter-
acted to affect both the base respiration rate (Rbase) and the
temperature sensitivity (Sens) in both microsites, and the
direction of this interaction (negative) was consistent across
microsites (Table S1). In particular, the response of Rs to a
rain pulse – resulting in a change in SW – was amplified if the
pulse broke a long dry spell (low SWant) and was muted or
resulted in a reduction in Rs if the pulse occurred during a
moist period (high SWant). In general, an antecedent variable’s
importance – the strength of ecological memory for it – likely
depends on the current state of the system and other anteced-
ent variables. Similarly, the quantification of effects of current
conditions on processes of interest will likely require the eval-
uation of responses in the context of past conditions.
Exogenous or environmental factors are frequently

acknowledged, but consideration of current and antecedent
endogenous factors is rare, by comparison, especially in plant
and ecosystem ecology. We explicitly included endogenous
effects in the r and Rs case studies (Box 2). The SAM
approach suggested that both endogenous – in the form of
antecedent photosynthesis (Aant), a biological component of
the ecosystem potentially affecting another ecosystem process
(i.e. Rs) – and exogenous – i.e. soil environmental conditions
such as T, SW and SWant – factors govern Rs dynamics
(Fig. 5, Table S1), the latter of which we have highlighted.
The endogenous effect indicated that greater photosynthetic
activity (higher Aant) stimulated higher Rs (Fig. 5c, Table S1).
The characteristics of the endogenous memory, however, dif-
fered between microsites; while the weights (wA) associated
with Aant did not reveal clear temporal patterns in the grass
microsites, shrub microsites exhibited a lag response such that
Amax rates occurring 3 days prior to the day of measurement
had the greatest influence on Rs (Fig. 5, Barron-Gafford et al.
2014). This is consistent with other studies that have found
sub-daily measurements of Rs to lag behind photosynthesis by
a few hours to a few days (Baldocchi et al. 2006; Vargas et al.
2011).
Likewise, the effect of past tree growth also revealed the

importance of antecedent endogenous factors for predicting r.
In particular, if a tree grew a lot last year, we expect it to
grow a lot this year, which was supported by the positive
effect of r(t�1) (Fig. 7, Table S1). Although we did not
directly include endogenous effects in the ANPP model, previ-
ous year’s ANPP or tiller density have been shown to be
important for predicting ANPP (Oesterheld et al. 2001; Sala
et al. 2012; Reichmann et al. 2013). In our reanalysis of the
aforementioned ANPP data, previous year’s ANPP was posi-
tively (but not significantly) correlated with the ANPP residu-
als obtained from our SAM model, but it only explained an
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additional 2% of the variation in ANPP. This is in contrast
to previous studies that found a stronger effect of previous
year’s ANPP (Oesterheld et al. 2001; Sala et al. 2012; Reich-
mann et al. 2013), but unlike our flexible SAM approach,
these studies assumed that only current and/or previous year’s
precipitation affected ANPP, and precipitation during each
month was treated as being equally important. Regardless, as
illustrated in the Rs and r case studies, the SAM approach
highlighted the potentially critical role of endogenous factors
for predicting the ecological processes of interest.
In most ecological situations, the response of interest

reflects multiple, coupled sub-processes, each of which may
possess their own memory characteristics. In the gs and Rs

case studies, we expressed these responses as functions of two
sub-components: a base-line response (e.g. gref or Rbase) and
an environmental sensitivity term (e.g. Sens or Tsens) (Box 2).
In both cases, each sub-component was significantly affected
by antecedent exogenous (gs and Rs) and endogenous (only
applicable to Rs) factors (Table S1). However, the direction
and magnitude of the antecedent response varied between
sub-components. For example, antecedent temperature (Tant)
significantly affected stomatal behaviour by influencing both
gref and Sens, but Tant had opposing effects on Sens and gref
(Table S1). In addition, we assumed that antecedent vapour
pressure deficit (Dant) only had the potential to influence Sens

(but not gref), reflecting a potential acclimation response of
stomata to the prevailing vapour pressure conditions. In these
examples, we specified the antecedent drivers to share the
same temporal characteristics. For example, gref and Sens
shared the same weights (wT) for antecedent temperature
(Tant), and Rbase and Tsens shared the same weights (wA) for
antecedent photosynthesis (Aant). Of course, the explicit char-
acterisation of memory patterns in the form of the weights
(w’s) makes the specification of different w’s easy, in principle,
within the SAM framework.
Different levels of organisation may also vary in their mem-

ory characteristics and responses to exogenous and endoge-
nous drivers. The r case study nicely illustrates this because it
included both individual-tree responses (via the a’s, Box 2)
and associated population-level responses (via the �a‘s, Box 2).
Interestingly, the direction and magnitude of the exogenous
effects of the antecedent climate variables (PPTant, Tant and
PPTant 9 Tant) were consistent across trees (Fig. 7), indicating
that the response to these antecedent variables may be an
intrinsic property of the population or, more generally, the
species. Conversely, the effects of tree age and previous ring
widths differed notably across trees (Fig. 7), implying that
such endogenous effects may be an inherent property of indi-
vidual trees, which likely reflects an ontogenetic or genotypic
signal. This suggests that the model for r could be simplified
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by assuming that the antecedent climate drivers operate at the
population level (i.e. we could ignore the individual-level a2,
a3 and a4 terms), while retaining the individual-level endoge-
nous effects (a0, a1 and a5) (Box 2). Importantly, this hierar-
chical structure (e.g. a’s nested in �a ‘s) allowed us to evaluate
the importance of current and antecedent factors at different
levels of biological organisation.

What mechanisms govern memory?

The above-described memory characteristics (e.g. temporal
patterns, length and strength) associated with processes oper-
ating at one or more time scales were not anticipated prior to
analysing the data and are important in identifying new
hypotheses to understand constraining processes. The SAM
approach enables an improved, objective assessment of eco-
logical processes and drivers by explicit consideration of mem-
ory characteristics that are relatively easy to interpret. We use
our case studies to illustrate insight into potential mechanisms
associated with our specific processes that deserve further
exploration, but we do not provide a comprehensive evalua-
tion of the mechanisms. Rather, we mean to demonstrate how
SAM can be applied to facilitate hypothesis generation and
future experimentation and model refinements.
In the tree growth example, the total (cumulative) impor-

tance weight of June to March precipitation prior to ring for-
mation was c. 50% (Fig. 6). Precipitation, especially snow,
received during this period likely is important for recharging
‘deep’ soil moisture, providing a water source for trees in the
subsequent growing season (Loik et al. 2004, 2013). The next
three most important precipitation periods correspond to
spring snowmelt (April–June) during the year of growth, and
to the winter/spring periods of the previous 2 years (Fig. 6).
Likewise, precipitation during the most recent three winters is
most important for ANPP (Fig. 2). The importance of these
periods of precipitation, received over multiple years for both
annual tree growth and ANPP, could be related to the exoge-
nous effects of deep soil water recharge (Dodd & Lauenroth
1997) and/or to the concept of meristem limitation (Dalgleish
& Hartnett 2006; Smith & Dukes 2013), where growth and
establishment of perennial plants (endogenous factor) in previ-
ous years determine the growth potential in a particular year
(e.g. Reichmann et al. 2013). However, given the sampling
approaches used in the ANPP case study (all live and dead
aboveground plant biomass was removed in each sample plot,
Lauenroth & Sala 1992), meristem limitation effects were
likely reduced (Sherry et al. 2008).
We discovered potential lags in the response of soil respira-

tion (Rs) to past photosynthesis rates (Aant, Fig. 5), with
shrubs exhibiting longer lags than grasses (3–4 days vs. poten-
tially 1 day). Such lags likely reflect time delays associated
with the transport of carbohydrates from photosynthetic tis-
sues to the rhizosphere (Baldocchi et al. 2006; Barron-Gafford
et al. 2014) and/or the effects of past atmospheric conditions
on photosynthesis (Baldocchi et al. 2006). For example, tall-
statured woody plants are typically associated with relatively
long carbohydrate transport times (on the order of 3–4 days,
Bowling et al. 2002; Tang et al. 2005; Carbone & Trumbore
2007; Vargas et al. 2011), and shorter transport pathways in

grasses may account for shorter lags. Plant species-specific
priming effects associated with root exudation and consump-
tion by microbes may also lead to microsite-dependent lag
times in Rs (Cheng 2009). In addition, differences between mi-
crosites in the antecedent soil water weights (Fig. 5B) and the
importance of current and antecedent soil water (Fig. 5c) may
reflect differences in rooting distributions between grasses and
shrubs (Jackson et al. 1996). For example, the rhizosphere of
shallow-rooted grasses may be more strongly coupled to
ephemeral surface soil water over relatively short time scales
compared to more deeply rooted shrubs (e.g. Schwinning
et al. 2002).
Stomatal behaviour of Larrea tridentata exhibited different

lag responses to deep and shallow soil water (Fig. 3). These
differences could be explained by Larrea’s bimodal rooting
distribution (Ogle et al. 2004) combined with the differential
residence times of deep (long) vs. shallow (short) soil water
(Sala et al. 1992). Thus, gs may be partly constrained by how
deep soil water conditions control endogenous processes (e.g.
new leaf production and overall canopy display) that influence
leaf gas exchange (Leffler et al. 2004). By contrast, shallow
roots are likely to be inactive when surface soils are dry and
quickly become active after rewetting (North & Nobel 1991),
allowing for rapid uptake of water and nutrients. This would
directly affect the water status of leaves and gs, regardless of
leaf age or canopy characteristics, resulting in short lag times
between gs and soil water availability. For physiologically or
enzymatically mediated processes such as gs and Rs, the
importance of antecedent environmental conditions – e.g. past
water, temperature, vapour pressure deficit, etc. – may also
indicate an acclimatisation or acclimation response (Atkin &
Tjoelker 2003; Smith & Dukes 2013).
In the tree growth example, why would the antecedent

endogenous effects operate at the individual level, but the
antecedent exogenous effects operate at the population or spe-
cies level? The tree-specific age response (Fig. 7) likely reflects
ontogenetic changes in tree growth patterns (Carrer & Urbi-
nati 2004); for example, the age effect tended to differ by age
class such that the correlation (q) between the core-level age
effect, a1(c), and the corresponding age of tree (core) c in
1910 was q = �0.27. Although r(t) was positively correlated
with last year’s ring width, r(t�1), for all trees, the magnitude
of the r(t�1) effect, a5(c), differed among trees, which was
also negatively correlated with the initial (1910) tree age
(q = �0.36). Conversely, the antecedent climate effects appear
to reflect the similar climatic conditions of the population.
With direct measurements of individual trees’ local soil water
or canopy temperatures, we may have discovered tree-specific
responses to antecedent microclimate conditions (Beckage &
Clark 2003).

Potential considerations and extensions

In general, without additional model structure, the SAM
framework may be limited to data sets with extensive tempo-
ral information (i.e. relatively long time-series). The length
requirement of the time-series may depend on the inherent
time scale of the process of interest. In the two ‘slow’ time-
scale examples, ANPP measurements were reported for
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50 years, and 91 growth rings were used for each tree. In the
two ‘fast’ time-scale examples, gs and Rs were measured over
16 and 27 non-consecutive days, respectively. While the gs
and Rs time-series were discontinuous in time and may seem
relatively short, the sampling strategies resulted in data that
spanned a wide range of exogenous and/or endogenous condi-
tions. However, significant efforts in developing large data
sets associated with ecological structure and function (e.g.
FLUXNET, TERN and NEON) will yield more long-term
data that will be available for rigorously quantifying ecologi-
cal memory.
We chose case studies from arid and semi-arid ecosystems

partly because these systems are likely to exhibit strong exoge-
nous, and potentially endogenous, memory or legacy effects
(e.g. Sala et al. 2012) given that they are often characterised
by highly variable ecological responses and environmental
drivers (e.g. water and temperature). Our SAM approach,
however, could be extended to understand the length, tempo-
ral patterns, and strength of the memory in other extreme,
more mesic, or potentially less variable systems. For example,
SAM could be applied to boreal and arctic systems with stor-
age-based hydrological dynamics, where the time scale for
which soil moisture impacts plant and ecosystem carbon and
water fluxes is drawn out over multiple years such that cur-
rent flux dynamics are likely controlled by prior freeze-thaw
cycles and permafrost degradation status (e.g. Iwata et al.
2012; Cable et al. 2013b). SAM could also be used to evaluate
the antecedent exogenous and endogenous controls on the
timing and magnitude of green-up and flowering in tropical
forests, two globally important dynamic phenomena that are
not well understood (e.g. Pau et al. 2013; Krishnaswamy et al.
2014; Morton et al. 2014). More generally, phenological pro-
cesses are inherently temporal, and the rate and/or timing of
leaf-out or flowering may depend on past phonological sched-
ules. Long-term data sets – such as the 700 + year cherry
blossom record from Japan (Aono & Kazui 2008) or from the
National Phenology Network – could be used within the
SAM framework to provide predictive ability of how ecologi-
cal memory affects phenological processes, particularly in the
face of changing climate. Moreover, we hypothesise that sys-
tems characterised by little temporal variation in climate driv-
ers are likely to be more strongly controlled by endogenous
memory (e.g. associated with effects of organismal size, past
productivity, etc.) or exogenous disturbances (e.g. land-use or
fire history), which could be tested with the SAM approach.

CONCLUSIONS

This study demonstrates that memory is important for under-
standing contemporary ecological processes, and the length,
temporal patterns, and strength of the memory can vary
greatly among processes spanning a range of temporal and
spatial scales. Importantly, the stochastic antecedent model-
ling (SAM) framework provides an objective method for iden-
tifying these latent memory properties by explicitly
quantifying antecedent exogenous and/or endogenous condi-
tions and their effects on a diversity of ecological responses.
We illustrated the utility of the SAM approach and the types
of unique insights it provides by applying it to four distinctly

different data sets that represent processes operating at sub-
daily to interannual time scales. In all four examples, the
SAM approach greatly improved our ability to predict the
response of interest, revealing important lag periods and ante-
cedent drivers. Although our examples were obtained from
arid and semi-arid systems, the SAM approach is expected to
be applicable to a diversity of systems characterised by tempo-
ral variation in the response(s) of interest and associated
endogenous and/or exogenous drivers.
Our SAM framework may also be broadly applicable within

and outside the field of ecology to understand the importance
of time, and memory in particular. Different ecological sub-
disciplines use alternative descriptors to describe ecological
memory, such as ‘biological legacies’ (e.g. landscape ecology)
and ‘antecedent effects’ (e.g. ecosystem ecology). The ecologi-
cal memory concept is captured in notions of lag effects, time
delays, historical effects and buffering capacity (e.g. Bengtsson
et al. 2003; Ogle & Reynolds 2004; Golinski et al. 2008;
Schaefer 2009). The SAM approach provides a rigorous quan-
titative approach for exploring these different aspects of mem-
ory. Outside of ecology, memory has been used to describe
the lag between atmospheric forcing and land surface hydrol-
ogy (Koster & Suarez 2001; Lo & Famiglietti 2010), persis-
tence of atmospheric chemical constituents (e.g. Varotsos &
Kirk-Davidoff 2006) and changes in the physical structure of
biological macromolecules (Yashima et al. 1999). Thus, the
general SAM formulation is expected to be applicable for
quantifying memory of a diversity of dynamic processes repre-
senting spatial and temporal scales spanning several orders of
magnitude.
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