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The direction andmagnitude of soil organic carbon (SOC) changes in response to climate change remain unclear
and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are
greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To
address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was con-
ducted from a recently compiled soil carbon database. Temperature and landform type were the dominant con-
trols on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and
ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type
and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with lati-
tude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and
Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more conti-
nental, suggesting that the lower productivity, higher decomposition rates andfire activity, common in continen-
tal climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their
impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes.
Thus, themagnitudes of SOC change across temperature gradientswere non-uniform and depended on landform
type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age,
aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence
of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude
systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils,
especially at depths>1 m in order to fully understand the effects of climate on soil carbon in Alaska.

Published by Elsevier B.V.
1. Introduction

As much as half of the world's soil organic carbon (SOC) is stored in
northern soils (Tarnocai et al., 2009) and projected increases in air
temperature are expected to occur more rapidly at high latitudes
(IPCC, 2007). SOC stored in high-latitude ecosystems is a potentially
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vulnerable component of the global carbon cycle (e.g. McGuire et al.,
2009; Ping et al., 2008b; Schuur et al., 2008; Smith and Fang, 2010;
Zimov et al., 2006). In high-latitude regions, high stocks of carbon are
held in frozen mineral soils and both frozen and unfrozen peatland
soils, all of which are vulnerable to soil warming (Dutta et al., 2006;
Ping et al., 1997). Additionally, approximately a quarter of Earth's vege-
tated land cover is in the arctic and boreal regions (McGuire et al., 2009)
so that even soils with low SOC contents can store large amounts of SOC
on an areal basis. Despite increasing availability of spatial data products
and advances in process-based modeling studies, there remain chal-
lenges in basic quantification of soil carbon in relation to soil forming
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factors (Jenny, 1941) in high-latitude biomes. This is partly due to a rel-
ative scarcity of SOC observations in boreal and arctic regions, which
must be extrapolated over large and topographically complex areas.
Furthermore,much less emphasis has been placed on SOC below organ-
ic horizons, revealing a vertical data gap (Ping et al., 2010). Thus, obtain-
ing baseline soil carbon data at high latitudes is a challenge for our
ability to understand and model terrestrial carbon feedbacks to the
atmosphere.

In Alaska, not only are soil properties strongly linked to vegetation,
topography, and parent material (Ping et al., 2004, 2005; Swanson,
1996; Turetsky et al., 2005), but climate also plays a major role in SOC
content across Polar, Boreal, and Maritime ecoregions (Post et al.,
1982). For example, data from nine profiles suggest that tundra
soils hold the highest non-wetland soil carbon contents (314
to 599MgC ha−1) followed by southern coastal forests (240 to
437 MgC ha−1) and interior boreal forests (169 to 787 MgC ha−1)
(Ping et al., 1997). Differences in SOC between Polar and Boreal ecore-
gions is due to cryoturbation and permafrost occurrence which are as-
sociated with colder climates (see also Bockheim, 2007; Bockheim
and Hinkel, 2007; Ping et al., 2008a). In contrast, higher SOC in south-
east Alaska compared to the interior may be related to high precipita-
tion and organic inputs (Ping et al., 2002). Therefore, the boundaries
between Polar, Boreal and Maritime ecoregions represent interesting
gradients in temperature and precipitation that may be affected by cli-
mate change, with consequences for soil carbon pools (Harden et al.,
2008; Steltzer, 2004; Stottlemyer et al., 2001; Wilmking et al., 2006).
Further, since potentially one-third of the SOC in the U.S. is stored in
Alaska (Bliss and Maursetter, 2010; Guo et al., 2006), SOC dynamics in
this state alone directly impact national and continental scale cycling
of terrestrial carbon.

Our assessment of the magnitude and distribution of SOC in Alaska
involved several objectives. First, we compiled soil carbon data from a
variety of academic and government sources to a 1-m depth to
provide the most comprehensive, standardized database of SOC in
Alaska to date. Second, we partitioned the variability in SOC across
Alaska at the ecoregion, landscape, and ecosystem levels as a means
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Fig. 1. Locations of soil profiles and ecoregions used in the study. Gray areas and their labels i
Boreal, and Maritime.
of assessing the distribution of SOC across the state. Finally, as a
first-order (i.e., basic) assessment of SOC variability in Alaska, we
evaluated the role of various soil-forming factors, including climate,
in controlling SOC distributions using simple univariate statistics
and multiple linear regression. Although the study is focused in Alas-
ka, it may be viewed as a case study of pedogenesis and SOC content
for similar high-latitude soil environments.
2. Methods

2.1. Soil carbon database

This study uses a variety of soil profile datasets with geocoordinates
(Fig. 1) from both academic and government sources (including the
State Soil Geographic Database, STATSGO) that differ somewhat in
their sampling and lab analysis protocols. Three datasets of total profile
SOC, but for different depths, were derived from the database for the
purposes of this study: 1) 1-m SOC (Mg ha−1), which included the
summed SOC of all horizons from the top of the organic layer to the
depth of bedrock or 100 cmdepth (n=554), 2) 50 cmmineral SOC, cal-
culated for the 0–50 cm mineral depth below the organic–mineral in-
terface (n=603), and 3) organic layer soil carbon (n=592).
References to SOC content are for the 1-m SOC pool unless otherwise
noted. Most profiles were sampled by horizon type while a smaller
number where sampled at fixed depths.

Soil carbon content in most soil profiles were calculated by simply
adding together soil carbon content of individual layers. However,
bulk density measurements were missing from 40% of the sampled
layers in the combined dataset (15% organic and 25% mineral). To fill
in gaps, predictive models were developed that estimate bulk density
from carbon concentration (%C) in mineral soils and carbon content
(gC cm−2) in organic layers (Appendix 1). Equations were sought that
would apply to specific horizons and, in some cases, for specific ecore-
gions. An uncertainty analysis was also carried out to assess if propagat-
ed model errors would affect ANOVA test results (below).
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After the adjustments and predictions from Appendix Table 1 were
made, soil carbon content (SOC) (Mg ha−1)was calculated by the equa-
tion:

SOC ¼ 100 � thickness � carbon � bulkdensityð Þ

where thickness is of the soil layer (cm), carbon is the concentration of
total carbon measured by dry combustion (%) (or adjusted from wet
combustion, see Appendix 1), and bulk_density is for the b2 mm frac-
tion (g cm−3). Where data for the >2 mm fraction was available, the
equation was adjusted to calculate carbon content. For about 25% of
the profiles it was uncertain whether coarse fragments were present
in the profile. A correction factor of 0.01, based on available empirical
data,was applied to the SOC content of someprofileswere this informa-
tion was not available but where it was likely that rock content was
high. However, we recognize that this figure may be low for some till
substrates (see sensitivity analysis below).

Calculating SOC using the above equation cannot always be applied
to highly cryoturbated soils in the Arctic Tundra region. Therefore, for
cryoturbated profiles only, published values for the total 1-m pool
were directly added to the database. A simple ratio was applied to the
“mineral” part of the soil (the 1-m SOC minus the surface organic
layer) to approximate organic carbon content of the 0 to 50 cmmineral
soil carbon content for cryoturbated profiles only (50cmSOC, Mg ha−1):

50cmSOC ¼ 1mSOC−OlayerSOCð Þ � 50cm
100cm−OlayerDepthð Þ ;

where 1mSOC is the total soil carbon content (including the organic
layer) to a 1-m depth (Mg ha−1), OlayerSOC is the surface organic layer
soil carbon content (Mg ha−1), and OlayerDepth is the depth of the or-
ganic layer (cm,≤100 cm). This approach assumes an equal distribution
of SOC in cryoturbated soils with depth (c.f. Michaelson et al., 1996;
Bockheim and Hinkel, 2007). Surface organic layer carbon in Arctic
regions that was not subsumed into the mineral matrix was calculated
in the same manner as non-cryoturbated profiles.

2.2. Ecoregions in Alaska

The study includes data from the entire state of Alaska, divided by
various levels of ecoregions as defined by Nowacki et al. (2001)
(Fig. 1). Thirty-two ecoregions (“Commoners”) were delineated along
climate and vegetation gradients. These are grouped into three Level 1
regions, “Polar”, “Boreal”, and “Maritime”, and nine Level 2 regions.
Much of the current study is focused on four Level 2 ecoregions, “Inter-
montane Boreal”, “Arctic Tundra”, “Alaska Range Transition”, and
“Coastal Rainforests”, because of the richness in observations in these
areas. The distribution and areal extent of Level 2 ecoregions are similar
to the Major Land Resource Areas (MLRA's) used by the Natural
Resources Conservation Service (USDA, 2006). Level 1 and Level 2
regions were used in combinationwith land cover and landform classes
for exploring data gaps, and for discussing broad scale changes in SOC
across the state. Geography, climate regimes, geology, vegetation
cover and fire activity distinguish ecoregions and their soils. The Inter-
montane Boreal, unlike other parts of Alaska, was never glaciated but
is well marked by braided rivers from glacial runoff from adjacent re-
gions (Ping et al., 2006).

2.3. Proxies for soil forming factors

Site attributes such as vegetation cover, parent material, soil drain-
age, slope and aspect were inconsistently recorded in the datasets.
Therefore, for the purposes of this study, soil forming factors were
represented by mostly GIS information which was overlaid and
extracted to point observations. The level of accuracy of this approach
depends on the type of information and scale of the data layer from
which it was extracted (see below). All data extractions were per-
formed in the Alaska Albers Equal Area Conic projection with North
American Datum 1983 using ArcInfo software (Environmental Systems
Research Institute, 2010).

2.3.1. Landcover
Landcover data were obtained from the 30 m National Landcover

Database (2001 NLCD; Homer et al., 2004) for the year 2001. The
NLCD has been used previously in the study of state factor effects on
soil carbon distribution in the conterminous U.S. (Guo et al., 2006).
Most of the soil-bearing areas in Alaska are defined by categories of
“evergreen forest”, “deciduous forest”, “mixed forest”, “shrub/scrub”,
“dwarf shrub”, “sedge”, “woody wetland”, and “emergent herbaceous
wetland”. For some analyses, the three forest classes and two shrub
classes were each combined into two general classes—“forest” and
“shrub”. For Intermontane Boreal analyses, evergreen forest was sepa-
rated into “black spruce” and “white spruce” based on field notes. The
2001 NLCD vegetation cover is highly correlated with topography. For
example, deciduous forests will occur mostly on south and west facing
aspects in upland areas and in locally well-drained lowland locations.
Shrubs occur under a variety of conditions including cold upland slopes,
lowland black spruce woodlands, and recently disturbed areas (i.e.
floodplains, fire scars) (Edwards and Armbruster, 1989; Viereck et al.,
1983).

The NLCD land cover classes extracted to observation points were
generally consistent with field observations, when such observations
were available. Much of the initial misclassification was due to discrep-
ancies between the sampling date and the date of the 2001 NLCD (e.g.,
soils sampled on forested lands that were later commercially devel-
oped). Profiles were sampled mostly between the years 1980 and
2010 and less than 10% of them were sampled as early as the 1950's.
Field noteswere available for only 77% of the observations. From the ob-
servationswith field notes, wewere able to determine that 56% of them
were identified correctly by the NLCD map. If we apply this ratio to the
remaining observations with no field notes, then we predict that 90% of
the observations were likely correctly identified. It is important to note
that land cover in this study was not used as a predictor variable, but
rather to stratify data.

2.3.2. Proxy for parent material and topography
Landform type for each of the observations was assigned and

defined from parent material texture, digital elevation model (DEM),
and land cover layers. A 60 m USGS DEM of Alaska was re-sampled to
1 km for efficiency in creating landform classes. Landforms were
defined in such a way as to represent broad categories of soil drainage
conditions that are common in Alaska. Although this approximation of
soil drainage may be crude at the point scale, it represents larger scale
drainage in the surrounding landscape. Further, this approach relies
on raster DEM-derived attributes of topography (e.g. slope) instead of
STATSGO soil map units which are still only coarsely mapped in Alaska
(Bliss and Maursetter, 2010).

The parent material, DEM and land cover layers were combined to
develop discreet landform units using the following steps. First, parent
material texture—“Rocky or Variable”, “Sandy” and “Silty”—mapped by
Jorgenson et al. (2008) was extracted to each of the observations. In
the Intermontane Boreal, areas mapped as Sandy and Silty were most-
ly river floodplains, or areas adjacent to floodplains. In contrast, Sandy
and Silty sources in the Arctic Tundra were mostly marine deposits.
Till made up most of the Rocky or Variable textures that occurred
nearly everywhere else in the state. Second, slope and topographic
position index (TPI) from the 1 km DEM (USGS) were combined to
delineate upland and lowland areas. Topographic position index is es-
sentially a measure of hillslope position where positive values repre-
sent topographic high points (e.g. ridges) and negative values are
topographic low points (e.g. valleys) (Weiss, 2001). It is calculated
as the difference of a cell's elevation and the mean elevation of a
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ring of cells around it (using the Benthic Terrain Modeler tool for Arc-
Map; Wright et al., 2005). Slope (%) further distinguishes landform
type where gently sloped areas and topographic low points are con-
sidered lowlands while moderately and steeply sloped areas are up-
lands. Formally, “Upland” areas were defined as: 1) TPI≥4 and
slope≥0 and 2) TPIb4 and slope≥10. “Lowland” areas were defined
as TPIb4 and 0bslopeb10. Third, Upland and Lowland classes were
combined with the Rocky, Sandy and Silty classes. This resulted in
five combinations—“Rocky or Variable Upland”, “Rocky or Variable
Lowland”, “Sandy Lowland”, “Silty Upland”, and “Silty Lowland”
(“Sandy Upland” is a rare combination in Alaska and was ignored in
this study). Rocky or Variable Uplands and Rocky or Variable Low-
lands together comprise 62% of the state and can be thought of as
general categories where the “Sandy” and “Silty” modifiers do not
apply. For convenience, we refer to Rocky or Variable landforms as
simply “Uplands” and “Lowlands”. Lastly, “Wetlands” were distin-
guished from other lowland areas by superposing “emergent herba-
ceous wetland” and “woody wetland” NLCD land cover
classifications on each observation, regardless of its previous
classification under the first two steps.

2.3.3. Proxy for climate
Climate informationwas obtained from the Parameter-Elevation Re-

gression on Independent Slopes Model (PRISM), a product of Spatial
Climate Analysis Service at Oregon State University (Daly et al., 2001).
PRISM algorithms account for important spatial differences in Alaskan
climate such as winter inversion, coastal proximity and elevation. The
spatial resolution of monthly air temperature and precipitation are
2 km and averaged from 1961 to 1990. In addition to mean annual
temperature and precipitation (MAT, MAP), mean summer (June, July,
August; MST, MSP) and winter (December, January, February; MWT,
MWP) temperature and precipitation were also derived and extracted
to each soil carbon observation. Growing season length (GSL) was
derived from the number of days between the date of thaw and date
of freezing. Additionally, MST–MWT was derived and used as an index
of continentality (Kauppi and Posch, 1985) and indicator of shifting
seasonal climatic regimes and fire activity. Surface air temperatures
can be problematic proxies for soil temperature which largely control
productivity and decomposition because of the influence of organic
layer and snow depth and other topographic variables (e.g. Jorgenson
et al., 2010; Yi et al., 2009). However, for broad regional comparisons,
these variables may correlate with soil temperature and processes
which govern SOC storage (e.g., Bond-Lamberty and Thomson, 2010;
Guo et al., 2006).

2.3.4. Other climatic, biotic, and topographic proxies
Folded aspect was calculated to reflect heat load differences where

southwest facing slopes (225° clockwise from North) are the highest
and northeast facing slopes (45°) are the lowest (McCune and Dylan,
2002):

folded aspect ¼ 180− aspect−225j jj j:

Profiles that had permafrost in the top 1-m of soil and thosewithout
permafrost were labeled accordingly for means comparisons. Most of
the profiles in the dataset (81%) did not have permafrost in the top
1-m of soil. Active layer depth was not consistently measured across
all the observations. In the few cases that it was noted it was calculated
as the depth from the top of the surface organic layer to the top of the
perennially frozen layer (denoted by “f”). Stand age was also noted in-
consistently. However fire perimeters and the year of fire events have
been mapped for Alaska since 1943 (BLM, 2008) and were used to ap-
proximate stand age for observationswhere this informationwasmiss-
ing. Stand ages were then grouped as “young forests” (b65 years) or
“mature forest” (>65 years) for means comparisons and controlling
for stand age effects in the presence of other predictors.
2.4. Data analysis

Comparisons of SOC were made at various scales within Alaska (i.e.
levels of ecoregion, landform, and ecosystem partitioning) in addition
to global SOC means. Differences in SOC content were assessed in a
way that mimicked experimental control of temperature and landform.
After individual profiles were assigned to specific ecoregions and land-
forms their SOC contents were assessed with one-way analysis of vari-
ance (ANOVA) tests. In each comparison, the data were log transformed
to correct for data skewness and unequal variances were tested with
the Levene test. When data distribution followed the assumptions of
normality and approximately equal variances, the Tukey–Kramer HSD
test was used at P=0.05. If variances were found to be unequal, a Wel-
ch's ANOVA test was applied allowing for unequal standard deviations.
If variances were unequal and the sample population not normally dis-
tributed, then the Wilcoxon rank-sum test was applied. In all cases
where post-hoc analysis was required, the appropriate Bonferroni sta-
tistic was used to determine statistical significance.

To control for landform, ecoregion was treated as the fixed effect for
each landform. Similarly, to control for ecoregion, landformwas treated
as the fixed effect within a specific ecoregion. The same approach was
used to compare SOC between vegetation types within the same land-
form and ecoregion. In addition to comparing SOC between Level 2
ecoregions for specific landforms, SOC was also compared without con-
sideration of landform, i.e. a lumped ecosystem average. Partitioning
profiles sometimes resulted in small groups, therefore, a cutoff of b5
profiles per group was used to determine if the group would be includ-
ed in the ANOVA tests. To assessmultiple effects on SOC,multiple linear
regression was used to relate both climatic variables and organic layer
depth to SOC content within Alaskan forests. All possible models with
amaximumof two or three termswere assessed to find significant, par-
simonious models of SOC distribution. Several tests were used to select
the best fit models of SOC in Alaskan forests: 1) adjusted R2, 2) root
mean squared error (RMSE), and 3) corrected Akaike's Information
Criterion (AICc). All statistical analyses were carried out with JMP soft-
ware (SAS, version 8.0).

The model and overall approach used in this study to calculate indi-
vidual profile SOC is somewhat complex and there is a possibility that
model error may affect our comparisons of means across landforms
and ecoregions (Appendix 1). Therefore, to address this, we applied a
Monte Carlo method of propagating errors (Yanai et al., 2010) and
observed what effect this had on the ANOVA tests applied for compar-
ing mean SOC in the 1-m pool across ecoregions for specific landforms.
For each iteration, we randomly applied the standard errors from the
models of %Ctot and Th (Appendix Table 1) simultaneously to each
profile that required gap-filling. Then, new group comparisons were
performed for all of the profiles in the same way as outlined above.
After these steps were repeated 100 times, we found that the range of
p-values never changed the results of the comparisons.

We performed additional analyses to understand the effect of cer-
tain deficiencies in the dataset in several ways. First, 178 profiles from
Table 2 needed no gap-filling and could therefore be used as validation.
When measured 1-m SOC was compared to predicted SOC, the slope
was not significantly different than 1 (P=0.05), although 8 of the pro-
files had predicted SOC that was 50 to 80% different from themeasured
value. Several of these outliers were peatland soils and so it is possible
that the gap-filling approachmay underestimate SOC at these locations.
Second, to assess the effect of adjusting %Corg on mean 1-m SOC, we
compared three approaches of calculating mean 1-m SOC from 29 pro-
files where %Corg and %Ctot overlapped: 1) using %Ctot only, 2) using %Corg
only, and 3) using %Cadj only. All of the approaches yielded SOC esti-
mates that were b1% different from each other. Third, about 12% of
the layers were known to have pH≥7.5 (30% of the layers had no pH
data), but few layers were analyzed for carbonates. For profiles that
had pH measurements (n=39), when calculations of profile SOC in-
cluded carbonates the mean SOC was 1.3% lower than when the
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carbonates were not included. Therefore, a few profiles with high pH
were likely underestimated by this amount. Lastly, recall that for
about 25% of the profiles it was uncertain whether coarse fragments
were present. Mean SOC calculated without coarse fragments was 4.4
and 3.2% higher than mean SOC calculated with coarse fragments in
the Silty Lowlands and Sandy Lowlands, respectively. The same calcula-
tions showed that Uplands and Lowlands were 1.4 and 1.0%, higher,
respectively, when coarse fragments were omitted. Therefore, for this
subset of data where coarse fragments were missing, soils with sandy
or silty parent materials could be somewhat overestimated even after
our correction was applied. Overall, these analyses support that errors
resulting from our approach in calculating SOC means are probably
small for the purposes of comparing group means, although individual
profiles may not be well predicted in some cases.

3. Results

3.1. Representativeness of dataset relative to Alaska landscapes

Data were richest in four of the five largest Level 2 regions in Alaska,
the Intermontane Boreal, Coastal Rainforests, Arctic Tundra, and Alaska
Range Transition, and profile data were generally proportional to areal
coverage of each ecoregion (Fig. 2a, b). The exceptionwas the third larg-
est ecoregion, the Bering Taiga, which was poorly sampled. Most of this
region is covered with shrubby vegetation (65%) with lesser coverage
from forests (14%) and wetlands (14%). Other poorly sampled Level 2
regions included the Bering Tundra and Aleutian Meadows which
together make up 9% of Alaska.

Observations of 1-m SOC were generally well distributed across cli-
mate gradients for specific landform types, but there were several ex-
ceptions (Fig. 3). There were no observations in Silty landform types
of the Brooks Foothills where the mean MAT is −12 °C and MAP is
230 mm. Additionally, while Silty Lowland observations were sampled
regularly across the gradient from −7 to −1 °C, Silty Uplands had
only two observations throughout the gradient. The undersampled
Silty landforms in northern and central Alaska were predominantly
loess deposits, especially in the lower Brooks Foothills, Kuskokwim
Mountains and Yukon River Lowlands. Further, although there was
notably good coverage of SOC observations for emergent wetlands
near Barrow, AK (−12.5 °C MAT, 180 mm MAP), observations were
generally missing for the wider and more common climate gradient
for wetlands found in the Arctic Tundra (−12.5 to −10 °C MAT, 180
to 400 mmMAP).

Combining data by Level 1 regions, land cover, and landform data
resulted in 33 unique combinations that described 90% of Alaska's land-
scape (Fig. 4a,b). However, soil profile observations were not distribut-
ed evenly across the classes. For example, approximately 43% of Alaska
36%
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9%

8%

1

5%

4%

1%

6

a1%

Alaska
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Fig. 2. Area, data coverage, and 1-m SOCmeasurements for Level 2 ecoregions in Alaska. The his
a 1-m depth within each ecoregion. Box plots for SOC observations (c) represent the 90% data
is covered by shrubswith rocky parentmaterial, yet only 9.5% of the ob-
servations fall in this category. Although there were 25 emergent wet-
land observations to a depth of 1-m or more in the Polar regions,
there were only 6 for the entire Boreal region. Other relatively sparsely
sampled combinations (b5 observations) that made up at least 3% of
Alaska's landscapewere the Boreal Lowland Shrubs and Polar Silty Low-
land Shrubs. For the Maritime region, poorly sampled combinations in-
cluded only the Lowland Shrubs. In contrast, some environments were
sampled more densely, including the Polar Sedges (both upland and
lowland), Maritime Evergreen Forests (both upland and lowland), Bo-
real Sandy Lowland Evergreen Forests, and Boreal Deciduous Forests
(both upland and lowland).

Itwas unclear howwell soil carbon contained in permafrost to a 1-m
depth was represented by the dataset, especially in Boreal regions.
According to the National Cooperative Soil Survey (NCSS) horizon des-
ignation convention (used for 92% of the dataset), permafrost is indicat-
ed by an “f” (i.e. “frozen”) in the soil layer sampled (Schoeneberger
et al., 2002). In the Arctic Tundra 75% of the observations documented
permafrost within the top 1-m of soil. In the Intermontane Boreal, how-
ever, only 18% were noted as having permafrost. We note that some
profiles were not sampled to a 1-m depth (and therefore not included
in our analysis) possibly due to permafrost inhibiting deeper sampling.
Therefore it is possible that the proportion of profiles containing perma-
frost in our dataset is somewhat biased and may be higher. Moreover,
we also note that the current dataset does not include permafrost or
carbon deeper than the 1-m cutoff as these samplings were rare.

3.2. Distribution of SOC by ecoregion, landform, and ecosystem for
selected ecoregions

3.2.1. Partitioning SOC by ecoregion
Within the most data-rich Level 2 ecoregions, mean 1-m SOC varied

significantly (Pb0.05), showing a three-fold difference from
140 Mg ha−1 in the Intermontane Boreal to 440 in Arctic Tundra
(Fig. 2c). High SOC content was also observed in the Alaska Range Tran-
sition (260 Mg ha−1) and Coastal Rainforests (250 Mg ha−1), but these
were still 1.7 and 1.8 times lower than the Arctic Tundra. Although
sparsely sampled, the Bering Taiga and Bering Tundra regions had
somewhat lowermean 1-m SOC (not significant P>0.05) than the Arc-
tic Tundra. Likewise, the Pacific Mountains Transition region (i.e. the
Copper River Basin) was very similar in SOC levels to the Intermontane
Boreal.

3.2.2. Partitioning SOC by landform
Partitioning the variability of 1-m SOC by landform (the combina-

tion of topographic and parent material characteristics) resulted in an
almost seven-fold difference among means (Pb0.0001) (Table 1). The
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highest mean 1-m SOC was in the Arctic Tundra Uplands with
533 Mg ha−1 and the lowest was in the Intermontane Boreal Uplands
with 86 Mg ha−1. The Arctic Tundra Uplands were also 2.5 and 2.2
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times the mean SOC in Uplands of the Alaska Range Transition
(210Mg ha−1), and Coastal Rainforests (240 Mg ha−1), respectively.
Similarly, Sandy Lowlands of the Arctic Tundra (511 Mg ha−1) and
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Table 1
Soil carbon means (Mg ha−1), standard deviations in parentheses, and sample numbers for various landforms and ecoregions in Alaska.

Level 2 Ecoregion (commoner) Pool Landform

Upland Lowland Sandy lowland Silty lowland Wetland

Arctic Tundrab (Beaufort Coastal Plain, Brooks Foothills) Organic 78 (110) AB 39 (12) AB 120 (117) A n.d. 81 (101)
50 cm mineral 284 (185) A 195 (67) A 234 (114) A n.d. 216 (89) A
1 m total 533 (328) Aab 328 (160) Ab 511 (193) Aa n.d. 442 (164) ab
na 14 13 47 0 25

Intermontane Boreal (many) Organic 21 (25) B 49 (27) AB 19 (32) B 40 (35) 272 (250)
50 cm mineral 57 (40) B 121 (76) B 72 (78) B 92 (61) B 170 (168) B
1 m total 86 (45) C 194 (79) B 113 (98) B 152 (88) B 381 (207)
n 53 70 28 30 13

Alaska Range Transition (Cook Inlet Basin) Organic 46 (67) A 32 (13) B 96 (178) A 33 (11) 38 (44)
50 cm mineral 147 (45) A 170 (122) AB 194 (72) A 190 (65) A 135 (48)
1 m total 210 (88) B 216 (123) AB 376 (130) A 283 (80) A 256 (95)
n 16 10 10 10 4

Coastal Rainforestsc (Alexander Archipelago) Organic 77 (103) A 105 (188) A n.d. n.d. n.d.
50 cm mineral 181 (108) A 170 (96) AB n.d. n.d. n.d.
1 m total 240 (132) B 258 (174) AB n.d. n.d. n.d.
n 66 71 0 0 0

Different lower case letters indicate significant differences (Pb0.05) between landform types of the same ecoregion.
Different upper case letters indicate significant differences (Pb0.05) between ecoregions of the same landform type.

a Samplesb5 were omitted from comparisons.
b Excludes observations from the Brooks range for comparability across landform types.
c Excludes observations from the Alaska range for comparability across landform types.
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Alaska Range Transition (376 Mg ha−1) regions were 4.5 and 3.3 times
higher than the Intermontane Boreal region (113 Mg ha−1). Also, the
Silty Lowlands were 1.9 times higher in the Alaska Range Transition
(283 Mg ha−1) than in the Intermontane Boreal (152 Mg ha−1). The
Lowlandswere only significantly different in their SOC content between
the Arctic Tundra and Intermontane Boreal. In contrast, there were no
differences among Arctic Tundra and Intermontane Boreal Wetlands.

Within ecoregions, the largest difference in 1-m SOC among land-
forms occurred in the Intermontane Boreal between the Wetlands
(381 Mg ha−1) and all other landforms, being 4.4, 3.4, 2.5, and 2.0
times larger than the Uplands, Sandy Lowlands, Silty Lowlands
(152 Mg ha−1), and Lowlands (194Mg ha−1), respectively (Table 1).
Similarly, the Intermontane Boreal Lowlands were 2.3 and 1.7 times
higher than the Uplands and Sandy Lowlands. No differences in SOC
were observed in the Coastal Rainforest landforms. Sandy Lowlands of
the Arctic Tundra were significantly higher than other Lowlands, but
Sandy Lowlands were also spatially distributed towards the northern
edge of Alaska where temperatures were colder.

3.2.3. Partitioning SOC by ecosystem
When1-mSOCwas partitioned by ecosystem (i.e. local-scale combi-

nations of ecoregion, landform, and vegetation), there was more than a
10-fold difference amongmeans thatwas highly significant (Pb0.0001)
(Table 2). There were low sample numbers for some groups; however,
dominant environments within specific ecoregions were still repre-
sented (see Fig. 4 for box plots of similar Level 1 ecoregion ecosystems).
Mean 1-m SOC was highest in Arctic Tundra Sedge Uplands and Sandy
Lowlands (729 and 519 Mg ha−1) and lowest in Intermontane Boreal
White Spruce, Mixed Forest and Deciduous Forests (69, 74 and
81 Mg ha−1) (Table 2).

When holding ecoregion and landform constant, the largest and
most significant (Pb0.05) differences between vegetation types
occurred in the Intermontane Boreal, where in the Sandy Lowlands
Black Spruce (288 Mg ha−1) and White Spruce (134 Mg ha−1) were
3.1 and 1.5 times higher, respectively, than Mixed Forest
(92 Mg ha−1) (Table 2). Both the organic and mineral SOC pools con-
tributed roughly equally to the higher SOC observed in Sandy Lowland
Black Spruce compared to other Sandy Lowland vegetation types. Sim-
ilar differences were observed between Upland Black Spruce and other
species (Table 2). However, these differences were not significant and
we note that only five black spruce observations were available for
this comparison. In contrast, the Coastal Rainforests showed little
change across Upland ecosystems except that Lowland Sitka Spruce
(248Mg ha−1) was 1.6 times higher than Lowland Mixed Forest
(152Mg ha−1).

Some forest types that occur over a variety of landforms were com-
pared by holding ecoregion and vegetation type constant. Both Decidu-
ous andWhite Spruce types in the Intermontane Boreal had higher 1-m
SOC in the Sandy Lowlands compared to the Uplands (Table 2). There
were no significant differences among other landform and vegetation
combinations, including all black spruce types.

3.3. Factors affecting SOC accumulation

3.3.1. Climate and SOC interactions in uplands and lowlands
Soil carbon contents changed dramatically, but non-linearly in

Upland and Lowland landforms across a latitudinal gradient repre-
sented by selected ecoregions (Table 1; Fig. 5a,b). Concurrently, vegeta-
tion changed from sedges and shrubs to forest, reflecting warmer soil
temperatures related to higher MAT (Fig. 5c) and GSL. Precipitation
also increased steadily, until the Coastal Rainforest, where it increased
sharply (Fig. 5d). The magnitude of SOC changes was greater in the
Uplands than in the Lowlands. Indeed, the change was only significant
between Intermontane Boreal and Arctic Tundra Lowlands for both
the 1-m and 50 cmmineral pools (Table 1).

3.3.2. Climate and SOC interaction by ecosystem–boreal forest regression
models

Regression models were successful at showing that climate vari-
ables affect 50 cm mineral SOC (Table 3). However, the collinearity
of several of the climate variables limits our interpretation of exactly
which one is responsible for driving SOC changes. The Upland forests
of the Intermontane Boreal and Alaska Range Transition are two con-
trasting ecoregions that comprise most of the Boreal dataset. The In-
termontane Boreal has higher MST (Fig. 5c) and fire frequency, but
lower GSL. The degree of continentality (i.e. MST–MWT) alone
explained 69% of the variation of 50 cm mineral SOC and 46% in the
1-m SOC pool. In another model, GSL and MST explained 73% of the
variation (Table 3). These relationships were consistent even when
analyzed separately within each ecoregion where the GSL and MST
model explained 30% and 42% of the variation in the Intermontane
Boreal and Alaska Range Transition, respectively, with all parameters
remaining significant (Pb0.01; not shown in Table 3). Adding the log-
transformed thickness of the organic layer to the first GSL and MST



Table 2
Soil carbon means (Mg ha−1), standard deviations in parentheses, and sample numbers for various ecosystems, i.e. vegetation types by their specific landform and ecoregion.

Selected ecoregion Landform Veg type SOC pool (MgC ha−1) na

1 m total 50 cm min Organic

Arctic tundra Upland Sedge 729 (302) 305 (102) 88 (129) 5
Dwarf shrub 424 (302) 274 (217) 59 (71) 9

Lowland Dwarf shrub 353 (210) 269 (36) 37 (17) 5
Shrub 343 (99) 168 (62) 40 (11) 5

Sandy low. Sedge 519 (191) 236 (116) 123 (118) 45
Wetland Emergent wet. 442 (164) 216 (89) 81 (101) 25

Inter-montane boreal Upland Deciduous 81 (46) B 52 (23) 22 (33) 20
Mixed forest 74 (24) 44 (8) 17 (11) 15
White spruce 69 (16) B 46 (12) B 13 (10) 9
Black spruce 121 (56) 85 (54) 39 (35) 5

Lowland Black spruce 217 (75) 137 (79) 57 (28) 19
Sandy low. Deciduous 99 (31) Aab 59 (34) b 14 (16)b 13

Mixed forest 92 (31) b 62 (30) ab 15 (9)b 21
White spruce 134 (46) Aa 84 (29) Aa 12 (24)b 16
Black spruce 288 (220) a 187 (201) ab 86 (65)a 7

Silty low. Mixed forest 117 (66) 64 (39) 30 (30) 6
White spruce 106 (53) AB 87 (86) AB 30 (24) 7
Black spruce 172 (71) 91 (40) 58 (34) 10

Wetland Woody wet. 292 (136) 109 (43) 179 (200) 10
Emergent wet. 676 (55) 382 (314) 582 (92) 3

Alaska Range Transition Upland Mixed forest 188 (108) 121 (25) 65 (110) 6
White spruce 224 (37) 167 (29) 28 (6) 4

Lowland Deciduous 187 (5) 158 (58) 23 (11) 4
Mixed forest 256 (178) 206 (159) 33 (6) 7

Silty low. Mixed forest 248 (57) 161 (42) 35 (12) 7
Wetland Woody wet. 319 169 11 1

Emergent wet. 235 (105) 153 (4) 60 (60) 3
Coastal rainforest Upland Shrub 227 (89) 175 (60) 36 (13) 11

Mixed forest 233 (93) 229 (72) 100 (139) 9
Sitka spruce 245 (147) 173 (121) 87 (109) 46

Lowland Mixed forest 322 (451) 116 (109) 246 (483) 7
Sitka spruce 152 (47) 116 (109) 63 (22) 63

Different lower case letters indicate significant differences between vegetation types of the same landform and ecoregion.
Different upper case letters indicate significant differences between landforms of the same vegetation type and ecoregion.

a Samplesb5 were omitted from comparisons.
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regression improved the model fit (Table 3), where the parameter
was positive and highly significant (p=0.0053).

Models with MAP, MSP and MWP did not improve the model R2 as
GSL andMSTwere always themost significant variablesmodels. Never-
theless, a highly significantmodelwith GSL andMAP, with both param-
eters positive, still explained 64% of the variation (Table 3). Similar
Lowlandmodelswere found, but theywere alwaysweaker than theUp-
land models (adj. R2 near 0.1). Adding GSL or MST interaction terms
into the regression models above did not improve the model fit or
achieve greater model significance.
3.3.3. Aspect
Differences in 1-m SOC between aspect classes were largest within

the Arctic Tundra and Coastal Rainforests (Table 4). Soil profiles located
in Arctic Tundra NE aspects (565 Mg ha−1) in Sandy Lowlands
contained 1.3 times more SOC than those located in NW/SE aspects
(427 Mg ha−1). Further, also for Arctic Tundra Sandy Lowlands, folded
aspect was significantly correlated with 50 cm mineral SOC
(P=0.0006) and explained 22% of the variation in this pool. NE
(302 Mg ha−1) and NW/SE (291 Mg ha−1) aspects were both approxi-
mately 1.7 times higher than SW aspects (174 Mg ha−1) in the Coastal
Rainforest Lowlands. The largest difference observed in the Intermon-
tane Boreal was in the Uplands, where SW aspects (121 Mg ha−1)
were higher than NW/SE aspects (77 Mg ha−1) by a factor of 1.6, and
was duemostly to changes in themineral SOC pool. No other significant
differences across aspects were observed in the Uplands of other ecore-
gions. This is despite the fact that a large variation in solar radiation
occurs in the Uplands and may suggest that sampling was too limited
across aspect types (Table 4).
3.3.4. Permafrost
Although the presence and depth of permafrost and active-layer

depth (ALD) were incomplete, at least one comparison was possible
within a single vegetation type: black spruce forests. Soil organic carbon
was 1.4 times higher (Pb0.05) under black sprucewith permafrost pre-
sent in the top 1-m of soil (262 Mg ha−1) than black spruce without
permafrost (186 Mg ha−1). This difference was apparently due to
higher SOC in the organic layer because there was no significant differ-
ence in the 50 cm mineral SOC pool (P>0.1). From limited ALD data,
mean Boreal ALD was much greater (69 cm) than Polar soils (44 cm)
(Pb0.0001).

3.3.5. Fire
There were no profiles located in areas that had been burned within

the last 65 years outside the Intermontane Boreal region. Burned profiles
were lower in 1-m SOC than unburned, but only for Sandy Lowland
(53 vs. 141 MgC ha−1; Pb0.0001) and Upland (66 vs. 93 MgC ha-1;
Pb0.05) landforms. In Sandy Lowlands, both organic layer SOC and
50 cm mineral SOC were significantly lower in burned than unburned
profiles (Pb0.01). However, in Uplands, only organic layer SOC of burned
profiles was significantly lower than unburned (Pb0.01), while 50 cm
mineral SOC showed no difference (P>0.1).

4. Discussion

4.1. Representativeness and data gaps

The collaborative data collection effort used in this study resulted
in a generally representative dataset of many of Alaska's soils by area.
There was generally good coverage of the Uplands and Lowlands
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(of Rocky or Variable soil parent materials) which cover 62% of the
state. However, our findings suggest that areas of highest SOC content
and highest SOC variability, i.e. permafrost and wetland locations
(Rapalee et al., 1998; Tarnocai et al., 2009; Turetsky et al., 2005; Zimov
et al., 2006), are still under-sampled. More precise delineation of parent
material type and extent than was used in this study is needed to extrap-
olate where permafrost occurs and at what depth, especially in the Inter-
montane Boreal. Knowing permafrost depth and spatial extent would
facilitate an understanding of how permafrost is distributed in relation
to SOC densities (g cm−3) within the soil profile. It remains uncertain
how sensitive deeper than 1-m SOC pools are to future climate changes
(McGuire et al., 2009; Schuur et al., 2009; Tarnocai et al., 2009). Given
Table 3
Linear regression models of SOC distribution for boreal upland forests in the 0 to 50 cm
mineral soil (depth below the organic horizon and mineral horizon interface).

Model terms Coefficients
(std error)

df Model
p-value

RMSE adj. R2 AICc

MST–MWT −6.96 (0.64) 53 b0.0001 25.79 0.69 518.0

GSL 1.91 (0.20) 52 b0.0001 24.12 0.73 511.9
MST −16.24 (2.56)

GSL 1.92 (0.19) 51 b0.0001 22.55 0.76 505.9
MST −12.37 (2.74)
lnThick 12.12 (4.16)

GSL 1.73 (0.24) 52 b0.0001 27.82 0.64 527.7
MAP 0.17 (0.04)

Profiles under standsb65 years old omitted.
MST—mean summer temperature, MWT—mean winter temperature, GSL—growing
season length, Thick—thickness of organic layer, MAP—mean annual precipitation.
the potential ecosystemconsequences of permafrost thaw, the spatial dis-
tribution and quantification of permafrost SOC remains an important
knowledge gap (Davidson and Janssens, 2006; Hinzman et al., 2006;
Schuur et al., 2008).

The three-fold differences in SOC observed in the Sandy Lowlands
under different vegetation types indicate the high spatial variability of
soil drainage classes within lowland areas. Wetlands, peatlands, and
other adjacent lowlands are complex and dynamic environments where
land cover, permafrost distribution, and drainage change dramatically
within small spatial scales (Turetsky et al., 2005). These environments
are further impacted by fire which can change soil properties quickly
(Harden et al., 2000, 2006; Swanson, 1996). If fire frequency increases
in Alaska due to future climate warming (Balshi et al., 2009), alterations
in land cover and soil drainage (e.g. thermokarst or talik development)
will likely affect Alaska's SOC contents and spatial distributions (Harden
et al., 2000; Jorgenson and Osterkamp, 2005; Jorgenson et al., 2001).
Further sampling in these areas will help reduce the uncertainty in the
fate of lowland SOC in response to fires and other climate-driven factors.

The distribution of roads in Polar and Boreal Alaska has made it pos-
sible to sample soils over latitudinal gradients that cross a variety of cli-
mate regimes, landforms and vegetation types (Fig. 1). However,
noticeably missing are observations across longitudinal gradients that
are more representative of continental effects on climate regimes. The
importance of continentality is partly indicated by the negative relation
of MST–MWT and SOC in the Upland forests found in this study
(Table 3). The north–south distribution of observations is less ideal be-
cause interior Alaska is boundedby theBrooks andAlaska Rangeswhich
separate different climate patterns. For example, MAT and MAP tend to
bemore strongly positively correlated to each other in the Arctic Tundra
than in the Intermontane Boreal and Bering Tundra. Although the Arctic
Tundra and Bering Tundra are similar in vegetation composition and



Table 4
Soil carbon means (Mg ha−1), standard deviations in parentheses, and sample numbers for various aspect classes (based on folded aspect) by their specific landform and ecoregion.

Ecoregion Landform Veg
type

SOC pool (MgC ha−1) na

1 m total 50 cm min Organic

Arctic tundra Upland NW/SE 527 (167) 268 (90) 62 (67) 6
SW 531 (452) 279 (248) 113 (152) 5

Lowland NE 379 (111) 197 (63) 44 (12) 11
Sandy low. NE 565 (211) a 282 (111) a 100 (126) 29

NW/SE 427 (124) b 175 (80) b 138 (89) 17
Inter-montane boreal Upland NE 99 (29) ab 55 (19) ab 37 (41) a 9

NW/SE 77 (46) b 49 (36) b 19 (27) b 38
SW 121 (38) a 101 (57) a 21 (12) ab 6

Lowland NE 160 (68) 74 (29) 36 (21) 6
NW/SE 203 (78) 127 (87) 46 (27) 18
SW 203 (103) 117 (51) 60 (29) 4

Sandy low. NE 161 (98) a 112 (66) ab 46 (36) a 6
NW/SE 109 (121) b 67 (91) b 20 (32) ab 40
SW 108 (35) a 74 (46) a 14 (27) b 24

Silty low. NE 141 (109) 93 (76) 40 (31) 10
NW/SE 151 (80) 89 (55) 37 (28) 14
SW 175 (77) 97 (35) 49 (46) 6

Alaska Range Transition Upland NE 243 (68) 181 (32) a 35 (23) 7
SW 197 (110) 139 (58) b 68 (108) 6

Lowland NW/SE 194 (46) 130 (49) 38 (15) 6
SW 232 (163) 199 (146) 28 (11) 9

Sandy low. NW/SE 365 (121) 165 (25) 152 (250) 6
Silty low. NW/SE 271 (76) 185 (66) 34 (11) 9

Coastal rainforest Upland NE 242 (81) 179 (57) 71 (104) 9
NW/SE 211 (128) 145 (107) 105 (133) 18
SW 253 (143) 197 (116) 70 (89) 39

Lowland NE 302 (257) a 170 (77) ab 134 (310) 21
NW/SE 291 (113) a 200 (96) a 123 (144) 28
SW 174 (102) b 135 (102) b 61 (23) 22

Different lower case letters indicate significant differences (Pb0.05) between aspect classes of the same landform and ecoregion.
a Samplesb5 were omitted from comparisons.
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parent material, the Bering Tundra is much warmer due to higher solar
radiation and a longer growing season. Thus, there is reason to be cau-
tious about assuming that SOC contents in the Arctic Tundra represent
SOC for the Bering Tundra.

Despite the vast coverage of shrubby land covers across Alaska (56%;
Fig. 4), this vegetation type was sparsely sampled. Shrub cover in the
Boreal and Polar regions has expanded in recent decades (Sturm et al.,
2001; Tape et al., 2006) and changes in their spatial distributions may
be related to permafrost thaw and belowground carbon losses (Harden
et al., 2008; Wilmking et al., 2006). One reason for the relatively low
number of observations may be that alpine shrubs are typically less ac-
cessible as they often occur at higher elevation and further from roads.
However, there can be substantial SOC content inmoderately sloped al-
pine shrub terrain. The northern foothills of the Alaska Range, for exam-
ple, have a mean 1-m SOC content of 493 Mg ha−1(Schuur et al., 2009).
New SOC observations from alpine shrub and tundra landscapes, in-
cluding thinner soils as endpoints, would improve our understanding
of pedogenesis, shrub encroachment, and afforestation processes across
climate gradients.

4.2. Soil forming factor controls on SOC accumulations

Our results confirm that air temperature is the dominant control on
SOCdistribution across Alaska (Ping et al., 1997, 2008b). Previous global
and continental scale studies also support that temperature has a nega-
tive or non-linear relation to SOC (Amundson, 2001; Guo et al., 2006;
Post et al., 1982; Wynn et al., 2006). Temperature-related permafrost
and cryoturbation processes enhanced the 1-m SOC content in Arctic
Tundra soils so that they were more than double the SOC of the other
ecoregions. Various physical processes can account for this. Surface
SOC can be subducted into the soil matrix during seasonal freezing
and thawing until it reaches the top of the permafrost table where
it is essentially protected from mineralization, owing to lower
decomposition at freezing temperatures (Ping et al., 2008b). The thaw-
ing of underlying ice-rich permafrost can also cause displacement of soil
layers with differing water contents and densities (Swanson, 1996).

Precipitation also plays an important role in SOC accumulation.
While SOC increases with increasing temperature and precipitation at
lower latitudes in Alaska (cf., Callesen et al., 2003), SOC decreases
with increasing temperature at higher latitudes, especially in mineral
soils (Fig. 5). In warmer and wetter environments such as the Coastal
Rainforest, higher productivity leads to higher organic carbon inputs
into the soilmatrix. The soils at these locations are alsomoreweathered
(as evidenced by their higher clay contents and illuvial horizons; data
not shown) which allows for greater stabilization of SOC in the mineral
soils.

Considerable variability of SOC within ecoregions can be attributed
to the effects of changing topography and soil drainage (Callesen
et al., 2003). Previous studies have noted differences in SOC distribu-
tions for various landforms, vegetation types, and aspects in Alaska
(Michaelson et al., 1996; Ping et al., 2005, 2008b; Troth et al., 1976;
Van Cleve et al., 1983, 1993, 1996). The results of this study confirm
that improved drainage enhances air temperature effects on soil
decomposition and SOC accumulation while impeded drainage dimin-
ishes temperature effects. For example, the difference in SOC between
the Arctic Tundra and Intermontane Boreal regions for the Uplands
was more than twice the difference observed for Lowlands (Table 1;
Fig. 5). The impeded drainage at Lowland sites in both ecoregions is
partially caused by the presence of permafrost. Soil moisture dampens
the seasonal and diurnal amplitude of air temperatures, and plant
production and decomposition are highly sensitive to such topographic
attributes (e.g. Davidson et al., 1998). Similarly, it appears that impeded
drainage was the reason that the Lowlands of the Intermontane Boreal
were not very different from the Lowlands of the Coastal Rainforest,
whereas for the Uplands the difference was almost three-fold
(Table 1; Fig. 5).
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Fig. 6. Conceptual equilibriummodel of the relative controls on soil carbon content based
onUpland data from Table 1. The darkened area represents the total soil carbon content to
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carbon pools and its uncertainty in response to temperature change. Relative changes in
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are roughly to scale.
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Additional controls on SOC accumulation in Alaska, both directly and
indirectly related to climate, include interactions of physical >and biotic
processes. For example, the 50 cm mineral SOC pool in the Intermon-
tane Boreal region was substantially lower than in other ecoregions,
even when our comparisons control for the effects of topography and
soil drainage. One explanation for this is that black spruce at poorly-
drained sites, in addition to having low productivity, also have roots
that are largely constrained to the organic layer, limiting root inputs
into themineral soil (Bonan and Shugart, 1989; Viereck et al., 1983). Fur-
ther, Lowland black spruce forests typically lack cryoturbation, and there-
fore exhibit lowermineral SOC content, whereas this process is known to
occur on north-facing upland and toeslope soils (Ping et al., 2005). Our
dataset has relatively few north-facing profiles under black spruce
(n=6) which, if accounted for, may increase our estimate of mineral
SOC at Upland and Lowland locations. Additionally, within the Intermon-
tane Boreal SOCwas higher in locationswith permafrost than in locations
without in black spruce forests. This confirms similarfindings in Alaska by
Harden et al. (2006) and Ping et al. (2010) which showed that black
spruce forest stands with permafrost were 1.6 times higher in SOC than
non-permafrost stands.

Seasonal climatic and biotic interactionsmay also lower Upland SOC
pools of the Intermontane Boreal in several ways. The Intermontane
Boreal is a composite of two neighboring yet contrasting soil environ-
ments: decomposition-controlled frozen soils to the north (Arctic
Tundra) and soils influenced more by plant inputs to the south (Alaska
Range Transition). Cumulative fire effects or drought stress (Barber
et al., 2000) may be associated with higher MST (Fig. 5) and limit
plant growth and organic inputs to soils. Alternatively, both net primary
production and decomposition can increase with higher MST because
boreal forest productivity is often limited by nutrient release from or-
ganic matter mineralization, which increases with soil temperature
when water is not limiting. This may be especially true in moderately
well-drained soils where soil moisture is optimal for microbial decom-
position and plant growth. Indeed, regressionmodels of the Upland for-
est showed a decrease inmineral SOCwith higherMST (Table 3), which
may suggest that decomposition outstrips production at more mesic
sites. Additionally, Kane and Vogel (2009) found that mineral SOC de-
creased as soil growing degree days (and productivity) increased in
black spruce forests of Interior Alaska.

Importantly, a literal interpretation of themodels in Table 3 suggests
that if GSL increases substantially (>20 days) SOC in mineral soils will
increase. Climate regimes of higher GSL and MAP may allow for higher
productivity, higher organic inputs and, therefore, higher SOC. A situa-
tion of increasing SOC may also occur with higher MST and GSL if soil
temperatures stabilize due to the insulation of thicker organic layers,
but productivity still increases (Table 3). However, increases in net pri-
mary production and litter layer inputs from increasing GSL and MAP
are also likely to increase nutrientmineralization rates in the surface or-
ganic soil layers, affecting bryophyte proliferation and reducing organic
layer depths (cf., Mack et al., 2004; Oechel and Van Cleve, 1986). A re-
duction in organic layer depths (e.g. the lnThick model; Table 3) may
lead to greater thermal conductance to deeper mineral soil layers and
enhanced soil C mineralization. Therefore, without considering the ef-
fects of fire, it is possible that Boreal forest mineral SOC could respond
both positively and negatively to warmer temperatures where some-
times productivity and sometimes decomposition acts as the dominat-
ing control. The response will largely depend on concurrent
alterations of soil drainage and the net influence on soil moisture status,
plant growth, and soil microbial activity.

Fire is amajor disturbance of soil properties and vegetation distribu-
tions in the Intermontane Boreal (Kasischke et al., 2002; Yarie, 1981).
Fires affect mineral SOC pools by reducing organic layer depth and
degrading permafrost, thereby increasing soil temperature, decreasing
soil moisture, and increasing CO2 flux (O'Donnell et al., 2009; O'Neill
et al., 2002; Viereck et al., 1983). Combustion represents a significant
loss vector for C in Intermontane Boreal systems, on the order of 30 to
60% of NPP over millennial timescales (Harden et al., 2000) and there
may be a cumulative long-term effect on SOC which results from
frequent burning of material that would otherwise be stabilized in the
soil matrix. For example, Fan et al. (2008) simulated decreases of 8 to
78% in SOC over hundreds of years of repeated fires in Alaskan black
spruce stands. These scenarios are complicated, however, by existing
variable drainage patterns where wetter lowlands soils can reduce the
impact of fire (cf., Harden et al., 2001). Our analysis of Sandy Lowland
soils (i.e., floodplains) indicated that these predominantly well drained
locations are the most affected by fire, apparently causing a 2.7 fold
decrease in 1-m SOC. Upland SOC pools are also affected, but apparently
more so in the organic layer than in the mineral.

It is difficult to separate fire frequency and seasonal temperature
effects on SOC pools of the Intermontane Boreal because they co-vary.
Perhaps a useful indicator of these interactions is the MST–MWT vari-
able, where large values indicate higher continentality. Continentality
has been associated with fire return interval in Eurasion boreal forests
(Sannikov and Goldammer, 1996) and is negatively correlated with
MAP in our data set. The interactions of climatic, biotic, and disturbance
effectswithin the Intermontane Borealmay explainwhy SOCwas lower
here compared to other ecoregions.

A conceptual equilibrium model of SOC content with Inputs (I) and
Decomposition (k) across ecoregions helps to summarize the tempera-
ture effects on SOC distribution for Uplands (Table 1; Fig. 6). For SOC in
seasonally unfrozen and non-cryoturbated soils, k increases and draws
down the SOC pool with increasing MAT. Meanwhile, I also increases
with MAT, but not enough to balance SOC losses from the temperature
effect on k. Similarly, in addition to the physical mixing of organic rich
soils to the deeper profile, the k term dominates the I term in Polar re-
gions. Although a little more than half of the total SOC pool is contained
in cryoturbated and permafrost horizons in the Arctic Tundra, the role
of cryoturbation over this gradient remains unclear (Bockheim, 2007;
Michaelson et al., 1996).

As MAT further increases along the latitudinal gradient the impor-
tance of both the I and k terms converge in the Intermontane Boreal
(Fig. 6). Permafrost distribution becomes spatially uneven and occurs
deeper so that less SOC is permanently frozen. In some cases k is the
dominant control and further draws down the pool in response to
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higher decomposition (high MST) in moderately well-drained areas
where productivity is low (low GSL) and/or fires are common. In
other areas the relative influence of I and k roughly cancel each other
out. Still other locations have more favorable GSL, less extreme MST,
and perhaps fewer fires, allowing an increase in the SOC pool due to
higher productivity relative to k. In the Boreal and Maritime regions
whereMAT>0 (andGSL is higher) SOC pools benefit fromhigh produc-
tivity and lowfire occurrence. Although k increases, I also increases until
the equilibrium is reached for these climate conditions (about
230 Mg ha−1). Additionally, organic carbon is more likely to be stabi-
lized in the mineral soils of the Maritime region and biotic and climatic
influences result in greater development of parent material. Where
drainage is limited, i.e. the Lowlands, these climate-related interactions
are somewhat muted or absent. Similarly, local-scale drainage that is
influenced by the presence of permafrost and cryoturbation, i.e. north-
facing slopes, will be wetter and therefore affected less by these
climate–fire interactions in the Boreal.
4.3. Implications of future climate change effects on soil carbon pools

Downscaled future climateprojections forAlaska (5model composite;
Scenarios Network for Alaska Planning, http://www.snap.uaf.edu/) sug-
gest that MAT may increase by 3.5, 3.2, and 2.4 °C from 2009 to 2069
for the Polar, Boreal, and Maritime regions, respectively. Over the same
interval, MAP is projected to increase by 70, 40, and 170 mm for the
Polar, Boreal, and Maritime, respectively. Historic data from Fairbanks,
AK also show that MAT has increased by 1.4 °C over 100 years, but with-
out any significant changes in MAP (Wendler and Shulski, 2009). Should
Polar landscapes become more Boreal-like, experiencing higher MST's
and fire frequencies, then drainage patterns will adjust accordingly with
the result of potentially lowering SOC. Further, lower SOC could result if
MAP does not increase in tandem with MAT, leading to higher evapo-
transpiration and drier soils. Conversely, should some Boreal soils for
some reason experience longer growing seasons and either higher precip-
itation or altered drainage that favors wetter soils, then some soils would
potentially increase in SOC if soil temperature remained unchanged. Per-
haps most important, therefore, is how future climate change may alter
soil moisture patterns, as topographic and parent material effects were
demonstrated to ameliorate or exacerbate the effects of temperature on
SOC storage (Fig. 5; see also Davidson and Janssens, 2006). Although
this study did not focus on the future timing and magnitude of
SOC changes in Alaska, a sense of the spatial extent and importance
of soil drainage can be inferred. We note that the ecoregions repre-
sented in this study account for almost three quarters of Alaska
(Fig. 2). More detailed quantification of the overall changes is best left
to spatially explicit process-based ecosystem models. Modeling efforts
may benefit from considering the variations in SOC for different land-
forms and vegetation types presented in this study.

The results of this study confirm that Alaska's SOC pool is very large
and has important implications for C accounting within the United
States and North America, if not globally. For example, when we esti-
mated mean 1-m SOC content in the Arctic Tundra (372 Mg ha−1;
weighted by landform area) it was similar to one study's “North Amer-
ican Arctic” estimate (348 Mg ha−1; Ping et al., 2008a,b), but higher
than another study's global “Tundra” estimate (218 Mg ha−1; Post
et al., 1982). Additionally, Arctic Tundra SOCwas 27 and 7 times higher
than estimates for “Warm desert” (14 Mg ha−1) and “Tropical wood-
land and savanna” (54 Mg ha−1), respectively (Post et al., 1982). It
should be noted that such large scale comparisons can only be done im-
perfectly and with very high uncertainty because of different ap-
proaches to calculating both point and regional scale estimates of SOC.
In general, there is a great need for reports of SOC to use enhanced
data sets that not only capture site variability but that also consistently
derive values in ways that minimize uncertainties from measurements
and extrapolations to larger scales.
5. Conclusions

The soil carbon database used in this studywas created as a resource
for investigations into the importance of Alaskan soils in global climate
change. From the database we have identified data gaps that limit our
ability to scale up observational data and compare them to ecosystem
model outputs. Other landforms and vegetation types that contain
lower SOC, such as Upland shrubby landscapes, should not be ignored
if their areal coverage may result in the accumulation of significant
SOC stocks. Samples that fill in the longitudinal change in SOC from
the Bering Taiga region to the Intermontane Boreal will also help to
assess whether SOC changes over climatic gradients follow expected
patterns, or if they deviate, and why. Finally, as the database grows to
include more data from SOC in wetlands and permafrost for a variety
of ecosystems, our understanding of SOC response to climate change
will continue to improve.

Despite data gaps, it is clear that becausemost of Alaska's soils occur
over a wide range of MAT under 0 °C, that MAT exerts the first order
effect on SOC spatial distribution across the state. Additionally, it is
clear that the degree of climatic influence on SOC pools is variable
among landforms of different relief and texture related to parent mate-
rial. Adding to this complexity are additional controls of aspect, perma-
frost presence, and stand age that interact in non-linear patterns. Some
basic inferences about how seasonal climate and disturbance affects
SOC pools can be drawn by comparing ecoregions. Intermontane Boreal
SOC content is lower than the other regions probably because of its con-
tinental climate that results in harsh winters, short growing seasons,
low MAP, high MST, and high fire frequencies. As a conceptual model,
the Intermontane Boreal is the transition between SOC pools which
are dominated by physical and abiotic processes (i.e., cryoturbation
and permafrost) and SOC pools that increase due to biotic factors relat-
ed to higher organic inputs (i.e., productivity).

Determining the balance of carbon losses and gains from soils at
high-latitudes, and their potential climatic feedbacks, depends to a
large degree on how accurately the spatial heterogeneity of SOC pools
can be scaled up and applied in global climate models. In this first
order assessment of spatial heterogeneity in SOC pools across three
very different high-latitude climatic regimes, we have aimed to dis-
cretely quantify SOC pools according to different ecoregion, landform,
and ecosystem types. Our results suggest that the response of SOC
pools to climate changes will not be of the same magnitude, and per-
haps not even the same direction, for all high-latitude soils. Patterns
of SOC accumulation in relation to upland and lowland ecosystems
should be carefully considered in the modeling of terrestrial carbon cy-
cling and the prediction of the future balance of carbon in Alaska and
abroad. These issues deserve special attention given the enormous
amount of carbon contained in high-latitude soils and their role in the
global carbon cycle.
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Appendix 1. Gap-filling procedure

Negative exponentialmodels that predict bulk density from%Cwere
applied for missing data in all mineral soil horizons except arctic soils
(Appendix Table 1). There were some rare cases when samples had

http://www.snap.uaf.edu/
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bulk density data available but not %C and were gap-filled using a mod-
ified equation (Eq. 3b). Models of SOC or bulk density were better fit
when the horizon designation was known (Eqs. 4–6). When there
was no horizon designation, and the horizon was only known to be or-
ganic (SOCO) or mineral (BDmin), then general models were applied
(Eqs. 3a, 9). Frozen mineral soil bulk density of mainly Boreal profiles
was predicted separately and was not distinguished by horizon desig-
nation (Eq. 7). In contrast to bulk density measurements of mineral
soils, bulk density in organic soils was not well-predicted by non-
linear models of %C. The best approach in this case proved to be the di-
rect prediction of SOC content from horizon thickness, Th, using a
weighted least squares regression and by horizon designation
(Eqs. 10–12).

Adjustment equations were applied to bulk density and organic car-
bon concentration measurements from the National Cooperative Soil
Survey (NCSS) in order to make them comparable to other datasets.
Bulk densitymeasurements by the NCSSwere done by the clodmethod,
BDclod (Soil Survey, 1996) whereas all the other bulk densities of this
study were measured by the cylinder method, BDcore. The clod method
yields consistently higher values than the cylinder method (Calhoun
et al., 2001; VanRemortel and Shields, 1993). To correct for this differ-
ence in mineral soils, the same equation used in VanRemortel and
Shields (1993) was applied (Eq. 1). A similar correction equation has
not been published for organic soils to our knowledge. Yet, organic
layer bulk densities measured by the clod method were between 1.4
and 5 times greater than by the core method (using a subset of data in-
cluding black spruce stands only). Therefore, organic horizon bulk den-
sity measurements by the clod method were excluded and treated as if
they were missing data. For organic carbon concentration, some NCSS
data (26% of the total dataset) was measured only by the Walkley–
Blackmethod, %Corg (e.g.method 6A1c; Burt, 2004). The rest of the data-
set was measured by dry combustion, %Ctot (methods 4H2a or 6A2d;
Burt, 2004). Therefore, a relation was found so that in cases where
only %Corg data was available, it was adjusted to more closely match
%Ctot (Eq. 2).

In the Arctic Tundra many profiles were highly cryoturbated
which requires specialized methods of calculating SOC content (e.g.
Michaelson et al., 1996). The 1-m SOC estimates for highly cryotur-
bated profiles in this study included only those with published values
(Bockheim, 2007; Bockheim and Hinkel, 2007; Bockheim et al., 1999;
Michaelson et al., 1996; Ping et al., 1997) and therefore no bulk den-
sity predictions were necessary. Non-cryoturbated soils whether or-
ganic or mineral, or frozen or unfrozen, were predicted by a
separate relation specific to arctic soils (Eq. 13; see also Bockheim
et al., 2003 for a similar equation).
Appendix Table 1
Gap-filling equations.

Equations adj. R2

Adjustment equations
1. BDadj ¼ BDcore ¼ BDclod−0:068

1:011 0.98
2. %Cadj=%Ctot=0.2107+0.8830∗%Corg 0.98

Prediction equations for mineral soils
3a. BDmin=0.4189+e−0.1868 ∗%Ctot 0.64
3b.%Cpred ¼ − log BDcore−0:4223ð Þ

0:1890 0.54
4. BDA=0.3417+e−0.1712 ∗%Ctot 0.59
5. BDB=0.4671+e−0.1915 ∗%Ctot 0.52
6. BDC=0.6560+e−0.2466 ∗%Ctot 0.49
7. BDfrzn=0.3105+e−0.1400 ∗%Ctot 0.48

Prediction equations for organic soils
9. SOCO=0.0085+0.0334∗Th 0.47
10. SOCOi=0.0109+0.0183∗Th 0.38
11. SOCOe=0.0269+0.0411∗Th 0.59
12. SOCOa=0.0743+0.0354∗Th 0.63

Prediction equation for all arctic soils—frozen or unfrozen, mineral or organic
13. BD=0.0577+e−0.0694 ∗%Ctot 0.60
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