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Water, Nitrogen,
Rising Atmospheric CO,,
and Terrestrial Productivity

Denis Loustau, Bruce Hungate, and Bert G. Drake

l. Introduction

The functioning of plants in terrestrial ecosystems must satisfy different con-
straints imposed by the physical environment. The prevention of embolism
and conservation of internal water constrain stomatal behavior and leaf area
indices that plants may sustain. Plant height and canopy structure are con-
trolled by water and nutrients through carbon allocation between roots and
leaves. The amount of available nutrients strongly influences net primary
production, largely by determining the amount of photosynthetic enzymes,
and in turn leaf area, that may be achieved in a given ecosystem. The im-
pacts of stomatal function, leaf area index, and photosynthetic capacity on
the net primary production of terrestrial ecosystems vary according to
canopy roughness. Increasing atmospheric CO,, concentration (C,) usually
stimulates carbon uptake and carbon distribution belowground, though the
magnitude of these responses varies among ecosystems. Translating in-
creased carbon uptake at the leaf and canopy levels to long-term carbon stor-
age is not straightforward, and, so far there is little experimental verification
of a CO,-driven expansion of carbon pools with long-term storage poten-
tial. Nevertheless, evidence to date suggests that carbon uptake by the ter-
restrial biosphere will increase in concert with rising C,.

The importance of water and nutrient regimes for net primary produc-
tion (NPP) and net ecosystem production (NEP) has long been recognized
for agricultural crops. A simple plot of annual net primary production vs.
rainfall illustrates the dependency of NPP on rainfall for awide range of agri-
cultural and natural ecosystems (Fig. 7-1), the dependency being stronger
for the drier ecosystems than for the more humid ones. A variety of surveys
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Figure 7-1 Annual net primary production (NPP) and rainfall for a range of terrestrial
ecosystems. Data were taken from: Baldocchi and Vogel (1996), Baldocchi ¢t al. (1997), Black
et al. (1996), Breda and Granier (1996), Fan ef al. (1995), Grace ¢t al. (1995), Greco and Bal-
docchi (1996), Grier et al. (1992), Goulden ef al. (1996), Harrington et al. (1995), Kelliher et al.
(1993), Knapp et al. (1993), Long et al. (1989), Nizinski and Saugier (1989), Pook (1985), Red-
mann (1978), Runyon et al. (1993), Ryan et al. (1994), Schulze (1982), Schulze et al. (1996),
Valentini et al. (1996), Vermetten et al. (1994), Waring et al. (1995), and Wofsy et al. (1993).

and experiments allow a quantitative estimation of the impact of water and
nutrient limitations on the NPP and NEP in terrestrial ecosystems. Fertil-
ization and irrigation experiments clearly show the extent to which NPP is
limited by water and nutrients in agricultural crops, forests (Linder, 1987),
and grasslands (Date, 1973). The role of nitrogen deposition in the en-
hancement of forest production across northern Europe shows that nutri-
ent limitation affects forest NPP at large scales (Kauppi et al., 1992), though
excessive N deposition can reduce NPP in forests by causing soil acidifica-
tion and losses of base cations (Johnson et al., 1994; Aber ¢t al., 1998). Den-
droclimatological studies have demonstrated that the history of drought ex-
perienced by various species of temperate trees accounts for some of the
annual variation in carbon accumulation by secondary growth in a number
of forests (e.g., Becker, 1989; Federer et al., 1989; Becker ef al., 1994). A close
correlation has been shown between the water balance of forest stands, an-
nual secondary growth, and the carbon isotope ratio in annual ring series
of different temperate species (Dupouey ef al., 1993; Bert et al., 1997). A
number of field experiments show that elevated atmospheric concentration
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in CO, (C,) stimulates photosynthesis at the leaf and canopy levels (Drake
et al., 1997); the degree of stimulation appears to be higher under limit-
ing water conditions and, in some cases, to be lower when nutrient supply
is low.

The aim of this chapter is to analyze the effects of water, nitrogen, and C,
on net primary and net ecosystem production of terrestrial ecosystems. In
terrestrial ecosystems, carbon photosynthetic assimilation requires absorp-
tion of light and CO, and thus exposure of leaves to the atmospheric envi-
ronment. Associated with the entry of CO, into the leaf is an output flux of
water vapor from the internal (vapor-saturated) leaf tissues to the air, and
loss of plant water. As explained further in Section II,A, plants need to main-
tain their water content within a relatively narrow range, corresponding to
water potentials ranging roughly from 0 to —5 MPa. The presence of plants
on the land surface demonstrates that plants can successfully conserve wa-
ter in their internal tissues across a wide range of external water regimes.
This implies that plants can replace lost water and adjust their transpiration
to water availability. In addition, photochemical energy conversion and bio-
chemical fixation of carbon result from a combination of various enzymat-
ic activities, all demanding a certain amount of nitrogen, phosphorus, and
other nutrients. Terrestrial plants must therefore simultaneously satisfy the
different constraints imposed by water relations and nutrient requirements.
These constraints are exerted on different components of NPP, including
leaf area, stomatal function, photosynthetic capacity, and canopy structure.
In Section 1I, we summarize the main constraints involved. In Sections III
and IV, we discuss the effects of water regime and C, on net primary and
ecosystem production as mediated through these different components.

Il. The Constraints

The conservation of an internal aqueous medium requires that the plant wa-
ter Josses not exceed the amount of water available over a given time peri-
od. For a plant, the water available includes water stored in soil, plant reser-
voirs, and the net input by precipitation. In the vast majority of ecosystems,
plants rely solely on rainfall input during the growing season, although this
is not always the case—for example, plants can extract water from deep sub-
soil reserves or riparian ecosystems. The atmospheric variables that govern
water transfer through plants can change rapidly during a day; in contrast,
soil water availability typically varies on a time scale of days to weeks. Ter-
restrial plants must therefore control their water loss, which faces both short-
term fluctuations of climatic demand and long-term fluctuations in water
availability (Cowan, 1982).

The sensitivity of evapotranspiration (E) at the leaf, plant, and canopy lev-
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els has been analyzed by Jarvis and MacNaughton (1986), who introduced
the useful notion of coupling. They demonstrated that ecosystem E is af-
fected to different degrees by stomatal conductance and leaf area according
to the canopy aerodynamic roughness. Water regime should thus differ-
entially constrain the leaf area and stomatal conductance of terrestrial
plants, depending on canopy structure. Indeed, it has long been recognized
that water regime affects (1) the canopy leaf area, (2) stomatal behavior, and
(3) canopy structure. These effects of water regime are described below.

A. Impact of Water and Nitrogen Availability on Leaf Area

1. Water Therestriction ofleafsize and number by water limitation is doc-
umented for a wide range of crop, grass, and tree species. Many experi-
mental studies have reported detailed information on the processes in-
volved in the control of leaf and stem growth by the water regime. Processes
vary according to the plant growth type and life form. Storage factors of car-
bohydrates required for leaf growth—either in seeds or in perennial vege-
tative plant parts— (Andriani ¢t al., 1991), leaf number (Cavelier ef al., 1992),
leaf expansion (Zahner, 1968; Van Volkenburgh and Boyer, 1985; Metcalfe
et al., 1990; Zhang and Davies, 1990; Belaygue et al., 1996) and leaf life-span
(Pook, 1985; Andriani et al., 1991) are all sensitive to water stress. Leaf cell
division and elongation rates are affected by water stress (Durand ez al., 1995;
Lecoeur et al., 1995). This sensitivity explains both the direct effects (e.g.,
leaf shedding; Tyree et al., 1993) and indirect effects (e.g., initiation of cell
number and leaf primordia of future foliage) of drought on the leaf area of
individual plants and canopies (Lecoeur et al., 1995). The combination of
these control mechanisms with different response times allows plant com-
munities to integrate the effects of the water regime on short and long time
scales. Indeed, even if long time series of simultaneous measurements of leaf
area index and water balance are scarce, there is some empirical evidence
showing the indirect effects of water stress on leaf area, primary productior,
and plant growth in natural ecosystems (Webb et al., 1983). One example is
given in Fig. 7-2.

Canopy evaporation depends on leaf area index, L, through both the net
energy absorbed by the canopy, and the canopy conductance, g.. At the in-
dividual plant scale, decreased leaf area reduces transpiration and conserves
water, whatever the canopy structure and roughness. At the canopy scale,
the response of ecosystem E to leaf area is not linear but reaches a plateau
at high leaf area, due to mutual shading between leaves, compensatory ef
fects of soil evaporation, and related effects on radiation absorption and tur-
bulence. Kelliher ¢t al. (1995), analyzing the relationship between Land g,
demonstrated that the response of the maximal canopy conductance to L
may show a plateau above a threshold value close to L = 4, depending on
the net radiation available, vapor pressure deficit, and aerodynamic con-
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Figure 7-2 Time course of annual maximum of needle area (L) and previous year’s evap-
otranspiration (£) in a 25-year-old maritime pine forest (EUROFLUX Site FR2, “Bray site,”
Southwest France). The L values were measured by optical methods (Demon system; CSIRO)
(P. Berbigier, unpublished results). Estimates of Ewere based on the Penman-Monteith equa-
tion and the stand water balance model, published in Loustau ¢ al. (1997).

ductance. Any further increase in Laffects only slightly the maximal canopy
conductance. Similarly, in an analysis of the sensitivity of the annual water
balance of a three-layer forest canopy, Loustau ¢f al. (1997a) showed that a
change in tree leaf area affected the tree layer transpiration but has a small-
er effect on E, because the reduction in pine transpiration is offset by in-
creased soil and understorey evapotranspiration. The dependence of tran-
spiration on leaf area index is thus more sensitive at low values of L.
Accordingly, the dependence of L on site water balance is strongest in dry
environments, characterized by unpredictable rainfall, very low values of L,
and strong seasonality in leaf area and plantlife (Nicholson et al., 1990). This
is illustrated by Fig. 7-3, which shows variations in L along a water availabil-
ity gradient from deserts, savannas, and grasslands to sclerophyllous forests
and rainforests: with increasing water supply, the canopy structure changes
from sparse canopies with seasonal vegetation (ephemerals) such as desert,
to canopies in patches, e.g., tiger bush, continuous low vegetation (savan-
nas, grasslands), to continuous, tall, multilayered canopies. The relationship
between site water balance and leaf area index has also been established for
other vegetation types, such as temperate forests (Grier and Running, 1977;
Gholz, 1982; Gholz et al., 1990) or mediterranean ecosystems (Poole and
Miller, 1981; Rambal and Leterme, 1987).

2. Nitrogen Availability Photon harvesting, photochemical conversion,
and biochemical photosynthetic energy fixation require that leaves contain
acertain amount of nitrogen and nutrients incorporated in structural com-
pounds, enzymes, and other metabolic components. The N concentration
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Figure 7-3 Relationship between the annual maximum leaf area index (L) and annual
precipitation (£) for terrestrial ecosystems (same data as Fig. 7-1).

in plants is highest in leaves, particularly young leaves, reflecting the nitro-
gen cost of photosynthesis. This includes nitrogen required for light har-
vesting and for CO, fixation, e.g., for the CO, carboxylation enzyme, ribu-
lose bisphosphate carboxylase/oxygenase (rubisco), which constitutes
5-30% of leaf nitrogen (Field, 1991), the proportion generally increasing
as nitrogen concentration increases (Evans, 1989). The proportions and ac-
tivity of nitrogenous compounds in leaves change according to the balance
of available resources (Chapin et al., 1987): when carbon acquisition is en-
hanced (by increasing photosynthesis in elevated Ca, for example), rubisco
content and activity decrease, freeing N for other functions (Woodrow,
1994). Similarly, the CO, concentrating mechanism in G, plants allows a
greater photosynthetic capacity per unit N compared to G, plants—con-
centrating intracellular [CO,}in C 4 blants makes C less limiting, and thus
N can be allocated to other functions (Sage and Pearcy, 1987). Similarly, ni-
trogen in chlorophyll constitutes 15-20% of total leaf nitrogen when plants
are grown under high light; this proportion varies inversely with irradiance
and can increase to 60% when plants are grown in the shade (Evans, 1989).
Plants adapted to shade conditions show greater N investment in light har-
vesting (Bjorkman, 1981), whereas high-light adapted plants invest relative-
ly more in rubisco (CO,, fixation) (Seemann et al., 1987).

In response to increasing N supply, production of leaf area increases more
than photosynthetic rate per unit leaf (Sage and Pearcy, 1987). For example,
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the response of coniferous forests to increased nutrient availability was a
large increase in leaf area and stem growth with only a small increase in the
photosynthetic capacity (Brix, 1981; Linder and Rook, 1984). Similarly, de-
creasing N supply decreases the rate of leaf expansion more than the rate
of photosynthesis per unit leaf area (Evans, 1983; Pettersson and McDonald,
1992). Plant growth rate is therefore not strongly correlated with photosyn-
thetic capacity, butis strongly correlated with the rate ofleaf expansion (Pot-
ter and Jones, 1977).

Relatively high N partitioning to new leaves should tend to maximize
growth, because of the compounding effect on growth of producing new
photosynthetic tissue. However, producing new leaves creates additional de-
mand for nitrogen (and other belowground resources). Thus, when nutri-
ents become limiting to growth, plants increase partitioning of resources to
roots (Davidson, 1969; Reynolds and D’Antonio, 1996). In response to ni-
trogen stress, N can be remobilized from shoots and distributed to roots to
enhance acquisition of the more limiting resource (Vessey and Layzell,
1987). For carbon allocation, as well, decreasing N availability reduces the
rate of leaf expansion, reducing foliar sink strength, and shifting carbon al-
location from developing leaves to roots. Conversely, increasing nitrogen
availability enhances shoot growth relatively more than root growth. As
shown by Vessey and Layzell (1987), coordination of root and shoot growth
in response to increasing N supply involves translocation of N between
shoots and roots. When leaf N concentration is high, foliar nitrogen is trans-
ported as amino acids to roots. The nitrogen the roots do not use isreturned
to shoots to support growth of new leaves.

The morphology of leaves and roots also changes in response to variation
in nitrogen supply. Specific leaf area increases with increasing N supply, and
fine root production decreases (e.g., Boot and Mensink, 1990; Linder and
Rook, 1984; Fitter and Hay, 1981; Hunt et al., 1985; Fitter, 1985), reflecting
ashiftin partitioning toward carbon acquisition when nitrogen is abundant.
According to several plant growth models, the shift in biomass partitioning
in response to increased or decreased nitrogen supply maximizes growth
rate (Mooney ef al., 1988; Hirose, 1987; Kachi and Rorison, 1989). With in-
creasing nitrogen supply and plant internal nitrogen concentration, leaf
weight ratio, specific leaf area, and net assimilation rate all increase, result-
ing in higher relative growth rate (Hirose, 1988). In fact, plant internal ni-
trogen concentration alone is a powerful predictor of plant growth rate and
primary production (Agren, 1985; Agren and Ingestad, 1987). Nitrogen lim-
itation of net primary production has been demonstrated in many temper-
ate ecosystems by N addition experiments and is inferred in many cases
based on carbon:nutrient ratios (Vitousek and Howarth, 1991), because lim-
ited nitrogen supply reduces foliar nitrogen concentration relative to other
nutrients (Ingestad, 1979; Birk and Vitousek, 1986).
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B. The Role of Stomatal Control

The vulnerability of water transport tissues to cavitation implies that vascu-
lar plants must control their internal water tensions and transpiration over
short time scales (Tyree and Sperry, 1988). They modulate loss of water
through stomatal control (Woodward, 1998). The water transfer system of
most plants operates under tension, i.e., at negative water potentials (Sper-
ry et al., 1996), and plants must keep their water potential above the point
of catastrophic runaway embolism, which varies from above —1.0 MPa for
riparian species (Tyree et al., 1994) and some rainforest tree species (Macha-
do and Tyree, 1995) to —10 MPa in less vulnerable species, e.g., Juniperussp.
(Sperry and Tyree, 1990). Depending on the value of the soil-to-leaf hy-
draulic conductance and soil water potential in the rooting zone, vulnera-
bility to cavitation sets an upper limit on water flow through the plant. This
constraint must therefore be exerted on stomatal conductance (Tyree and
Sperry, 1988; Jones and Sutherland, 1991; Cochard et al., 1996). From this
point of view, it is worth noting that the main external variables constrain-
ing stomatal function—water availability at the soil-root interface, and leaf-
to-air vapor pressure deficit—also determine the water potential difference
between the end points of the soil-to-leaf pathway.

In aerodynamically rough canopies, stomatal closure is a very efficient
mechanism for adjusting both individual plant transpiration and stand E
(Choudhury and Monteith, 1986; Kelliher et al., 1998). This has been shown,
e.g., in sclerophyllous Mediterranean vegetation (Tenhunen et al., 1990) or
coniferous canopies (Granier and Loustau, 1994; Loustau ef al., 1996). In
such canopies, atmospheric vapor pressure deficit, D, at the leaf surface is
only weakly dependent on plant transpiration, so that plant transpiration
and ecosystem E depend strongly on canopy conductance, i.e., on leaf con-
ductance and leaf area. Additionally, the increase in sensible heat flux
caused by stomatal closure leads to a vertical expansion of the convective
boundary layer (Jacobs and De Bruin, 1992). Incorporation of drier air from
above the convective boundary layer dilutes the vapor emitted by the canopy
within a larger volume of air, which leads to a positive feedback on D. In-
deed, there is increasing evidence showing that stomatal function effective-
ly allows woody plants to operate above their cavitation threshold (Alder ¢/
al., 1996), as illustrated in Fig. 7-4 {Cochard et al., 1996).

In a smooth canopy, whole-ecosystem Eis less sensitive to leaf area or stom-
atal conductance because stomatal variation has a negative feedback effect
on D at the canopy surface, canceling the impact on E. The transpiration of
an individual plant is more sensitive to its leaf area than to its stomatal con-
ductance, because plant transpiration is dominated by the equilibrium
term, i.e., the amount of absorbed energy. Additionally, small leaf size con-
fers a high boundary layer conductance, favoring heat dissipation, which is
advantageous in dry environments. In aerodynamically smooth canopies,
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its maximal value. From Cochard et al. (1996), with permission.

the sensible heat flux and, in turn, the height of the convective boundary
layer are less sensitive to stomatal conductance. Therefore, plant transpira-
tion is rather regulated by control of the net absorption of radiation by
leaves, through such processes as leaf growth, leaf rolling, leaf shedding, and
Jeaf orientation (Dingkuhn et al., 1989). Avoidance of critically low water po-
tentials may also be less important for systems (e.g., grass species) in which
the nocturnal repair of embolized vessels may be more common due to pos-
itive root pressures (Tyree et al., 1986).

The hydraulic constraint may also restrict species expansion, precluding
the survival of a given species in environments that are too dry (or cold), en-
vironments according to their hydraulic vulnerability and stomatal function
characteristics. Convincing examples may be found in Sperry and Tyree
(1990) and Tyree and Cochard (1996), who compared the hydraulic vul-
nerability of coniferous and Quercus species, respectively, and concluded
that the differential vulnerabilities to embolism contribute to their geo-
graphical distribution.

C. Impact of Water Availability on Canopy Structure

The constraints on L and g by the water regime, with related effects on as-
similation rate, are, together with temperature, major factors determining
the distribution of plant life form over the land surface (Raunkiaer, 1934;
Schulze, 1982; Woodward, 1987). This influence has been widely recognized
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and we shall not add further comments on this point. Although water stress
has been shown to affect plant architecture through qualitative processes in-
volved in morphogenetic development, here we will focus on two waterre-
lated processes involved in the control of plant height—plant carbon bal
ance and hydraulic architecture.

It is relatively straightforward to understand the potential impacts of the
water and nutrient availability on plant height and canopy structure from an
analysis of the carbon balance of a single plant, using the pipe model for-
malism (Makela, 1986; Valentine, 1990). The net production of a leaf over
an annual cycle must account for the cost of maintenance and renewal of
the tissues that support the water transfer system to the leaf, i.e., sapwood,
cambium, and root (Fig. 7-4). As canopy height increases, so does the length
of the pathway between roots and leaves and the size of the sapwood con-
necting them. Water and nutrients affect the amount and distribution of as-
similates, and in turn plant and canopy height through different compo-
nents of the plant carbon balance.

First, as detailed in Section II1,B, the time integral of leaf net assimilation
rate, and, in turn, the amount of carbohydrates available for stem mainte-
nance, depend on the water regime and nutrient availability. Furthermore,
this effect interacts with increasing plant height as a consequence of in-
creased gravitational force and decreased stem conductance (Mencuccini
and Grace, 1996). Both of these factors increase the water stress in leaves and
impair their photosynthetic production.

Second, the root:shoot ratio is increased under drought conditions be-
cause carbon allocation shifts in favor of roots under water- or nutrient
limiting conditions. This is well exemplified by the data obtained by Schulze
et al. (1996) along an aridity gradient in Patagonia. Consequently, humid
and fertile environments, where leaf assimilation is not restricted by
drought, allow growth of larger plants and taller canopies, with proportion-
ally less belowground biomass. In these conditions, height growth provides
a competitive advantage for light capture. Nutrient-poor or dry environ-
ments limit the development of the plant aerial structure and produce larg-
er root systems. The competition for light will not play a major role in
canopy structure.

Finally, Mencuccini and Grace (1996) reported convincing evidence that
the age-related decrease of soil-to-leaf hydraulic conductance could explain
the maximal height reached by a Scots pine stand at Thetford Forest (South
England), through a decrease in apical growth rate linked to lack of turgor
(Tyree and Ewers, 1991). This may also place a ceiling on the maximal
height sustainable in a given environment. Similarly, Margolis et al. (1995)
derived an expression relating the maximal height as a function of internal
hydraulic conductance, leaf surface/sapwood ratio, and variables deter-
mining the transpiration of canopy (Whitehead ef al, 1984). From this re-
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Figure 7-5 Relationship between canopy height and annual rainfall for a range of terres-
trial ecosystems. (same data as Fig. 7-1).

lation, Beerling ef al. (1996) explained some of the effects of drought on the
height growth of Fagus sylvatica in England.

The relative extent to which carbon balance, hydraulic architecture, and
availability of nutrients limit plant height is under debate (Ryan and War-
ing, 1992; Ryan ef al., 1994). The major difficulty when attempting to pro-
vide a quantitative estimate of the upper limit in canopy height is the as-
sessment of the carbon balance of the whole plant and canopies over long
periods. Some components, €.g., root turnover and respiration costs, are no-
toriously difficult to estimate and can account for 10-60% of the carbon as-
similated. The maintenance and renewal costs of stem transfer tissue ex-
pressed per meter length may account for typically 0.5-1.5% of total net
assimilation as calculated from Ryan (1990), Ryan et al. (1994), or Bosc
(1999). This order of magnitude is quite compatible with the hypothesis of
control of canopy height by carbon balance: the maximum height sustain-
able by a canopy would then be around 80 m and a more reasonable esti-
mate will be around 60 m for the most humid part of the world where the
tallest forests occur (Fig. 7-5).

lll. Effects of Water Regime on Net Primary Production

Leaf area index, stomatal function, and canopy structure differentially af-
fect NPP and NEP of terrestrial ecosystems. Carbon assimilation by terres-
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trial plants can be regarded as the result of three interrelated processes: light
interception and energy conversion by photochemical reactions, diffusion
of CO, to chloroplastic carboxylation sites, and carbon fixation by carboxy-
lation of ribulose-1,5-bisphosphate (RuBP) (C;) or phosphoenol pyruvate
(PEP) (C,). Leaf area primarily affects light interception, whereas canopy
structure and stomatal function influence the diffusion of CO, into leaves.
Photochemical energy conversion and carbon metabolism are controlled by
the amount and efficiency of enzymes per unit leaf area, which appear to be
controlled by nutrient availability. This will be analyzed in the next section.

A. Impact of Leaf Area on NPP

The primary impact of leaf area on net production derives from the inter-
ception of photosynthetically active radiation by the canopy. The impact of
leaf area on light interception and ecosystem production has been widely
documented (Monteith, 1977; Gosse et al., 1986; Cannell ¢t al.,, 1987), and
there is strong empirical evidence that differences in leaf area between
ecosystems explain most of the geographical variations in primary produc-
tion. For instance, Webb et al. (1983) demonstrated that a unique linear re-
lationship between maximal annual foliar standing crop and NPP can well
describe the variations observed over a range of ecosystems, from desert to
coniferous forests, in North America. This relationship has also been estab-
lished within particular biomes, e.g., coniferous forest (Runyon et al., 1994;
McMurtrie ef al., 1994), eucalypt forests (Landsberg and Hingston, 1996),
and along aridity transects, e.g., Acacia koain Hawai (Harrington et al., 1995).
Water regime contributes also to explaining local and temporal variations
in NPP through variations in L. This is clearly shown by irrigation experi-
ments, €.g., in annual crops such as sunflower and soybean (Cox and Jolliff,
1986; Huck et al., 1986) or lucerne (Durand et al., 1989) or for some forest
stands (Linder et al.,, 1987). Figure 7-6 illustrates the relationship between
annual net primary production and leaf area index for a range of ecosys-
tems.

B. Stomatal Control and Related Effects

1. Leaf Level

a. Effects of D Stomatal closure under increasing atmospheric deficit is
commonly observed in arid (Schulze ef al.,, 1974; Roessler and Monson,
1985), mediterrannean (Eckardt et al., 1975; Tenhunen et al., 1984), tem-
perate (Beadle et al., 1985), and even tropical (Smith, 1989; Roy and Salager,
1992; Koch et al., 1994; Zotz and Winter, 1996) environments. In the early
1980s, the observed decrease in carbon assimilation accompanying a mid-
day increase in D and temperature was attributed to both stomatal and non-
stomatal effects (Tenhunen et al., 1984). However, these conclusions have
been questioned in the light of observations of droughtinduced patchy
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Figure 7-6 Relationship between annual net primary production and leaf area index for
the data referenced in Fig. 7-1.

stomatal closure, the consequences of which for the internal CO,, concen-
tration C; computations were made explicit by Terashima et al. (1988). The
effect of stomatal response to D on assimilation rate appears to be primari-
lyadropin C, as can be readily understood from current leaf photosynthesis
models (e.g., Farqubar et al., 1980). In particular, it is worth noting that the
light limited- and light-saturated photosynthetic rates are not equally af-
fected by internal co, concentrations. Stomatal closure affects the light-
saturated rate more than the apparent quantum efficiency of carbon assim-
ilation, and therefore decreases the light threshold intensity for saturating
photosynthesis.

There is now little evidence that atmospheric drought may produce a sub-
stantial change in C assimilation through enzymatic activities. When patch-
iness effects were taken into account, a decrease in enzymatic activities in
the short-term response of leaf assimilation to atmospheric 1) or mild water
stress could not be demonstrated (Sharkey and Seemann, 1989), leading au-
thors to postulate that the effect of D on carbon assimilation could be con-
sidered as a purely stomatal limitation (Comstock and Ehleringer, 1993; Dai
etal, 1992). The linear decrease of C, induced by D found in a wide range
of plants by Zhang and Nobel (1996) is consistent with this hypothesis.
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b. Soil Water Deficit Stomatal closure and the related drop in , is the
first mechanism that affects carbon assimilation during a period of soil
water shortage. However, nonstomatal effects, i.e., a reduction in enzyme
activity, are also commonly involved during soil water deficits. Adjustment
of photosynthetic enzymatic capacity has a longer time constant, typically
hours to days, and requires a longer application time of the primary signal.
There is an abundant literature showing a down-regulation of enzymatic
activities when photosynthesis is decreased by CO,, availability, e.g., under
drought-induced stomatal closure, in both G, (]ones 1973; Martin and
Ruiz-Torres, 1992; Wise et al., 1990; Sharkey and Seeman, 1989; Kaiser, 1987)
and C, (Du et al., 1996) plants.

Following the work of Kaiser (1987), Cornic et al. (1989), and Quick et al.
(1992), who suppressed artificially the diffusional limitations induced by wa-
ter stress using CO, concentrations as high as 15%, it is now commonly ac-
cepted that leaf water stress or dehydration has no effect per se on the pho-
ton-harvesting systems and thylakoid enzymes controlling the light reaction
processes of photosynthesis, at least in the range encountered under natur-
al conditions (Chaves, 1991; Dreyer ¢t al., 1992; Epron and Dreyer, 1992).
However, under high radiation load, stomatal closure can raise leaf tem-
perature to supraoptimal levels. Under such conditions, the capacity of
leaves to recycle the excess reducing power through processes such as heat
dissipation, the Mehler reaction (e.g., Biehler and Fock, 1996), and pho-
torespiration (Heber et al, 1996) may be overriden. This leads to irre- .
versible damages to the photosynthetic apparatus. In the field, reversible
photoinhibition, leading to a decrease in light-saturated rate of photosyn-
thesis, has been shown to occur typically during the afternoon, for grapevine
(Correia et al., 1990) and Quercus cerris (Valentini et al., 1995), and is attrib-
uted to indirect effects induced by high light and temperature on photo-
system II (PSIT).

A consequence of the stomatal effects on carbon assimilation and tran-
spiration lies in the characteristics of discrimination between stable carbon
isotopes by C, plants. Farquhar e al. (1989) demonstrated that the discrim-
ination rate is proportional to the ratio A/ g, or intrinsic water use efficien-
¢y, and decreases with stomatal closure. This finding opened interesting pos-
sibilities for the use of carbon isotope analysis of plants (more particularly,
annual rings of trees) to assess fluctuations in water use efficiency and net
primary production caused by drought (Dupouey et al., 1993; Livingston
and Spittlehouse, 1996; Bert e al., 1997; Walcroft et al., 1997; Nguyen-
Queyrens, 1998, Duquesnay ef al., 1998).

2. Ecosystem Level

a. Impacts of D A significant decrease in the radiation use efficiency
(RUE) concurrent with high vapor pressure deficit values has been ob-
served in a wide variety of terrestrial ecosystems, e.g., tall canopies such as
coniferous forests (Fan et al., 1995; Baldocchi and Vogel, 1996; Lamaud ¢
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al., 1997), tropical forests (Grace et al., 1995), and broadleaved temperate
forests (Hollinger et al., 1994). Only a few exceptions report the absence of
any contribution of D to variations in net carbon exchanges over a decidu-
ousforest (Verma et al., 1986). Runyon et al. (1994) estimated that Dreduced
the NPP of coniferous ecosytems in the Oregon transect by 10~20%, and a
stronger effect of D can be presumed in more arid environments. A decrease
in the net carbon exchange by increased D was also observed for medium-
size canopies, such as Andropogon tallgrass prairie (Verma et al., 1989, 1992),
and even for shorter-statured grasslands (Kim and Verma, 1990; Pettigrew et
al., 1990) and crops (Stockle et al., 1990). A positive interaction of the effect
of D with soil drought is commonly observed (e.g., Verma et al., 1992). The
effects of D on stomatal conductance and net assimilation can certainly ac-
count for a part of the midday (or afternoon) depression in RUE reported
in most studies of CO, exchanges above rough canopies, either in water-
limited or well-watered conditions (e.g., Valentini et al, 1996; Lamaud e al.,
1997). However, high D occurs simultaneously with high temperature and
radiation, which raise leaf and biomass temperatures and increase their res-
piration rates. Additionally, photosynthesis may also decrease when tem-
perature exceeds an optimal value. These effects are confounded in the
above-mentioned decrease of NEP, and cannot be discriminated easily.

Unfortunately, the variety of sites and climate conditions precludes a com-
prehensive comparison of the impact of D on RUE between canopies of dif-
ferent ronghness. The impact of D on canopy net exchanges may explain
some differences in the behavior of different ecosystems, because grassland
plant species would be expected to be less sensitive to D than tree species
(Jarvis, 1985). Because large values of D occur mostly under saturating light
conditions, the difference RUE of forest and crops might be explained in
part by the difference in response of their canopy conductances to atmos-
pheric D (Ruimy et al., 1995). The observation that the assimilation rate of
uncoupled canopies, e.g., grasslands, does not saturate with increasing pho-
tosynthetically active radiation (PAR), as coupled canopies do (Ruimy et al.,
1995), suggests that the light saturation point of net assimilation could be
reduced more by D in rough canopies.

b. Impact of Soil Water Deficit Effects of soil drought on RUE have
also been reported for a wide range of ecosystems. A drought-induced de-
crease in RUE has been demonstrated in most forests, e.g., a canopy of Pi-
nus pinaster (Fig. 7-7), Fagus sylvatica (Valentini et al., 1996), or mixed decid-
uous forest (Greco and Baldocchi, 1996). However, this drought impact can
be tenuous for temperate forests growing under high rainfall, as in the case
of the deciduous forest studied by Goulden et al. (1996).

Only the NPP of lowland boreal or flooded forests, where the water table
remains close to the soil surface during the growing season, escapes such
soil water limitations (Black et al., 1996; Baldocchi et al., 1997). There is some
current uncertainty concerning the extent of the effects of soil moisture
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Figure 7-7 Time course of CO, fluxes beneath (z = 10 m) and above (z = 25 m) a mar-
itime pine canopy, for selected days covering a range of soil moisture deficits in summer, 1995.
Soil water content, predawn needle water potential, and daily sum of downward PAR are given
for each day. Flux data are from Lamaud et al. (1997).

deficit on net exchange between tropical rainforest and atmosphere (see
Chapter 17, this volume), but there is no doubt that soil water can also play
arole in these systems, at least where there is a significant dry season (Mon-
teny, 1989). The RUE of grass and savannas is also affected by soil moisture
deficit. Estimates of NPP from biomass changes (Knapp et al., 1993; Peters-
son and Hansson, 1990; Long et al., 1989, 1996) and from continuous mea-
surements of net ecosystem exchanges (Kim and Verma, 1990; Verma et al,
1989, 1992; Redmann, 1978) show a clear decline linked to soil water deficit.
Such effects have also been widely documented for agricultural crops, for
which some continuous measurements of ecosystem exchanges have been
made using crop chambers (Jones et al., 1986), Bowen ratio~CO, combined
measurements (Baldocchi et al., 1981a, 1983, 1985), or eddy covariance tech-
niques (Baldocchi, 1994). Nevertheless, it should be noted that the growth
habits of some adapted species exhibit a high tolerance to water stress and
are affected weakly by soil moisture deficit, e.g., alfalfa (Baldocchi e al,
1981b).

C. Impact of Canopy Roughness

An important characteristic of the control of transpiration and assimilation
by L or g is that the efficiency of control by L (or g.) varies according to
the degree of coupling of the canopy to the atmosphere (Jarvis and Mac-
Naughton, 1986). As pointed out by Jarvis (1985), the effects of a fractional
change in canopy conductance on net assimilation are expected to be
stronger in tall canopies than in short canopies, because the drop in C
caused by stomatal closure is partially offset by an increase in C, in the lat-
ter. Figure 7-8 shows the theoretical relationship between g.. and the light-
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Figure 7-8 Impact of a change in g, on the light-saturated carbon assimilation of theoret-
ical “big C, leaf” canopies differing in leaf area index and aerodynamic conductance, at 25°C
and [CO,] = 350 pmol mol~! (upper graph). The tangents drawn at g, = 100 mmol m-%s7}
give the absolute sensitivitics of the forest and grassland to g. The lower graph gives the sensi-
tivity of carbon assimilation to g. Assimilation was calculated using the model of Farqubar ¢
al. (1980). Parameters values are maximal carboxylation rate, l:_ max = 100 pmol m~2s71; day-
light respiration R, = 1 umol m~2 s™; CO, lightinsensitive compensation point, I'* = 31
pmel mol™!; Michaelis~=Menten constant for carboxylation, K= 0.46 mmol mol™!; and oxy-
genation K| = 0.33 mol mol~!.
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saturated rate of photosynthesis for short and tall canopies. Both canopies
are modeled as a big C, leaf. Photosynthesis is calculated from Farquhar e
al. (1980), internal mesophyll resistance is neglected, and other parameters
are given in the legend of the figure. The figure shows clearly that the sen-
sitivity of net assimilation to stomatal conductance is higher for forest
canopies than for short, smooth canopies: when C, drops below 100 pmol
mol™! a fractional reduction in stomatal conductance reduces A almost
twice as much for a forest than for a short grass. Unfortunately, available data
describing the effects of soil water deficit or D on stomatal conductance and
carbon assimilation in natural canopies remain scarce, making it difficult to
compare the behavior of aerodynamic contrasting canopies. Indeed, there
is some experimental evidence showing that the midday CO,, mixing ratio
within a sunlit canopy does not deviate from the reference value by more
than 20 pmol mol™! in tall canopies (Buchmann ez al., 1996), but can de-
crease by 100 pmol mol™! in short canopies. Turbulent mixing has been
shown to have a positive effect on net assimilation at high irradiance in short
C, canopies such as rice (Yabuki et al., 1978) or alfalfa (Baldocchi, 1981b),
but does not appear to affect the carbon exchange of tall canopies to the
same extent. In tall canopies, Buchmann et al. (1996) showed that the CO,
profile between the soil and the top of the canopy was more depleted in a
broadleaved, smooth canopy than in a conifer canopy. In addition, Baldoc-
chi and Vogel (1996) observed that D had more severe effects on net as-
similation for a boreal coniferous canopy than for a broadleaved, smoother,
temperate forest.

IV. Effects of CO, on NPP and NEP

The effects of rising C, on net primary production and net ecosystem pro-
duction depend on the physiological responses of plants to elevated C,, how
these responses interact with environmental stresses, and feedbacks and
constraints that modulate their translation to the ecosystem level. Experi-
mental CO, doubling stimulates photosynthesis at the leaflevel, and in most
cases at the canopy level as well, in both managed and unmanaged ecosys-
tems. Elevated C, often reduces stomatal conductance and transpiration, .
and the stimulation of photosynthesis by elevated C, is generally larger when
plants are under water-stressed conditions. In some cases, photosynthetic
and growth responses to elevated C, are smaller in plants under under nu-
trient stress, but they are rarely eliminated and in many cases do not seem
to depend on nutrient stress at all. Furthermore, elevated C, reduces the re-
quirement for rubisco, contributing to the reduction in foliar nitrogen con-
centrations in elevated C, and this plasticity in plant C:N allows a positive
response to elevated C_ in nitrogen-limited systems. In field experiments in
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herbaceous systems, where enough data are available to construct partial
carbon budgets, the enhancements of above- and belowground biomass by
elevated C, are usually smaller than measured increases in CO, uptake at
the leaf and canopy levels. This discrepancy suggests that much of the extra
carbon in elevated € is distributed belowground, making it difficult to con-
firm directly increases in carbon mass in response to elevated C,. Deter-
mining the trajectory of increased NEP beyond the time scales of C-en-
richment experiments requires considering the distribution of carbon to
pools of differing turnover times, and also biogeochemical and atmospher-
ic feedbacks that operate on temporal and spatial scales beyond those of ma-
nipulative experiments.

A. CO, Stimulation of Photosynthesis: Interactions with Nitrogen
The evidence that elevated C, stimulates photosynthesis is overwhelming.
In experiments conducted in pots with large rooting volumes or with high
nitrogen supply, growth in elevated C, increased photosynthesis 57-58%
compared to the rate for plants grown in normal ambient C_ (Table 7-1).
While restricted rooting volume and low nitrogen supply reduced the C, en-
hancement to 28 and 23%, respectively (Table 7-1), neither ellmmatui the

Table 7-1 Stimulation of Photosynthesis
by Elevated C,*

Attribute (A) R Species (n)
Aat growth C,
Large rv 1.58° 45 (60)
Small rv 1.28¢ 28 (103)
High N supply 1.57% 8 (10)
Low N supply 1.23% 8 (10)
Protein 0.86° 11 (15)
[Rubisco] 0.85° 11 (8)
Leaf [N]
High N 0.85° 8 (10)
Low N 0.81° 22 (39)

“Determined as the ratio (R) of the value of the attribute
for plants grown in elevated €, compared to normal ambi-
ent C in various species and experiments (n), and for plants
grown in containers with large (>10 liters) or small (<10
liters) rooting volumnes (rv) and under high or low N supply.
Also shown are the effects of elevated €, on protein, rubisco,
and leaf N concentrations. After Drake ef al. (1997).

I)M(‘nns statistically different from L0 (p < 0.01) by Sw-
dent’s Ftest.

“Means statistically different from 1.0 (p < 0.01) by
Mann-Whitney rank sum test for data normality test.
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stimulation of photosynthesis by elevated C,. Acclimation of photosynthesis
to elevated C, clearly reduces photosynthetic capacity (Sage, 1994; Gunder-
son and Wullschleger, 1994), but rarely enough to compensate completely
for the stimulation of the rate by high C,.

The primary carboxylase of C; photosynthesis, rubisco, is the most abun-
dant protein in the biosphere and constitutes as much as 30% of total leaf
N mass. In current ambient C,, light-saturated rates of photosynthesis re-
quire large quantities of rubisco (Masle ¢t al., 1993), but elevated C, reduces
this requirement markedly. For example, Nicotiana tabaccum transformed
with antisense RbcS to produce 13—-18% less rubisco photosynthesized and
grew more slowly than the wild type when both were grown in ambient C,,
but there was no difference in C gain or growth when both were grown at
80 Pa C, (Masle ef al., 1993), showing the decreased requirement for rubis-
co at elevated C,. Similarly, calculations suggest that in doubled C,, 35% of
rubisco could be lost before it would colimit photosynthesis (Long and
Drake, 1991). Because of the strong temperature dependence of CO, stim-
ulation of photosynthesis, the amount of rubisco required in elevated C, will
decline further with increasing temperature. For example, at 25°C, elevat-
ed C, reduces by 41% the amount of rubisco necessary to maintain a given
photosynthetic rate, while at 35°C, elevated C, reduces this requirement by
58% (Woodrow, 1994). This reduced requirement for rubisco in elevated C
partly causes the commonly observed reduction in leaf N concentration in
elevated C (Table 7-1) (Conroy, 1992; Curtis et al., 1992; Hocking and Mey-
er, 1991; Norby et al., 1986; Wong, 1979).

B. Stimulation of Photosynthesis by Elevated C_: Interactions with Water

The effect of elevated C, on photosynthesis and plant growth interacts with
water stress (Chaves and Pereira, 1992; Grant et al, 1995). Elevated C, not
only enhances CO,, availability at the leaf surface, but also reduces stomatal
conductance in various species. For 23 species and 29 observations, the av-
erage reduction of g was 23%, leading to an average reduction in leaf tran-
spiration of 27% (Table 7-2) (see also Field ef al., 1995). Responses in trees
are highly variable (Curtis, 1996), and in some species there is no response
to elevated C,. Differences among species are at least partly related to
growth form, as the stomatal response of coniferous trees to elevated C,
tends to be smaller than the response of herbs, and deciduous trees tend to
be intermediate (Saxe et al., 1998). It is also possible that the failure of some
species to respond directly to elevated C, is due to acclimation of stomata to
high humidity. For example, stomata of Xanthium strumarium grown in a
greenhouse in high humidity failed to respond to elevated C, until given a
cycle of chilling stress {Drake and Raschke, 1974).

Elevated C, increases water use efficiency (WUE), the ratio of net photo-
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Table 7-2 Effects of Growth in Elevated C,¢

Attribute R Species (n)
g 0.80%° 28 (41)
E 0.72% 35 (81)
c/C, 0.99 26 (33)
L 1.03 8 (12)

“Effects are on acclimation of stomatal conductance e
transpiration (E), the ratio of intercellular to ambient CO2
concentration (C;/C,), and leaf area index (L; field-grown
species only), using a number of species and studies (n). Ris
the mean of n observations in various species of the ratio of
the attribute in plants grown in elevated C, compared to that
for plants grown in current ambient C. After (Drake ¢ al.,
1997a).

OMeans statistically different from 1.0 (p < 0.01) by Stu-
dent’s ttest.

“Means statistically different from 1.0 ( < 0.01) by Mann-
Whitney rank sum test for data that failed normality test.

synthesis to transpiration, either by reducing g, increasing A, or both. In a
study of oats, mustard, and two cultivars of wheat, WUE increased 40-100%
as the ambient C, was increased from about 15 to 35 Pa (Polley e al., 1993).
In a free-air CO, enrichment (FACE) study in wheat, C, elevated to 55 Pa
increased WUE by 76 and 86% in cotton crops, averaged over two full grow-
ing seasons (Pinter et al., 1996). Elevated C, also increased WUE in both C,
and C, wetland species (Arp, 1991) and in annual grasses (Jackson et (ll
1994; Hungate et al., 1997a). Water use efficiency determined from gas ex-
change measurements is increased by elevated C, in almost every species
studied in chambers or greenhouse experiments, and this result has been
confirmed in the longer term by growth analysis and carbon isotope dis-
crimination (Jackson et al., 1994; Guehl e al,, 1994; Picon et al., 1996).
Elevated C, can also mitigate plant water stress by improving osmoregu-
lation capacity (Vivin et al, 1996), activating the deoxydative metabolic
pathway (Schwanz et al., 1996), and, in some but not all cases, increasing
root to shoot ratio (Rogers et al., 1994; but see Norby, 1994). Through these
mechanisms, elevated C, partially alleviates the effects of drought on net
assimilation and plant growth (Jackson et al., 1994; idso and ldso, 1995,
Owenshy et al.,1997). For example, the increase in carbon assimilation by C,
doubling is 2- to 10-fold higher under drought than under well-watered
conditions {Idso and Idso, 1995; Guehl et al., 1994; Clifford et al., 1993). So
far, there is no indication of an effect of elevated C, on hydraulic charac-
teristics of plants—e.g., in Quercus subey, Pinus pinaster, or Quercus pubescens
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(H. Cochard, personal communication)-—and thus no evidence of associ-
ated changes in primary production, although relatively few studies have ad-
dressed this issue.

C. Respiration

1. Mechanism of the Direct Response to Elevated C, Within minutes of
a doubling of C, respiration often declines by about 20% (reviewed in
Drake et al, 19973) This has been observed in many different tissues—
leaves, roots, stems, and even soil bacteria—suggesting that the basic mech-
anism involves a fundamental aspect of respiration. Elevated C, reduces the
in vitro activity of both cytochrome ¢ oxidase (Cytox) and succmate dehy-
drogenase, key enzymes of the mitochondrial electron transport system, by
about 20% (Gonzalez-Meler et al., 1996; Palet et al., 1991; Reuveni and Gale,
1985), but has no effect on the activity of the alternative pathway (Gonzalez
Meler et al., 1996). Under experimental conditions in which Cytox coun-
trolled the overall rate of respiration in isolated mitochondria, O2 uptake
was inhibited by about 15% (Gonzalez-Meler ¢t al., 1996). Another proposed
mechanism for the apparent inhibition of respiration is that elevated C,
stimulates dark CO, fixation (Amthor, 1997). However, measurements of
the respiratory quonent (consumption of O, /emission of CO,) show that
this is unlikely, because reduced CO, evolutlon is balanced by an equal re-
duction of O, uptake in elevated C, (Reuveni et al., 1993).

The possibility that CO,, inhibition of these enzymes mediates the direct
effect of €, on respiration in plants is supported by measurements on differ-
ent types of plant organelles and tissues. Doubled C, reduced O,, uptake by
soybean mitochondria and by extracts from excised shoots of the sedge Scir-
pus olneyi (Gonzalez-Meler et al., 1996). Experiments in which CO,, efflux was
used to measure dark respiration showed that doubling C, reduced respi-
ration in excised shoots removed from the field to the lab and from intact
stands in which respiration was determined in the field on the C, sedge, S.
olneyi (Drake, 1992). The importance of this effect for carbon metabohsm
of plants and ecosystems is that it apparently occurs at a very fundamental
level of organization—the mitochondrial electron transport system. Thus,
all respiring tissues are subject to this effect.

2. Acclimation of Respiration to Elevated C, Elevated C, could also af-
fectrespiration by altering tissue composition. As tissues age, the rate of dark
respiration of foliage declines. This occurs as tissue N and protein concen-
trations decline, indicating a decreased demand for energy to sustain
growth and/or maintenance. Thus, the reduction in protein and N con-
centration of plants grown in elevated C, (Table 7-1) suggests that rising C,
could reduce growth and maintenance respiration associated with protein
turnover (Amthor, 1997; Curtis, 1996; Wullschleger ef al, 1992). We re-
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viewed data on measurements of respiration on leaves of 17 species grown
in current ambient and elevated €. Acclimation of dark respiration was de-
termined by comparison of the rate of CO, efflux or O, consumption mea-
sured on samples of tissue grown in currentambient or elevated C, ata com-
mon background C,. In our survey of the literature we found no overall
difference between the specific rates of respiration of shoots and leaves
grown in elevated or ambient C . However, some C, species—S. olneyi, Lin-
dera benzoin, and Triticum aestivum—do show acclimation to high C,, appar-
ently by reducing the activity of enzymatic complexes of the mitochondrial
electron transport chain (Cytox and Complex III), resulting in diminished
capacity of tissue respiration (Aranda et al., 1995; Azcon-Bieto et al., 1994),
Reduction of the activity of these enzymes was not found in the C, species,
Spartina patens.

D. Canopy CO, Uptake, Ecosystem Carbon Mass,
and Net Ecosystem Production

Based on results from a number of elevated ¢, experiments in a variety of
ecosystems, there is broad agreement that the stimulation of leaf-level pho-
tosynthesis by elevated C, (Drake et al., 1996, 1997) (Table 7-1) is reflected
in increased CO,, uptake at the canopy level (Drake and Leadley, 1991). For
example, even w1th acclimation of photosynthesis to elevated C, in the
sedge, S. olneyi, elevated C, stimulated ecosystem carbon uptake in the salt
marsh community where s, olneyiis dominant (Drake et al., 1996). Increased
canopy CO,, uptake in response to elevated C, has been observed in field
experiments in a number of herbaceous systems, including arctic tundra
(Oechel et al., 1994), alpine grassland (Diemer, 1994), annual Mediter-
ranean grassland (Field et al., 1997), tallgrass prairie (Ham et al,, 1995), and
calcareous grassland (Stocker ¢t al., 1997). In two of these cases, the stimu-
lation of canopy CO,, uptake was shortlived, disappearing after 3 years in
the alpine grassland (Korner et al., 1997) and after 2 years in arctic tundra
(Oechel et al., 1994). Photosynthesis in the dominant species in the tundra
system rapidly adjusted to elevated C, in controlled environment studies
(Oberbauer et al., 1986; Cook et al., 1998) Low temperatures in tundra and
alpine grasslands may reduce the response to elevated €, (Long and Drake,
1991). Similarly, high temperatures tend to amplify the stimulation of pho-
tosynthesis by elevated C, at both the leaf level (in Pinus taeda) (Lewis et al.,
1996) and at the canopy level (in cotton and wheat) (Pinter et al., 1996). In
summary, in the majority of field experiments conducted to date in both
crops and native species, elevated C, increased canopy CO, uptake, and the
stimulation was sustained over the duration of the experiment.

Net ecosystem production integrates annual carbon inputs through pho-
tosynthesis and annual carbon losses through respiration for a given land
area over time (e.g., g Cm~2yr~1), so canopy gas exchange measurements,
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such as those cited above, can be used to estimate NEP and its response to
elevated C,. Usually, however, annual NEP and instantaneous canopy gas ex-
change differ in time scale. Chamber-based gas exchange measurements are
rarely continuous for an entire annual period, because maintaining the
measurement system is too costly or could introduce artifacts that alter the
fluxes being measured (e.g., altered microenvironment, excluded rainfail),
and also because gas exchange rates during certain periods of the year are
deemed negligible. Thus, a potential source of error in determinations of
NEP from gas exchange measurements is the extrapolation to the nonmea-
sured periods, including the assumption that net fluxes during certain pe-
riods (e.g., winter) are zero. The effects of elevated Ca on NEP can also be
determined by comparing carbon stocks in the C, treatments after a given
period of time (Hungate et al., 1997b). This approach, although somewhat
simpler in methodology, requires that experiments are of sufficient dura-
tion that biologically important differences in NEP yield statistically de-
tectable differences in ecosystem carbon mass (Hungate et al., 1996). Usu-
ally, this means ignoring large, relatively inert, ecosystem carbon pools in
order to reduce the noise (e.g., excluding soil, or soil below the top 15 cm),
which can also yield erroneous estimates of NEP.

There have now been a number of elevated C, experiments conducted
under field conditions in native ecosystems), but there are only a few in
which estimates of the effect of elevated C, on NEP have been reported from
canopy gas exchange measurements, inventories of ecosystem carbon
stocks, or, most instructive, from both approaches (Table 7-3). These ex-
periments support the general conclusion that elevated C, increases NEP
(with the exception of the arctic tundra study). In cases where enough in-
formation is available, the effects of elevated C, on NEP determined by gas
exchange are larger than those determined by carbon inventories, dramat-
ically so in the salt marsh study, but also the case in the alpine grassland.

The stimulation of carbon uptake at the canopy level is only partly ac-
counted for by increases in measured ecosystem carbon pools (Drake et al,
1996; Diemer, 1997; Korner et al., 1997; Canadell ef al., 1996), suggesting that
much of the extra carbon taken up in elevated C, is distributed to large car-
bon pools, where changes are difficult to detect, which, in the case of the
herbaceous ecosystems listed in Table 7-3, is most likely the soil carbon pool
(Kuikmann et al., 1991; Canadell e al., 1996; Gorissen, 1996; Hungate et al,
1997b). Determining the fate of this carbon is critical for extrapolating to
long-term carbon storage in such systems, and presents a challenge to re-
searchers in this area. First, it must be demonstrated unequivocally that car-
bon is accumulating in soil in these experiments, either by measuring a
change in soil carbon mass, or by ruling out other fates of the extra carbon,
including leaching or horizontal transfer of labile carbon, or return of car-
bon to the atmosphere as CO, during periods when net CO,, exchange is
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not being measured. Second, soil carbon comprises several carbon pools of
varying turnover times, and plant carbon allocation partly determines car-
bon distribution among these pools (Parton et al., 1987). Because the po-
tential for carbon storage in a given soil pool depends on its turnover time,
shifts in plant carbon allocation in elevated C, (e.g., increased allocation to
fine roots and root exudates) will affect long-term carbon storage. Thus,
quantitative predictions of long-term increases in NEP require understand-
ing how elevated C, affects the distribution of the carbon to pools of vary-
ing carbon storage potential.

In field experiments, the quantitative evidence that elevated C, enhances
carbon distribution to soil is indirect, resting on observations that the car-
bon increments from increased canopy photosynthesis are larger than ob-
served increases in plant biomass. Although some pot studies using soils with
low background amounts of carbon (Lutze, 1996) or carbon isotope labels
(Ineson et al., 1996; Gorrisen, 1996) provide direct evidence for carbon ac-
cumulation in soil, others show that much of the extra carbon distributed
belowground in elevated C, is preferentially allocated to relatively labile
pools, limiting carbon accretion in recalcitrant pools with high storage po-
tential (Tate et al., 1995; Hungate ¢t al., 1997a,b). In these cases, elevated C,
may cause a larger increase in carbon turnover than in soil carbon mass
(Newton et al., 1995; Tate and Ross, 1997).

V. Interactions between CO, and Nutrients

Interactions between rising C, and nutrients can occur in two ways: (1) the
response of plants to elevated C, can depend on nutrient availability and (2)
the responses of plants to elevated C, can alter nutrient availability, changes
that can further modify both NPP and NEP. The effects of elevated C, are
rarely eliminated by nitrogen stress, at least partly because the decreased de-
mand for rubisco in elevated C, (as discussed above) allows a positive re-
sponse even without an expansion of plant nitrogen mass. For example, in
a 4-year study of a native Australian grass, elevated C, reduced tissue nitro-
gen concentration irrespective of the availability of N in the soil, and this
was accompanied by accumulation of carbon in the microcosim, although
the lower N availability levels reduced the relative effects of C, on carbon ac-
cumulation (Lutze, 1996). Whether growth responses to elevated C_ are rel-
atively smaller under conditions of nutrient limitation remains ambiguous.
In some cases, responses to elevated C, are markedly smaller when nitrogen
supply is restricted (Curtis et al., 1994, 1995; McGuire et al., 1995; Saxe et al.,
1998; (Table 7-1), whereas other experiments show no evidence for a short-
term nitrogen constraint (reviewed in Lloyd and Farquhar, 1996; Idso and
Idso, 1995). In native ecosystems, whereas nitrogen addition augments re-
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sponsiveness to elevated C, in tallgrass prairie (Owensby et al., 1993), small
responses in alpine grasslands are apparently unrelated to nitrogen avail-
ability (Korner et al., 1997). The relatively large C, stimulation of net ecosys-
tem carbon uptake in a C; saltmarsh (Drake et al., 1996) is widely attributed
to its “nutrient-rich” status, but this explanation seems unlikely given that
net primary production in these coastal salt marshes is limited by nitrogen,
as demonstrated by marked increases in aboveground production in re-
sponse to experimental nitrogen addition (Valiela and Teal, 1974; Jefferies,
1977; Jefferies and Perkins, 1977; Kiehl et al.. 1997). Decreased growth re-
sponses to elevated C, under restricted phosphorus supply have also been
observed in some cases (Cure ef al.,, 1988; Goudriaan and DeRuiter, 1983;
Conroy et al., 1988, 1990), and not in others (Conroy, 1992; Israel et al.,
1990). More striking than the presence or absence of a putative nutrient con-
straint on production responses to elevated C, is the wide variation in re-
sponses among different experiments, matched by the variety of conclusions
drawn in reviews of the topic (e.g., Idso and Idso, 1994; McGuire et al., 1995;
King et al., 1997; Curtis and Wang, 1998). As suggested by Johnson et al.
(1998), limitation by any growth factor is more likely to be a continuum than
a dichotomy of the presence or absence of limitation. When the data are
reexamined with a quantitative assessment of the degree of nutrient limita-
tion, a weak dependence of the response to elevated C, on the degree of
nutrient limitation emerges, with smaller responses under more nutrient-
limiting conditions (Poorter and Garnier, 1996).

Nutrient constraints on the productivity responses to elevated CO,, fall
into two classes: (1) whether the relative growth response to elevated C, de-
pends on nutrient availability (which, as described in the preceding para-
graph is controversial), and (2) whether, over longer time scales (10-100
yT), sequestering nutrients in biomass and soils that occurs in concert with
greater carbon storage in elevated C will diminish the potential for further
increases in productivity. Greater carbon uptake in elevated C, will result in
nutrient sequestration that reduces nutrient availability to plants, unless, as
C,(l continues to rise, N inputs increase, N losses decrease, or distribution of e
N to ecosystem pools with high C:N ratios increases(Field 1999), particular-
ly, from soils to wood. Widening C:N ratios of plant tissues allow some in-
creased productivity in response to rising C , but this is limited by plant sto-
ichiometry. To date, field experiments have not lasted long enough to test
whether elevated € causes redistribution of nitrogen between ecosystem
pools of varying C:N ratios, but there have been a few tests of the effects of
elevated C, on nitrogen inputs and losses.

Plants with direct access to atinospheric nitrogen through nitrogen fixa-
tion generally show a relatively larger growth response to elevated C, com- /
pared to nonfixing species, in both the laboratory (Poorter, 1993) an(l in
the field (Sousanna and Hartwig, 1996). Nitrogen fixation is energetically
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expensive, but it is usually not directly regulated by the availability of pho-
tosynthate (Hartwig et al., 1990, 1994; Hunt and Layzell, 1993; Weisbach «
al., 1996). Rather, increased growth of N fixers in elevated C, might be
viewed as a realisation of the CO, limitation of photosynthesis matched by
aready supply of fixed nitrogen. Nitrogen fixation is a very small part of the
annual nitrogen cycle in most ecosystems, but it is nevertheless the major
mechanism for the entry of nitrogen. Summed over many years, a sustained
increase in nitrogen fixation in high C, could increase ecosystem N mass
enough to partially counteract reduced N availability through sequestration
in biomass and soils (Gifford et al., 1996). However, this will be less impor-
tant in cases where low phosphorus availability restricts the growth of nitro-
gen-fixing plants (Vitousek and Howarth, 1991). For example, elevated C,
strongly increased growth and aboveground N mass of a legume in a
scruboak ecosystem in which soil phosphorus availability was high, butina
\ calcareous grassland, elevated C, increased the growth of legumes only with
additional phosphorus supply, and had no effect on legume growth under
field conditions where phosphorus availability was low (Niklaus et al., 1998).
Changes in the processes that control nitrogen losses from ecosystems will
amplify or counteract increased inputs of nitrogen through fixation. Stud-
ies to date are inconclusive. Elevated C, can increase nitrogen losses by in-
creasing carbon supply to rhizosphere denitrifters (Smart e al., 1997) and
by increasing soil moisture and N/ N2O efflux (Arnone and Bohlen, 1998).
By contrast, elevated C, can decrease N losses by increasing N immobiliza-
tion by microbes and thereby reducing NO efflux (Hungate et al, 1997a).
Small changes in N inputs, losses, or distribution will substantially modify
the productivity responses to elevated C,, underscoring the importance of
futher experimental and modeling studies of these potential changes.

VI. Interactions between Water Regime
and CO, Concentrations

C, affects the two main canopy characteristics determining ecosystem water
balance, L and g, but with opposite impacts on water balance: the increase
in L enhances plant transpiration and ecosystem E, but the reduction in g,
decreases transpiration, depending of canopy roughness. The water balance
constraint may allow effects on L to take place in water-limited ecosystems,
provided its impact on the water balance is low. No savings in water can be
expected in canopies where elevated C, stimulates increase in L relatively
more than it decreases g.

In smooth canopies, low atmospheric coupling explains the lack of sensi-
tivity of E to surface conductance (Hileman et al., 1994; Kimball et al., 1995;
Bunce et al, 1997). However, an improvement in soil water status due to a
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decrease in Eunder doubled C, has been observed in rice crops (Baker et
al., 1997), Mediterranean grasslands (Field et al,, 1995), and a C,—tallgrass
prairie, which suggests than reduction in g (e.g., Owensby et al, 1997) can
overcome the impact of increased L on E. However, our survey shows that L
did not increase in any of the long-term field studies of the effects of ele-
vated C, on crops or native species (Table 7-1). This survey included studies
of wheat (Triticum aestivum) and cotton in Arizona, where FACE was used to
expose the plants to 55 Pa, as well as open-top chamber studies of native
species. Elevated C, (>68 Pa) reduced E compared with normal ambient in
the Maryland wetland (Arp, 1991), Kansas prairie (Ham et al., 1995), and
California grassland ecosystems (Field et al., 1995). In the wetland ecosys-
tem, £ was evaluated for a C;-dominated and a C -dominated plant com-
munity. In these two communities, instantaneous values of E averaged
5.5-6.5and 7.5-8.7 mmol H,0 m~2 57! for the C, and C, communities, re-
spectively, at present amblent C , but at elevated C (68 Pa) evapotranspi-
ration (ET) was reduced 17— 22% in the C; and 28— 29% in the C, commu-
nity, indicating the relatively greater effect of elevated C, on g m the C,
species. In the prairie ecosystem cumulative ET over a 34—day period in mld—
summer was 180 kg m ™2 at present ambient C, whereas it was 20% less at el-
evated C,. In several grassland ecosystems, elevated C, reduced E to the ex-
tent that soil water availability increased (Fredeen et al., 1995; Rice et al,
1994).

In aerodynamically rough canopies, the effect of L on E is potentially
large, but the extent to which it could be compensated by effects on g will
vary among species (Eamus and Jarvis, 1989; Saxe et al., 1998). Also, in con-
trast to most grass and crop species, the sensitivity of g, to D or soil drought
seems unaffected in species such as sunflower (Bunce, 1993) or Pinus
pinaster (Picon et al., 1996). The Efrom forest canopies composed of species
unresponsive to G, would therefore be potentially affected only through
changes in leaf area or when root growth enhancement gives access to new
sources of soil water. In humid and fertile environments, where a change in
Lhas litde effect on ecosystem water balance, the associated impact on ra-
diation interception will be low. In forest exposed to water limitations, the
water regime will limit any impact of C, on L, unless root growth enhance-
ment will allow plants to access new sources of water. However, primary pro-
duction may be increased through the enhancement of CO,, availability, as
far as plant growth can use the additional assimilated carbon in stem or root
growth, depending on other limiting conditions. For species responsive to
G, such as numerous Quercus species, reduction in g, may allow L to increase
mth little effect on transpiration. Then C, can have a larger potential im-
pacton primary production and growth. But still, this improvement will only
take place providing that the other possible climatic and trophic limitations
of primary production can be overcome.
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The reduction in E possibly caused by increased C, would also alter
canopy energy balance and shift some energy loss from transpiration to con-
vective heat loss. This etfect has important consequences for climate. In-
corporating a model of stomatal response to elevated C, into a coupled sim-
ple biosphere—atmosphere global circulation model (SlB2 GCM) showed
that decreased g and latent heat transfer will cause a warming of the order
of 1-2°C over the continents (Sellers ¢t al., 1996) in addition to warming
from the CO, greenhouse effect. Implicit in this development is that any loss
of photosynthetic capacity, through acclimation, would lead to further de-
creased g.

VIl. Interactions between CO,, Water, and Nitrogen

In arid and semiarid grasslands, increased water availability in elevated C,
can extend the length of the growing season (Fredeen et al., 1995) and in-
crease nitrogen availability (Hungate et al., 1997b), both potentially ampli-
fying the effect of elevated C, on NPP (Hungate et al., 1997b). However, in-
creased soil moisture in elevated C, will also stimulate decomposition and
thus CO, release from soils (Rice et al., 1994). Because appreciable carbon
storage in grasslands is largely restricted to soils, the balance of the effects
of increased soil water content in elevated C, is to reduce the effects of ele-
vated C, on NEP. In forests, greater nutrient mineralization associated with
wetter soils could support greater tree growth and thus carbon accumula-
tion in wood, which has a higher C:N ratio than soils (e.g., Shaver e al,

1992). However, as mentioned earlier, elevated C, tends to cause smaller re-
ductions in g in woody species compared to herbs so this interaction be-
tween C,, water, and nitrogen may be less important in forest ecosystems.
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