Search Results for: mo j

Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century

Terrestrial vegetation removes CO2 from the atmosphere; an important climate regulation service that slows global warming. This 119 Pg C per annum transfer of CO2 into plants—gross primary productivity (GPP)—is the largest land carbon flux globally. While understanding past and anticipated future GPP changes is necessary to support carbon management, […]

Atmosphere-soil Interactions govern ecosystem flux sensitivity to environmental Conditions in semiarid woody ecosystems over varying timescales

Water and CO2 flux responses (e.g., evapotranspiration [ET] and net ecosystem exchange [NEE]) to environmental conditions can provide insights into how climate change will affect the terrestrial water and carbon budgets, especially in sensitive semiarid ecosystems. Here, we evaluated sensitivity of daily ET and NEE to current and antecedent (past) […]

Understanding the continuous phenological development at daily time step with a Bayesian hierarchical space-time model: impacts of climate change and extreme weather events

The impacts of climate change and extreme weather events (e.g. frost-, heat-, drought-, and heavy rainfall events) on the continuous phenological development over the entire seasonal cycle remained poorly understood. Previous studies mainly focused on modeling key phenological transition dates (e.g. discrete timing of spring bud-break and fall senescence) based […]

Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses

Nitrogen (N2)-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2-fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2-fixation rates […]

Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2

Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow […]

Associations between riparian plant morphological guilds and fluvial sediment dynamics along the regulated Colorado River in Grand Canyon

Effects of riparian vegetation on fluvial sediment dynamics depend on morphological traits of the constituent species. Determining the effects of different morphological guilds on sedimentation rates, as influenced by multiple aspects of dam operations, can help identify viable strategies for streamflow and vegetation management to achieve riparian resource goals. Plants […]

Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil

Microbial activity increases after rewetting dry soil, resulting in a pulse of carbon mineralization and nutrient availability. The biogeochemical responses to wet-up are reasonably well understood and known to be microbially mediated. Yet, the population level dynamics, and the resulting changes in microbial community patterns, are not well understood as […]

Ecological memory of daily carbon exchange across the globe and its importance in drylands

How do antecedent (past) conditions influence land-carbon dynamics after those conditions no longer persist? In particular, quantifying such memory effects associated with the influence of past environmental (exogenous) and biological (endogenous) conditions is crucial for understanding and predicting the carbon cycle. Here we show, using data from 42 eddy covariance […]