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Limits to growth of forest biomass carbon sink
under climate change
Kai Zhu1, Jian Zhang 2,3, Shuli Niu4,5, Chengjin Chu6 & Yiqi Luo7

Widely recognized as a significant carbon sink, North American forests have experienced a

history of recovery and are facing an uncertain future. This growing carbon sink is dictated

by recovery from land-use change, with growth trajectory modified by environmental change.

To address both processes, we compiled a forest inventory dataset from North America

to quantify aboveground biomass growth with stand age across forest types and climate

gradients. Here we show, the biomass grows from 90 Mg ha–1 (2000–2016) to 105 Mg ha–1

(2020 s), 128 Mg ha–1 (2050 s), and 146 Mg ha–1 (2080 s) under climate change scenarios

with no further disturbances. Climate change modifies the forest recovery trajectory to

some extent, but the overall growth is limited, showing signs of biomass saturation. The

future (2080s) biomass will only sequester at most 22% more carbon than the current level.

Given such a strong sink has limited growth potential, our ground-based analysis suggests

policy changes to sustain the carbon sink.

DOI: 10.1038/s41467-018-05132-5 OPEN

1 Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA. 2 Tiantong National Station of Forest Ecosystem Research &
Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai,
China. 3 Shanghai Institute of Pollution Control and Ecological Security, 200092 Shanghai, China. 4 Key Laboratory of Ecosystem Network Observation and
Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China. 5 University of Chinese
Academy of Sciences, 100049 Beijing, China. 6Department of Ecology, State Key Laboratory of Biocontrol & School of Life Sciences, Sun Yat-sen University,
510275 Guangzhou, China. 7 Center for Ecosystem Science and Society & Department of Biological Sciences, Northern Arizona University, Flagstaff,
AZ 86011, USA. Correspondence and requests for materials should be addressed to K.Z. (email: kai.zhu@ucsc.edu)

NATURE COMMUNICATIONS | (2018)9:2709 | DOI: 10.1038/s41467-018-05132-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;



North American forests have been widely recognized as a
growing carbon sink, absorbing a substantial amount
of CO2 from the atmosphere1. Two processes are com-

monly considered to dictate this growing carbon sink: forest
recovery induced by land-use change or disturbances such as
agricultural abandonment, reduced harvesting, and fire
suppression; and growth trajectory modified by environmental
changes such as CO2 fertilization, nitrogen deposition, and cli-
mate change2. These two growth processes could have contrasting
implications to the fate of the carbon sink. If forest recovery
is the dominant mechanism, then the current carbon sink is
expected to saturate as forests age and reach late successional
stages. In contrast, if modified growth dominates, then the
carbon sink might continue to increase, offering additional
potential for carbon sequestration. Previous studies have attrib-
uted the North American forest carbon sink to either regrowth,
e.g., ref.3 or modified growth, e.g., ref.4, with limited considera-
tion of both mechanisms. With rapid changes in land-use and
climate in North America and around the world5–7, it is urgently
important to have a full understanding of both contributing
mechanisms and prediction of the potential of forest biomass as a
carbon sink. This understanding can help inform policies on
future CO2 emission targets and forest management strategies.

Here we compiled a complete set of forest inventory
data from North America north of Mexico to understand
the fate of forest biomass as a carbon sink and to predict its
potential in mitigating climate change. The study of North
American forests in depositing carbon is especially critical
because they have experienced a history of resiliency and
recovery: forests were mostly cleared for agriculture in the
early twentieth century, but they since have significantly
recovered8. The basic model of forest recovery postulates that
biomass starts to accumulate with stand age as forests
regrow following disturbance, but the trajectory is modified by
changes in the environment. The aboveground biomass of a
forest observed at a given age is an outcome integrated
from both processes. To understand and predict this cumulative
effect, we developed a hierarchical Bayesian (HB) growth
model, assuming that the forest recovery trajectory is described
by a growth function, where its parameters are further determined
by forest-type and climate. We chose the Monod (Michaelis–
Menten) growth function for its simplicity and similar perfor-
mance among many growth functions (Supplementary Fig-
ures 1, 2). For each forest-type, the two Monod parameters,
the asymptotic saturated aboveground biomass and the stand
age to reach half-saturation, further depend on local
climate conditions, with the assumption that the spatial
variation in climate distribution can substitute the temporal
variation in climate change9. Our model is verified and
validated by the National Forest Inventory data of 26
yr (1990–2016) and 140,267 plots spanning across the
United States and Canada. We began by developing the HB
growth model using observations in the current period
(2000–2016). We then used the current model to independently
hindcast observations in the past period (1990–1999). Finally,
we extrapolated our model to predict the forest biomass
potential under idealized scenarios in the future periods (2020s,
2050s, 2080s) and quantify the extent to which the current
biomass approaches the future biomass potential. We found
that climate change effectively modifies the forest recovery
trajectory, but the overall forest growth is limited. Under various
climate change scenarios, the North American forest biomass
will sequester at most 22% more carbon than current levels by
the 2080s. The limits to forest growth suggest policy changes
to lower future CO2 emission targets and actively manage
forest resources.

Results
Forest recovery modified by climate. During the current period
(2000–2016), our HB growth model successfully explains the
large variations in the aboveground biomass across the stand age
and geographic gradients of major forest types in North America.
Figure 1 shows the measured aboveground biomass spanning 30-
fold across the 1000 yr gradient of stand ages. Of the 23 forest
types, western forests have significantly larger biomass than
eastern forests (e.g., redwood vs. loblolly/shortleaf pine). In gen-
eral, the aboveground biomass accumulates rapidly at young
stand age and gradually saturates at later stages. The large var-
iations within each age group and deviations from the mono-
tonically increasing Monod function (e.g., decreasing biomass at
some stages in Douglas-fir) suggest local climate effects in mod-
ifying the recovery trajectory. Comparing to observations, the
model effectively quantifies the recovery trajectory and its
uncertainty. The strong spatial correlation (r= 0.888, p < 0.001,
spatially modified t-test) between the observed and modeled
biomass indicates that the model predicts the biomass well
(Fig. 2). Forests in the Pacific Northwest have the highest biomass
density (>300 Mg ha–1) and the southwestern forests, in contrast,
have the lowest biomass (<50 Mg ha–1), with the northeastern
forests (150–250 Mg ha–1) and the southeast (100–200 Mg ha–1)
falling between. Although data from the United States and
Canada were retrieved from different sources, they show smooth
transitions across the border. Agreements along the stand age
gradient (Fig. 1) and across North American geography (Fig. 2)
both verify the assumptions that biomass recovers with stand age,
with trajectory modified by climate. We also performed a spatial
cross-validation and found that the observed and predicted bio-
mass are spatially highly correlated (r= 0.767, p < 0.001, spatially
modified t-test), which provides yet another way to verify the
assumptions.

The forest recovery trajectory is governed by two critical
parameters: the asymptotic saturated aboveground biomass and
the stand age to reach half-saturation, both of which are assumed
to depend on climate. Across forest types, higher temperature
generally increases the saturated aboveground biomass but
decreases the half-saturation stand age; more abundant precipita-
tion increases both the saturated biomass and half-saturation age.
The estimated model parameters quantify the saturated biomass
and half-saturation age on average climates, as well as various
climate effects on them (Supplementary Table 1). Under the
average temperature and precipitation across 23 forest types, the
aboveground biomass saturates to 355Mg ha–1 on average,
ranging from 32.8Mg ha–1 (woodland hardwoods) to 982Mg
ha–1 (redwood); the half-saturation age is 106 yr on average,
ranging from 23.8 yr (longleaf/slash pine) to 252 yr (white/red/
jack pine). For the saturated biomass, the temperature effects are
14Mg ha–1 °C–1 on average, ranging from –65.2 Mg ha–1 °C–1

(oak/gum/cypress) to 144Mg ha–1 °C–1 (redwood); the precipita-
tion effects are 0.177Mg ha–1 mm–1 on average, ranging from
–0.440Mg ha–1 mm–1 (white/red/jack pine) to 1.57Mg ha–1 mm–1

(redwood). For the half-saturation age, the temperature effects are
–1.20 yr °C–1 on average, ranging from –22.9 yr °C–1 (western
larch) to 18.4 yr °C–1 (elm/ash/cottonwood); the precipitation
effects are 0.00679 yr mm–1 on average, ranging from –0.306 yr
mm–1 (white/red/jack pine) to 0.198 yr mm–1 (redwood). In
summary, the local climate conditions effectively modify the
biomass recovery trajectories. The recovery trajectory altered by
environmental conditions as a moving attractor is a fundamental
property of the transient dynamics of terrestrial carbon storage10.

As in many forest succession studies, our analysis is based on
the approach assuming the variation in biomass over time (age)
could be approximated by the variation across space, e.g., ref.9

The space-for-time assumption is widely applied but rarely tested.
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To validate this assumption, we used the model fitted to the
current observations to independently hindcast (backward
predict) the observed biomass in the past period (1990–1999).
With a decade apart from the current period, the past period
provides supplementary information on stand age distributions

over forest successional dynamics (Supplementary Figure 3). The
additional test shows that the past observed aboveground biomass
is well hindcasted by the models across forest types (Supplemen-
tary Figure 4) and that the observed and hindcasted biomass are
spatially strongly correlated (Supplementary Figure 5; r= 0.846,

Western oak White / red / jack pine Woodland hardwoods

Redwood Spruce / fir Tanoak / laurel Western larch

Oak / hickory Oak / pine Pinyon / juniper Ponderosa pine

Lodgepole pine Longleaf / slash pine Maple / beech / birch Oak / gum / cypress

Elm / ash / cottonwood Fir / spruce / mountain hemlock Hemlock / sitka spruce Loblolly / shortleaf pine

Alder / maple Aspen / birch California mixed conifer Douglas−fir
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Fig. 1 Forest aboveground biomass current recovery with stand age across forest-type. Observed and modeled aboveground biomass and stand age in 23
primary forest types across North America are summarized for the current period, 2000–2016. Observed values (gray boxplots) are collected from the
National Forest Inventory programs in the United States and Canada. Modeled values (red lines and ribbons) are calculated as the posterior means (lines)
and 95% credible intervals (ribbons) from the hierarchical Bayesian growth model fitted to the current data. Each forest-type is fitted to the model
separately
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p < 0.001, spatially modified t-test). It validates that the local
climate variations across space can approximate the forest
recovery dynamics over time, at least to the decadal scales over
which we are concerned.

Limited forest growth potential. Based on the validated results
for current and past observations, we extrapolated the model of
aboveground biomass into the future periods (2020s, 2050s,
2080s). As a starting point to anticipate climate change, we
aimed to quantify the potential of biomass carbon sequestration
under best-case scenarios. With this goal, we assumed no
major shift in forest-type composition and no further dis-
turbance, such as fire or insect outbreak. We considered the
projected change in climate, because they could modify forest

recovery trajectories. Figure 3 shows the current period (obser-
ved and modeled), in reference to the future periods under
two climate change scenarios (low emission RCP4.5 and high
emission RCP8.5). Biomass increases from the observed 89.9 ±
65.6 Mg ha–1 (mean ± standard deviation) or modeled 91.2 ± 55.5
Mg ha–1 in 2000–2016 (current), to 105 ± 63.8 Mg ha–1 (RCP4.5)
or 105 ± 63.9 Mg ha–1 (RCP8.5) in the 2020s, to 127 ± 77.4 Mg
ha–1 (RCP4.5) or 129 ± 80.7 Mg ha–1 (RCP8.5) in the 2050s,
to 143 ± 88.1 Mg ha–1 (RCP4.5) or 148 ± 99Mg ha–1 (RCP8.5)
in the 2080s. Geographically, the biomass accumulation is
dominated by the continued recovery of the eastern forests,
supplemented by the northwestern forests (Supplementary Fig-
ure 6). Figure 4 shows an example of the highest projection under
RCP8.5 in the 2080s.
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0

50

100

150

200

250

2000 − 2016 2020s 2050s 2080s

A
bo

ve
gr

ou
nd

 b
io

m
as

s 
(M

g 
ha

–1
)

Fig. 3 Trends of the current and future forest aboveground biomass. The current period (2000–2016) is summarized as observed and modeled values.
The future periods (2020s, 2050s, 2080s) are summarized as two IPCC scenarios (RCP4.5 and RCP8.5) under the best-case circumstances of no
disturbances. Points are means, error bars are standard deviations, thick lines are 50% quantiles (25% and 75%), and thin lines are 90% quantiles
(5% and 95%)
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(Mg ha–1)
Less than 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350
350 to 400
400 to 450
450 to 500
500 to 550
550 or more

Modeled aboveground biomass (2000 – 2016)

(Mg ha–1)
Less than 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350
350 to 400
400 to 450
450 to 500
500 to 550
550 or more

Fig. 2 Geographic distributions of current forest aboveground biomass. Both the observed and modeled maps are averaged at the 10-min longitude
by latitude resolution from inventory plots for the current period, 2000–2016. GIS data source: GADM database of Global Administrative Areas
(https://gadm.org)
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In addition, we calculated a ratio of the current vs. future
modeled biomass in a geographic context, which summarizes the
extent of current biomass approaching the future biomass under
the best-case scenario (no disturbance). As an example, this ratio
is 0.780 ± 0.438 for the current vs. the 2080s RCP8.5 future
(Fig. 4), that is, the current forest biomass is on average 78%
relative to the future biomass for the 2080s under the RCP8.5
best-case scenario. Because of the no-disturbance assumption, the
actual future biomass is likely to be lower, and the actual ratio is
likely to be higher, indicating that the biomass is likely to be even
more saturated than 78%. In other words, under the unlikely best
circumstances of no disturbances, North American forest carbon
will only increase at most 22% over the current level to the 2080s.

Discussion
Our findings suggest that North American forests are recovering
from previous disturbances with trajectories modified by climate,
but the biomass growth potential appears limited. Although the
limited growth of forest biomass with age is known in theory11,
this study uses ground-based measurements to quantify the
extent under idealized projected climate change scenarios across
continental scales. Verified by the current data and validated
by the past observations, our model predicts that the present
aboveground biomass is, averaged across all forest types, 78% of
its biological capacity in the 2080s future of North America. The
future projection assumes the best-case scenario as no further
disturbance will reset the successional clock. Clearly, the actual
future biomass is likely to be lower than this ideal projection, as
additional disturbances reset the ecosystem to earlier successional
stages. Given the increasing intensity of disturbances under global
change5–7, our projections of the biomass ratio are likely to be
underestimated. In other words, increased future disturbances
might lead to an even smaller biomass carbon sink and a higher
ratio than reported here. All these signs point to limits to forest
growth and saturation of forest biomass carbon sink across North

America. These findings are consistent with other observation-
based models in the United States12 and echoes similar findings
in Europe13. Because such a strong sink of North American forest
biomass (offset > 10% of current CO2 emissions)14 is shown to be
limited, future CO2 emission targets might need to be lowered.

Our analysis comes with several possible limitations. First, it
does not consider environmental change factors other than cli-
mate (temperature and precipitation). Changes in atmospheric
composition, such as CO2 and nitrogen, have been shown to
enhance forest growth15,16. On the one hand, our past and cur-
rent periods (1990–2016) might not be sufficiently long to detect
the CO2 and nitrogen fertilization effects. On the other hand, our
future periods (2020s, 2050s, 2080s) might have different levels of
CO2 concentration and nitrogen deposition than today, and they
could affect forest dynamics and biomass. The potential impacts
of CO2 and nitrogen fertilization are knowledge gaps that worth
further investigation. Another possible factor is growing season
length, which might have considerable positive influence on forest
growth. Seasonal forest ecosystems might not be sensitive to
temperature or precipitation per se, but they might respond to the
prolonged growing season, as suggested in studies of accelerated
growth4,17.

Second, our study could miss the influences of future land-use
changes on forest biomass, such as afforestation and deforestation
from urban growth, conversion to other types by agriculture
practices, and woody encroachment into grasslands. All these
changes might affect forest carbon sequestration potential as forests
grow and recover. However, extensive studies have shown forest
migration is much slower than expected, with particular concern of
“migration lag” for plants18,19. Plant movements have not yet been
realistically represented in models used to predict future vegetation
and carbon-cycle feedbacks19. Here we took the first step to
quantify biomass carbon potential under the best-case circum-
stances with no shifts in forest geographic distributions. We
anticipate the quantification to improve with the progress in
understanding forest distributional responses to global change.

Predicted aboveground biomass (2080s, RCP8.5)

(Mg ha–1)
Less than 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 to 350
350 to 400
400 to 450
450 to 500
500 to 550
550 or more

Current (2000 – 2016) vs. future (2080s, RCP8.5) ratio

(%)
Less than 10
10 to 20
20 to 30
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40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 or more

Fig. 4 Geographic distributions of future forest aboveground biomass and current vs. future ratio. The modeled aboveground biomass across North
America during the future period, 2080s, under the RCP8.5 scenario, is used together with the current biomass (Fig. 2) to calculate the ratio of current vs.
future biomass. The ratio summarizes the extent to which the current biomass approaches the future biomass potential under the best-case circumstances
of no disturbances. Both maps are averaged at the 10-min longitude by latitude resolution from inventory plots. GIS data source: GADM database of Global
Administrative Areas (https://gadm.org)
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Finally, our analysis does not include the belowground com-
ponents due to data limitation. Belowground carbon pools (e.g.,
root and soil carbon) have been shown to have different recovery
trajectories20,21 and responses to climate change22 compared with
aboveground components. Therefore, our results should be
explicitly limited to the aboveground biomass carbon.

Based on in-situ observations, our analysis suggests that North
America forests, after decades of increasing biomass carbon,
might start to experience growth saturation, and their carbon
sequestration potential is limited at 22% to the 2080s future. The
saturation of forest biomass has been suggested by simulation
models23,24, and now it is substantiated by our analysis of ground
measurements. Our results also demonstrate the importance of
considering forest age profiles4,25,26 and disturbance regime shifts
under global change27. Putting into a broader context, the limited
forest growth is coupled with increased mortality28–30 as well as
slow migration18,19. All these stresses call for programs to actively
manage our vital forest resources in an ever-changing global
environment7.

Methods
Forest inventory and climate data. We assembled forest inventory data from the
United States Forest Inventory and Analysis (FIA) program and the Canadian
Permanent Sample Plots (PSP) program in six provinces (British Columbia,
Alberta, Saskatchewan, Manitoba, Ontario, Quebec). The FIA program applies a
nationally standardized sampling protocol with a sampling intensity of one plot
per 2428 ha31. FIA inventory plots in forested areas consist of four 7.2 m fixed-
radius subplots spaced 36.6 m apart in a triangular arrangement with one
subplot in the center. All trees (standing live and dead), with a diameter at breast
height (DBH) of at least 12.7 cm, are inventoried in each subplot. Within each
subplot, a 2.07 m radius microplot offset 3.66 m from subplot center is further
established where only live trees with a DBH between 2.5 and 12.7 cm are
inventoried. All stems are measured and identified to species. For each plot, the age
is determined by coring three dominant or co-dominant trees that represent a
plurality of non-overtopped trees. The stand age is estimated as the average of these
three trees31. The PSP program applies slightly different field protocols with FIA,
with varying plot size and minimum measured DBH in six provinces32. Each PSP
plot was designed as one square or rectangular plot in shape, or consist of four
squared subplots. The average PSP plot size is 0.07 ha, ranging from 0.04 to 0.81 ha.
All live trees with DBH > 1 cm were measured for most PSP plots, and the live trees
with DBH > 5 cm were measured for a small group of PSP plots.

In this analysis, the FIA and PSP data were extracted from two periods:
2000–2016 (current) and 1990–1999 (past). We used the current period to
develop a forest biomass–age relationship and the past period to independently
validate this relationship. We excluded plots that reported any natural or human-
caused disturbances, such as fire, logging. For the current period, we collected
67,065 FIA plots and 10,342 PSP plots. For the past period, we collected 54,127
FIA plots and 8733 PSP plots. The stand age was directly reported from plot
estimates of coring trees. Our assumption was not that forest stands across
North America are even-aged; rather we assumed that the age of the dominant
or co-dominant trees represents the age of the forest ecosystem. For each plot,
the aboveground biomass was estimated using allometric equations from DBH
measurements33 and was summed across all live trees to obtain a live-tree plot
biomass34. We classified these plots into 23 common forest types in North
America. For the FIA plots, the forest types were included in the raw data, as
derived from the dominant species to reflect the main species composition35. For
the PSP plots, we classified the forest types following a similar approach by
assigning the first 1–3 species with the highest percentage in aboveground biomass
as the dominant species for each plot, and then we matched the forest types with
the FIA classification.

Climate data in this study were extracted from ClimateNA version 5.1036. For
forest inventory plots in both the past and current periods, we extracted the mean
annual temperature and precipitation resampled at 1 km resolution using PRISM
data37 from ClimateNA. For the future period, we extracted the downscaled (1 km)
and calibrated (bias corrected) mean annual temperature and precipitation using
the Coupled Model Intercomparison Project phase 5 (CMIP5) database
corresponding to the 5th IPCC Assessment Report38. We used the ensemble
projections averaged across the 15 CMIP5 models, under the Representative
Concentration Pathway (RCP) 4.5 (low emission) and RCP8.5 (high emission)
scenarios, for three future periods: the 2020s, 2050s, and 2080s. We acknowledged
that the FIA plot coordinates have been perturbed in an unbiased direction not
exceeding 1.67 km, and typically within a 0.8 km radius of the actual plot location,
so as to facilitate study repeatability without introducing bias39. However, this
perturbation is similar to the spatial resolution of our climate data (1 km). We
therefore used the publicly available perturbed plot coordinates to match the forest
inventory with climate data.

Growth model selection. Prior to formal modeling, we performed an exploratory
data analysis to select the most appropriate growth model. A growth model
quantifies how forest biomass changes with stand age,

yi ¼ f xið Þ þ ϵi ð1Þ

where for plot i, yi is the aboveground biomass, xi is the stand age, and εi is the
error term. In theory, a growth model has to go through the origin for the
biomass–age relationship, i.e., f 0ð Þ ¼ 0. Thus, we tested the following four com-
monly used growth models. Linear growth model, where the biomass increases
with the age linearly.

f xið Þ ¼ βxi ð2Þ

Exponential growth model, where the biomass is a function of the natural-
logarithm-transformed age9.

f xið Þ ¼ β log xi þ 1ð Þ ð3Þ

Chapman–Richards growth model, where the biomass increases with the age and
reaches an asymptote40.

f xið Þ ¼ μ 1� exp �kxið Þð Þ ð4Þ

Monod (Michaelis–Menten) growth model, where the biomass also increases with
the age and reaches an asymptote4.

f xið Þ ¼ μ xi
kþxi

ð5Þ

We fitted these four growth models to the data by different forest types (Supple-
mentary Figure 1) and calculated their Akaike information criterion (AIC) scor-
es. AIC measures the relative quality of models for a given set of data, by
estimating the information lost when the model represents the process that
generates the data. Practically, AIC rewards goodness of fit (likelihood) and
penalizes overfitting (number of parameters). A lower AIC indicates a preferred
model. Supplementary Figure 2 shows that, by AIC scores, the non-saturating
models (linear and exponential) are outcompeted by the saturating models
(Chapman–Richards and Monod). The Chapman–Richards model and Monod
(Michaelis–Menten) model have similar AIC scores. Empirically, the Monod
model growth trajectory is determined by two parameters with simple and clear
definitions—the asymptote for the saturated biomass (μ) and the age when the
plot reaches the half-saturation (k). We therefore chose the Monod model for
similar performance and simplicity.

Hierarchical Bayesian growth model. Our analysis quantifies the forest biomass
recovery with stand age, with considerations of climate, in the past, current, and
future forests across North America, in a hierarchical Bayesian (HB) framework.
Theoretically, the HB framework was motivated by the transient dynamics of
terrestrial carbon storage10. In a steady state environment, a growth function
mathematically describes forest recovery in an autonomous system. When the
environmental conditions are undergoing changes, the carbon storage capacity is
no longer a constant but becomes a moving attractor, toward which the ecosystem
carbon storage trajectory chases. In this non-steady state environment, a hier-
archical growth model describes modified forest recovery in a non-autonomous
system. A similar HB framework was recently developed to quantify climatic
controls of postfire plant regeneration in South Africa41.

Our road map can be divided into three steps. First, we developed a HB growth
model of the forest biomass, stand age, and climate relationship based on forest
inventory and climate data in the current period (2000–2016). For each plot, the
biomass recovery with stand age was effectively described by a Monod function,
where the biomass gradually increases with the age but eventually saturates4. The
Monod recovery trajectory is further determined by forest types and modified by
climate conditions10. Second, we validated our model by using the current period
to independently hindcast (backward predict) forest biomass in the past period
(1990–1999). The model parameters obtained from the current period were used to
hindcast the past biomass based on the past stand age and climate. The comparison
of hindcast biomass vs. observed biomass provided an additional test of model
performance and assumptions. Third, we used the validated model, future stand
age, and future climate to predict forest biomass in the future periods of the 2020s,
2050s, and 2080s. We assumed no major disturbances as the best-case scenario for
biomass recovery. Our final step was to compare the current biomass with the
predicted future biomass. With this road map, we describe our analysis for the
current, past, and future periods.

Current period—For the forest plot i in forest-type j, we modeled the
aboveground biomass (yij) and stand age (xij) using the Monod function,

yij ¼ μij
xij

kijþxij
þ ϵij; ϵij � N 0; σ2j

� �
ð6Þ

where μij is the asymptote for the saturated biomass that a plot can achieve, kij is
the age when the plot reaches the half-saturation (μij/2), and εij is the normal error
term with a forest-type-level variance. The Monod function assumes that the
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forests recover by increasing biomass with stand age, but eventually reach an
asymptote of the biological capacity, as suggested by both forest succession
theory11 and empirical global meta-analysis42. The Monod recovery trajectory is
governed by the two critical parameters (μij, kij), which are assumed to further
depend on the climate covariates of temperature (Tij) and precipitation (Pij) in each
plot, motivated by the model of climate dependence in biomass accumulation
rates43. The climate covariates (Tij, Pij) were centered to facilitate interpretation.

μij ¼ β0j þ β1j Tij � �Tj

� �
þ β2j Pij � �Pj

� �
ð7Þ

kij ¼ γ0j þ γ1j Tij � �Tj

� �
þ γ2j Pij � �Pj

� �
ð8Þ

where β0j quantifies the asymptotic saturated biomass on an average climate
condition, β1j quantifies the saturated biomass change per 1 °C change in
temperature, with �Tj being the average temperature in forest-type j, and β2j
quantifies the saturated biomass change per 1 mm change in precipitation, with �Pj
being the average precipitation in forest-type j; γ0j quantifies the half-saturation
stand age on an average climate condition, γ1j quantifies the half-saturation age
change per 1 °C change in temperature, and γ2j quantifies the half-saturation age
change per 1 mm change in precipitation. All parameters were assigned priors
sufficiently noninformative, so that the posterior estimates were driven by the
observed data.

β0j; β1j; β2j; γ0j; γ1j; γ2j � U �105; 105ð Þ ð9Þ

σ2j � IG 10�5; 10�5ð Þ ð10Þ

where U is the uniform distribution, and IG is the inverse gamma distribution. We
also tested weakly informative priors on β0j; γ0j � Uð0; 105Þ, implying the positive
asymptotic saturated biomass and half-saturation stand age on an average climate
condition, and we obtained almost identical posterior estimates. The model
performance was checked using in-sample predictions by composite sampling. As
another way of model checking, we performed a spatial cross-validation by
randomly selecting 75% of the plots as the training dataset and 25% of the plots as
the testing dataset. We fitted the model using the training plots, predicted biomass
in the testing plots, and compared against the observed biomass. A good agreement
between the out-of-sample predicted and observed biomass would verify the model
assumptions and performance.

Past period—The model fitted using the current data assumes that the recovery
trajectory in each plot differs by the spatial variation in climate, which can
substitute the temporal variation in climate over the recovery e.g., ref.9 To validate
this space-for-time assumption, we conducted an independent hindcast of the past
biomass based on the stand age, climate, and fitted parameters from the current
model. Plot distributions of both the past and current periods also show the
dynamics of forest succession (Supplementary Figure 3). To conduct the test, for
each plot i in forest-type j, the observed stand age in the past period (xij), we
obtained out-of-sample predictions of biomass (ŷij), which is independent of the
observed biomass in the past period.

ŷij ¼ μ̂ij
xij

k̂ijþxij
ð11Þ

μ̂ij ¼ β̂0j þ β̂1j Tij � �Tj

� �
þ β̂2j Pij � �Pj

� �
ð12Þ

k̂ij ¼ γ̂0j þ γ̂1j Tij � �Tj

� �
þ γ̂2j Pij � �Pj

� �
ð13Þ

where β̂’s and γ̂’s are fitted parameters from the current model. The model hindcast
biomass (ŷij) was first calculated from Eqs. (11–13) and then compared against the
observed biomass. A good agreement between the independent hindcast and the
observed biomass would suggest the current model performed well under the
assumptions.

Future period—We assumed that the future North American forests continue to
recover without major disturbances (e.g., fire, pest). This simplified assumption led
to the best-case scenario of forest recovery, and it was likely to over-predict the
future biomass. Our goal was not to accurately project the future biomass; rather we
aimed to quantify how much the forest biomass can grow (biomass potential) given
no further disturbances as the best-case scenario. With the validated model, we
predicted the future biomass (~yij) based on the future climate and stand age (~xij).

~yij ¼ ~μij
~xij

~kijþ~xij
ð14Þ

~μij ¼ β̂0j þ β̂1j ~Tij � �Tj

� �
þ β̂2j ~Pij � �Pj

� �
ð15Þ

~kij ¼ γ̂0j þ γ̂1j ~Tij � �Tj

� �
þ γ̂2j ~Pij � �Pj

� �
ð16Þ

where ~Tij and ~Pij are the projected mean annual temperature and precipitation in
the 2020s, 2050s, or 2080s. With no further disturbances, the future stand age was
extrapolated from the current stand age extending to the future. The predicted
future biomass ~yij

� �
was compared with the current biomass yij

� �
. A ratio of

current vs. future biomass yij=~yij
� �

is defined to quantify the forest recovery in
reference to the best-case biomass potential. A ratio close to one would suggest that
the forests have limited remaining growth potential. Note that the actual ratio is
likely to be higher given further disturbances would result in lower future forest
biomass.

For the HB growth model, posterior distributions were simulated using Markov
chain Monte Carlo (MCMC), and convergence was checked by both visually
assessing trace plots and Geweke diagnostics after 100,000 iterations for five
Markov chains. All the analyses were performed in R version 3.4.344 and JAGS
version 4.3.045.

Data availability. The United States forest inventory data are available at https://
www.fia.fs.fed.us/. The Canadian forest inventory data are available from forestry
sectors in each province. The climate data are available at https://adaptwest.
databasin.org/pages/adaptwest-climatena.

Code availability. The code used in this study is available from the corresponding
author on request.
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