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Abstract
Relationships between microbial genes and performance are often evaluated in the laboratory in pure cultures, with little
validation in nature. Here, we show that genomic traits related to laboratory measurements of maximum growth potential
failed to predict the growth rates of bacteria in unamended soil, but successfully predicted growth responses to resource
pulses: growth increased with 16S rRNA gene copy number and declined with genome size after substrate addition to soils,
responses that were repeated in four different ecosystems. Genome size best predicted growth rate in response to addition of
glucose alone; adding ammonium with glucose weakened the relationship, and the relationship was absent in nutrient-replete
pure cultures, consistent with the idea that reduced genome size is a mechanism of nutrient conservation. Our findings
demonstrate that genomic traits of soil bacteria can map to their ecological performance in nature, but the mapping is poor
under native soil conditions, where genomic traits related to stress tolerance may prove more predictive. These results
remind that phenotype depends on environmental context, underscoring the importance of verifying proposed schemes of
trait-based strategies through direct measurement of performance in nature, an important and currently missing foundation
for translating microbial processes from genes to ecosystems.

Introduction

Maximum potential growth rate is a defining feature of
organisms, variable among species of plants [1], animals
[2], and prokaryotes [3]. It influences the ability of an
organism to grow rapidly in response to a pulse of substrate

availability, a warming or cooling toward more optimal
temperatures, or a release from competition. Maximum
potential growth rate is thought to be an emergent feature
of genomic traits, characteristics of species encoded in the
genome. For example, maximum growth rate is expected to
increase with an organism’s capacity to produce proteins
[4], a capacity indicated by the number of copies of the
rRNA gene [5] because ribosomes are the sites of protein
production in the cell. As a genome accumulates copies of
the genes for producing ribosomes, the more rapidly
ribosome biogenesis can occur, and the more rapidly pro-
tein synthesis can keep pace with opportunities in a fluc-
tuating environment. Thus, the number of rRNA gene
copies in the genome is thought to be an indicator of an
organism’s maximum potential growth rate, an indicator
of the ability of that organism to ramp up production
of the thousands of proteins necessary for metabolic
functioning and cellular biosynthesis [5]. There is support
for this idea in bacteria: maximum potential growth rate,
measured in pure culture under laboratory conditions,
is related to rRNA gene copy number across numerous
prokaryotic taxa [3].
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Genome size is another trait thought to influence growth
rate: small genomes are expected to be associated with rapid
growth [6], because smaller genomes reduce nutrient
demand for genome replication [7] and reduce mutational
load [6]. Experimental genome reductions can enhance
growth [8], and synthetic genomes of minimum size have
the capacity for very rapid replication [9]. Decreasing the
nitrogen and phosphorus requirements of cell division is
postulated to be one advantage of a small genome [7];
nutrient-replete conditions may obscure this advantage
during growth in laboratory cultures [3].

In nature, bacterial growth may be less constrained by
maximum potential growth rate than by environmental
limitations, such as low resource availability [10], stress
from conditions that are rarely optimal [11], and interactions
with other organisms, many of which reduce growth [12].
These and other factors influencing actual rates of growth in
nature are undoubtedly shaped by other genomic traits, such
that actual rates of growth in the environment may be
unrelated to genomic traits governing growth potential. On
the other hand, fluctuations in nature can create conditions
of temporary resource abundance where the actual growth
rates of organisms may approach their maximum potentials,
and thus where genetic indicators of those maxima could be
predictive. Such resource fluctuations in soil can be caused
by roots’ release of carbon compounds through exudation
[13], freeze-thaw and wet-up events that create resource
pulses [11], or excretion of waste products into the envir-
onment by animals [14]. In response to such resource
fluctuations, organisms with greater genetic capacity for
rapid growth may reveal themselves phenotypically by
growing rapidly.

The idea that measurable genomic traits relate to growth
provides an attractive foundation for functional interpreta-
tion of genomic data from the environment. Indeed, inter-
pretations of microbiomes collected from the environment
often rely on inferences about growth rates based on
rRNA gene copy numbers of bacterial community members
[15–20]. But the relationship between copy number and

maximum potential growth rate is based on laboratory
measurements of growth, so the underlying hypothesis that
the relationship actually applies in nature remains untested.

Here, we used quantitative stable isotope probing (qSIP)
with 18O-labeled water to measure the rate of DNA synth-
esis of individual bacterial taxa in soil, using the 16S rRNA
gene as a taxonomic marker [21].

Materials and methods

Summary

Measurements occurred in natural soil assemblages col-
lected from a climatic gradient in northern Arizona, USA
(Table 1). We measured growth rates in unamended soils
and in response to substrate addition simulating pulses of
resource availability, glucose alone and glucose plus
ammonium, in order to test the hypotheses that genome size
and the number of copies of the ribosomal gene are genomic
functional traits that predict taxon-specific growth rates in
soil bacteria across a range of resource conditions. 16S
rRNA gene copy numbers were estimated by comparing
observed sequences with BLAST against a database we
constructed to contain only complete genomes, using four
different thresholds for sequence identity at the 16S locus to
test for sensitivity to any particular cutoff: 94.5% (genus),
98.7% (species), 99.5%, and 100% [22]. Patterns observed
were insensitive to the selected cutoff, and we used the
98.7% for the analyses presented in the main text (results
for other cutoff values are provided in the Online Supple-
mentary Materials). We observed that estimated 16S rRNA
gene copy numbers corresponded well with strains with
known copy number (r ≥ 0.99, Fig. S1). We calculated the
sequence-weighted mean 16S rRNA gene copy number
of each operational taxonomic unit (OTU). Similarly, by
matching the sequences to genome assemblies with known
genome sizes, we estimated the sequence-weighted mean
genome size of each operational taxonomic unit.

Table 1 Median growth rates, copy number of the 16S rRNA gene, number of bacterial taxa mean annual temperature (MAT), mean annual
precipitation (MAP), aboveground net primary productivity (ANPP), and net ecosystem carbon exchange (NEE) across the four soils for the
unamended (control) condition

Growth rate
median ± S.E.

Copy number
median ± S.E.

Genome size
median ± S.E.

Count MAT MAP ANPP NEE

(h−1) (copies cell−1) (Megabyte cell−1) (# of taxa) °C mm g m−2 y−1 μmol m−2 s−1

Grassland 0.00057 ± 0.00007 3.00 ± 0.23 7.01 ± 0.25 82 13.0 190.8 94.4 ± 5.6 −0.453 ± 0.144

Pinyon-Juniper 0.00077 ± 0.00005 3.00 ± 0.32 6.40 ± 0.28 59 10.5 282.1 125.7 ± 5.0 −0.551 ± 0.076

Ponderosa 0.00099 ± 0.00007 3.00 ± 0.23 6.11 ± 0.19 115 9.1 520.6 151.3 ± 5.1 −0.660 ± 0.098

Mixed Conifer 0.0012 ± 0.00005 3.00 ± 0.20 6.31 ± 0.19 105 6.6 661.2 159.4 ± 8.1 −0.766 ± 0.106
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Experimental design

Soils (0–10 cm) were collected from four ecosystems: high
desert grassland, piñon-juniper woodland, ponderosa pine
forest, and mixed conifer forest, representing a range of
climate and ecosystem variation (Supplementary Table 1)
along the C. Hart Merriam elevation gradient [23]. Soils
were air-dried at room temperature for 24 h, passed
through a 2-mm sieve, and stored at 4 °C prior to
experiments.

Two grams of dry weight soil from each ecosystem
were placed into 15 mL falcon tubes. Soils received
water (adjusted to 70% water-holding capacity) or water
spiked with C alone or C plus N at concentrations of
1000 μg C g−1 soil (as glucose) soil and 100 μg N g−1 soil
(as (NH4)2SO4) in the following isotope and nutrient
treatments (n= 3 per treatment): (1) 18O-enriched water
(97 atom %); (2) glucose at natural abundance δ13C and
18O-enriched water (97 atom %); (3) glucose and (NH4)

2SO4 at natural abundance δ13C and δ15N, and 18O-
enriched water (97 atom %); (4) 13C-enriched glucose
(99 atom %) and water at natural abundance δ18O; and
(5) 13C-enriched glucose (99 atom %), and (NH4)2SO4

and water at natural abundance δ15N and δ18O. All the
treatment combinations above had an associated natural
abundance isotopic control that received the same amount
of water and nutrients, but all at natural abundance δ18O,
δ13C, and δ15N values. Soils were incubated for 1 week
at room temperature (~23 °C).

Quantitative stable isotope probing

After the incubation, samples were frozen at −80 °C.
DNA was extracted using a PowerSoil DNA extraction kit
following manufacturer’s instructions (Mobio labora-
tories, Carlsbad, CA, USA). Ultracentrifugation, fractio-
nation, quantitative PCR, and 16S rRNA gene amplicon
sequencing were performed as previously described [21]
with minor modifications. For density centrifugation, 1 μg
of DNA was added to 2.6 mL of saturated CsCl solution
and gradient buffer (200 mM Tris, 200 mM KCl, 2 mM
EDTA) in a 3.3 mL OptiSeal ultracentrifuge tube (Beck-
man Coulter, Fullerton, CA, USA), which had a final
density of 1.71 g cm−3. Samples were centrifuged in an
Optima Max bench top ultracentrifuge (Beckman Coulter)
with a Beckman TLN-100 rotor (127,000 × g for 72 h) at
18 °C. The resulting density gradient was immediately
fractionated into ~20 fractions (150 μL) per sample using
a modified fraction recovery system (Beckman Coulter).
Fraction density was determined using a Reichert AR200
digital refractometer (Reichert Analytical Instruments,
Depew, NY, USA). DNA in each fraction was purified
using a standard isopropanol precipitation method and

16S rRNA gene copies were quantified via quantitative
PCR as described previously [24]. Fractions with den-
sities between 1.650 and 1.735 g cm−3 (~15 per sample)
were amplified using 515F and 806R primers [25] and
sequenced on an Illumina MiSeq instrument using a v2 300
cycle reagent kit (Illumina, Inc., San Diego, CA, USA).

Sequence data processing and analysis

Sequences were subject to quality filtering following the
protocol previously described [26]. Samples with fewer than
4000 sequences were eliminated from downstream analyses
using the custom shell script filter_samples.sh (https://
bitbucket.org/junhuilinau/manuscript-supplementary/src/ma
ster/sequence/). The filtered sequences were clustered using
open-reference OTU (operational taxonomic unit) picking
with 97% sequence identity against the SILVA 132 database
(https://www.arb-silva.de/download/archive/qiime/Silva_
132_release.zip) in QIIME 1.9.1 [27]. OTUs with less than
0.001% relative abundance were discarded. After filtering,
89.7% of total sequences were retained, representing 7665
OTUs. Samples were rarefied to 4000 reads 100 times using
the QIIME script multiple_rarefactions_even_depth.py.
Using the custom shell script rarefaction_average.sh (https://
bitbucket.org/junhuilinau/manuscript-supplementary/src/ma
ster/sequence/), we calculated the average counts of each
OTU of all 100 rarefied OTU tables for downstream excess
atom fraction (EAF) estimation.

Estimating 16S rRNA gene copy number and
genome size

In order to estimate 16S rRNA copy number for each
individual sequence, and best match that estimate to
available information, we developed an algorithm that was
performed separately from OTU assignment. Specifically,
we evaluated each unclustered, quality-filtered sequence
for genome size and copy number of the 16S rRNA gene
against a locally constructed complete genome database, as
described below. After assigning an estimate of copy
number and genome size to each sequence from our 16S
rRNA amplicon dataset, we compiled these into an estimate
for each OTU, based on the assignment of sequences to
OTUs using QIIME (described above). We used this pro-
cedure in lieu of publicly available software often used
for assigning traits to taxa, in order to capitalize on the
most up-to-date available information on whole genome
sequences, because software updates are not always
able to keep pace with the growing complement of avail-
able data [28].

We built a database using a total of 10,684 prokaryotic
assemblies deposited in Genbank that were annotated as a
“Complete Genome” downloaded from NCBI in 16 June
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2018 (ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_RE-
PORTS/prokaryotes.txt). This yielded a single, local data-
base with a total of 20,652 individual chromosomes and
plasmids, because many bacterial genomes contain more
than a single chromosome. We used BLAST (with the
parameters bit score ≥ 400 and sequence alignment length ≥
100) to identify which genome in the constructed database
had the best match (defined by highest bit score) at the 16S
rRNA locus to each environmental amplicon sequence.
In total, 21% of all the sequences assigned to an OTU were
matched to a chromosome or plasmid at 98.7% identity.
Ten percent of sequences were matched at 100% identity,
14 percent at 99.5% identity, and 44 percent at 94.5%
identity. Copies of the 16S rRNA gene were enumerated
for each genome match as the number of iterations in the
chromosome or plasmid that contained the match to our
sequence at four thresholds (94.5, 98.7, 99.5, and 100%).
The total number of 16S rRNA gene copies for each OTU
was determined as the abundance-weighted average across
sequences assigned to that OTU. When assemblies in the
NCBI database indicated the presence of multiple chro-
mosomes or plasmids in a genome, copy number estimates
were summed prior to averaging for the sample. The 16S
rRNA gene copy number estimation was done using the R
script best.hit.assembly.R (https://bitbucket.org/junhuilinau/
manuscript-supplementary/src/master/16s/).

The procedure and criteria for best BLAST hit described
above were also used for genome size estimates: when our
environmental sequences matched a 16S rRNA sequence in
the database, the size of the chromosome or plasmid in
which the match occurred (at a given identity threshold)
was recorded. Chromosomes and plasmids assigned to the
same assembly in the database were summed to arrive at
a single genome size estimate for that assembly. More
specifically, we manually created a mapping file (assembly-
genome.size.txt) for genome assemblies in NCBI. We
compared the sequence-assembly file generated during the
estimation of 16S rRNA gene copy number to the mapping
file to identify matches, and then we compiled chromosome
and plasmid size estimates for each OTU (silva_otu_seq.
txt). Genome size was estimated as the average size
weighted by relative abundance in the database. The esti-
mation of genome size can be reproduced using the R
script genome_size.R (https://bitbucket.org/junhuilinau/ma
nuscript-supplementary/src/master/size/).

EAF estimation

The EAF 18O and 13C of each taxon were estimated fol-
lowing the procedures described previously [21, 29].
Relative growth rate (RGR) was estimated as a function of
the rate of 18O assimilation into DNA (as measured by EAF
at the end of the incubation), assuming that 60% of the

oxygen in DNA is derived from water [30], and that
populations are at steady state: RGR= EAF/(0.6 * 168 h).
This estimate further assumes that oxygen is a conservative
tracer of DNA replication, and that DNA replication
primarily occurs during cellular division (i.e., growth).
The soils were incubated for one week, and it is possible
that bacterial necromass was re-utilized by other bacteria,
cross-feeding that would introduce error into our estimates
of RGRs. As of yet, we are unable to quantify cross-feed-
ing, so this is a potential source of error in our growth
estimates. Still, soils were exposed to 18O-H2O during the
entire incubation period, so even growing cross-feeders
would become labeled with 18O from water, and this is
likely to be a larger signal than the re-cycled 18O-labeled
organic matter.

Sensitivity analyses

To assess the robustness of our findings, we performed
sensitivity analyses on the estimation of 16S rRNA gene
copy number for OTUs across the four thresholds for
percent match (94.5% (genus), 98.7% (species), 99.5,
and 100%) at the 16S rRNA locus (hereinafter referred
to as ‘percent identity’) when comparing sequences
against the constructed complete genome database
described above. To do so, we calculated the sequence-
weighted mean 16S rRNA gene copy number of each
OTU (Fig. S2), then we evaluated the results in Figs. 1
and 2, and Tables 1–3 by repeating the analyses for dif-
ferent thresholds of percent identity: 94.5% (genus), 99.5,
and 100%. With few minor statistical differences, patterns
were identical for growth versus 16S rRNA gene copy
number and genome size (Figs. S3 and S4, and Tables S1–
S3), indicating that the results were robust to variation
in thresholds used to assess sequence identity. We also
compared our 16S rRNA gene copy number estimates
with those derived from the rrnDB [31], and correspon-
dence was excellent (slopes all indistinguishable from
the 1:1 line, with correlation coefficients very near 1;
Fig. S1).

Data on growth rate and 16S rRNA gene copy number
in Fig. 1 were obtained from the literature [3, 32–36].
Data were extracted from tables or digitized from figures.
In 12 out of 199 cases, more than one report for a given
bacterial genus and species were encountered, where
separate laboratories measured maximum potential
growth rate and 16S rRNA copy number for lab strains
identified by the same genus and species. Likely, these
represent estimates for genetically distinct strains that
were related enough to be identified by the same name,
similar to strain-level variation within organisms identi-
fied by the same OTU in our soil studies. In order to
have comparable approaches to statistical independence
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between the soil studies and lab synthesis, for the
laboratory data we used the averages of reported growth
and 16S rRNA copy numbers across studies that evaluated
organisms identified by the same name. Data on bacterial
genome size were obtained by matching bacterial name to
the complete assembly in NCBI with known genome size,
and the average genome size was used if matching to
multiple assemblies.

Code and data availability

More details of the pipeline and all scripts used for com-
putational analyses in this study are available at https://
bitbucket.org/junhuilinau/manuscript-supplementary/src/ma
ster/. All sequence data and sample metadata have been
deposited in MG-RAST under the project ID mgp88472.
All other data that support the findings of this study are
available from the corresponding author upon reasonable
request.

Statistical analyses

All statistical analyses were performed in R version
3.4.1 [37]. The linear regression analyses between copy
number and RGR, and genome size and RGR were per-
formed using the lm function in R, and in general, the
residuals were normally distributed. All figures were
created in ggplot2. To tease apart the relative importance
of genomic traits on the RGR, we used multiple regression
models including 16S rRNA copy number and genome
size, and the best model was selected with the smallest
AIC value (Table 2).

Results

In unamended soils, the number of copies of the 16S
rRNA gene was unrelated to bacterial growth rate (r2=
0.002, Fig. 1a). Genome size was also a poor predictor of
growth (r2 < 0.001, Fig. 1b). When soils were considered
independently, the patterns were similar, with low
explanatory power of 16S rRNA gene copy number for
growth (Table 2); the highest r2 value of 0.07 actually
applied to a negative relationship observed for the pon-
derosa pine soil. Genome size was also a poor predictor
of growth rate for soils considered independently, with
at most 1.4% of the variation explained for the
desert grassland (Table 2). By contrast, growth rates of
bacteria in culture under nutrient replete conditions in
the laboratory were strongly correlated with the number
of copies of the 16S rRNA gene (Fig. 1a), where this
single trait explained nearly a third of the observed
variation (r2 = 0.317).

Growth rates measured in the natural soil assemblages
were nearly three orders of magnitude lower compared to
potential growth rates in pure cultures under laboratory
conditions (Fig. 1). Even though growth rates in soils were
substantially lower than laboratory growth potentials, there
was still substantial variation in bacterial growth rates in
unamended soil, from 0.0000088 to 0.0047 h−1 (Fig. 1).
Median growth rates increased along the gradient, from the
xeric and warm grassland site to the mesic and cool mixed
conifer site, and from low to high net primary production
and net ecosystem exchange, which are ecosystem-scale
measures of carbon input to soil (Table 1). Variation in the
growth rates of these bacteria spanned more than two orders
of magnitude. Yet nearly all (>99%) observed variation was
unexplained by rRNA gene copy number and genome size,
indicating that the variation in the growth rates of bacteria in
unamended soil reflects constraints other than the maximum
potential.

With added glucose, with or without supplemented
nitrogen, the number of rRNA copies in the genome

Fig. 1 Relationship between growth rates of bacteria and genomic
traits (copy number, panel a; and genome size, panel b) for bacteria
grown in the laboratory in pure culture (gray circles; data from the
literature [3, 32–36] or bacteria naturally occurring in unamended soils
(blue filled circles). Solid lines show results from simple linear
regression (lm function in R), with 95% confidence intervals shown in
the shaded areas. To facilitate comparison with the laboratory data,
data from four soils are combined, here; statistical analyses of each soil
independently are summarized in Table 2
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was a significant predictor of actual growth rates across
taxa in the assemblage (Fig. 2a). This response is most
simply explained by glucose utilization for growth: the
observed 18O increase in DNA in response to added
glucose was strongly correlated with increased utilization of
glucose for growth, as evidenced by 13C assimilation from
13C-labeled glucose (Fig. 3). Bacterial taxa with more
copies of the rRNA gene grew faster in response to
glucose addition, 0.00011 h−1 per additional gene copy, a
finding that was statistically significant for all ecosystems
(Table 2). Similarly, in the resource pulse treatments,
growth rates increased as genome size declined (Fig. 2b).
The relationship was strongest with added glucose alone,

where growth rate decreased by 0.00013 ± 0.000044 h−1

Mb−1 genome.
When ammonium was added with glucose, the slope

declined by more than a factor of two, to 0.000055 ±
0.000027 h−1 Mb−1 (Table 2). The decline in the slope
means that ammonium addition weakened the growth
advantage of a smaller genome. Similarly, for the glucose-
only treatment, models predicting growth and selected
based on AIC consistently included both copy number and
genome size as predictors of growth rate (Table 2),
whereas for the treatment with added ammonium, copy
number was always included in the best model, but gen-
ome size was only statistically significant for one soil,
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Fig. 2 Relationships between observed growth rates of bacteria in soil
in response to resource amendment and copy number of the 16S rRNA
gene (a) or genome size (b) for four different ecosystems along an
elevation gradient in northern Arizona. Resource additions were either

glucose alone (orange, filled circles) or glucose plus ammonium
additions (green, open circles). Statistical analyses of the relationships
are presented in Table 2
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ponderosa pine (Table 2). In pure cultures assessing
maximum potential growth rates, where bacteria are
grown with ample nutrients [3], there was no relationship
between growth rate and genome size (Fig. 1b).

Discussion

Resource pulses elicited growth responses in soil bacteria,
and the patterns in growth after resource additions were

Table 2 Model selection for
predicting 18O content (excess
atom fraction 18O) in
prokaryotic growth rates based
on copy number (C) and genome
size (G)

Model Slope C Slope G Intercept P-value C P-value G P-value
C & G

R2 AIC

No amendment

Desert
Grassland

C 0.0041 0.06393 0.2271 0.2271 0.0182 −214.4

G 0.0034 0.05499 0.2824 0.2824 0.0144 −214.1

C & G 0.0037 −0.0030 0.04518 0.2827 0.3554 0.3151 0.0288 −213.3

Pinyon-
Juniper

C 0.0013 0.07344 0.5346 0.5346 0.0068 −208.5

G −0.0007 0.08254 0.7839 0.7839 0.0013 −208.2

C & G 0.0013 −0.0006 0.07743 0.5450 0.8042 0.8008 0.0079 −206.6

Ponderosa-
Pine

C −0.0073 0.14523 0.0079 0.0079 0.0609 −275.1

G −0.0022 0.13127 0.5200 0.5200 0.0037 −268.3

C & G −0.0073 −0.0018 0.15604 0.0087 0.5911 0.0257 0.0633 −273.4

Mixed
Conifer

C 0.0016 0.12470 0.5254 0.5254 0.0039 −316.1

G 0.0012 0.12246 0.6334 0.6334 0.0022 −315.9

C & G 0.0015 −0.0010 0.11872 0.5680 0.6970 0.7580 0.0054 −314.3

Glucose

Desert
Grassland

C 0.0131 0.06528 <0.0001 <0.0001 0.2540 −259.3

G −0.0090 0.18107 0.0128 0.0128 0.0576 −234.3

C & G 0.0125 −0.0068 0.11032 <0.0001 0.0323 <0.0001 0.2863 −262.0

Pinyon-
Juniper

C 0.0123 0.06881 <0.0001 <0.0001 0.1724 −227.8

G −0.0102 0.19058 0.0120 0.0120 0.0586 −214.0

C & G 0.0114 −0.0076 0.12109 <0.0001 0.0433 <0.0001 0.2044 −230.0

Ponderosa-
Pine

C 0.0136 0.14325 0.0182 0.0182 0.1286 −55.0

G −0.0264 0.35728 0.0052 0.0052 0.1754 −57.4

C & G 0.0097 −0.0216 0.28604 0.0839 0.0230 0.0047 0.2354 −58.6

Mixed
Conifer

C 0.0072 0.10965 0.0040 0.0040 0.0643 −334.3

G −0.0070 0.17980 0.0117 0.0117 0.0498 −332.4

C & G 0.0074 −0.0072 0.15376 0.0026 0.0073 0.0004 0.1173 −339.7

Glucose+Ammonium

Desert
Grassland

C 0.0115 0.08456 <0.0001 <0.0001 0.1570 −211.7

G −0.0042 0.16368 0.3084 0.3084 0.0102 −195.0

C & G 0.0113 −0.0016 0.09548 <0.0001 0.6808 0.0002 0.1584 −209.9

Pinyon-
Juniper

C 0.0099 0.13478 0.0021 0.0021 0.0919 −179.3

G −0.0037 0.20714 0.4269 0.4269 0.0064 −170.2

C & G 0.0097 −0.0018 0.14759 0.0028 0.6817 0.0082 0.0935 −177.5

Ponderosa-
Pine

C 0.0067 0.18824 0.0947 0.0947 0.0209 −179.1

G −0.0133 0.29832 0.0050 0.0050 0.0577 −184.3

C & G 0.0071 −0.0136 0.27164 0.0710 0.0040 0.0039 0.0807 −185.6

Mixed
Conifer

C 0.0121 0.10045 <0.0001 <0.0001 0.1780 −258.5

G −0.0009 0.15169 0.8181 0.8181 0.0005 −238.6

C & G 0.0122 −0.0021 0.11338 <0.0001 0.5420 <0.0001 0.1811 −256.9

P-values in italics indicate statistical significance at P < 0.05

All models have the generic form: excess atom fraction 18O= copy number * slope C+genome size * slope
G+intercept. Blank cells indicate cases where a term was excluded from the model (e.g., a model based on
C, copy number, will not have a slope or P-value estimate for G, genome size). For cases where at least
one model was statistically significant, the best model is indicated in bold, underline
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positively related to 16S rRNA gene copy number and
negatively to genome size (Fig. 2). These patterns, recapi-
tulated across four different ecosystems, show that genomic
traits can predict growth response to resource pulses in
intact soil bacterial assemblages. In other words, under
conditions where resource pulses bring natural soils closer
to laboratory conditions, the phenotypes of bacteria in
nature are predictable from genomic traits. This finding
supports the translation of general principles developed
from pure culture studies to the ecological performance of
organisms in nature: resource pulses that occur in biodiverse
soil microbial assemblages elicit growth responses analo-
gous to those observed in pure cultures under nutrient-
replete conditions.

However, the success of this translation was qualified.
The increase in growth we measured in natural soils was
small: growth increased by 0.00011 h−1 copy−1, whereas
maximum potential growth rate in the laboratory cultures

increased far more rapidly with each accumulated 16 S
rRNA gene copy, 0.25 h−1 copy−1 (Fig. 1a). The proportion
of the variance explained in the soils (r2 averaged 0.02 for
unamended and 0.13 for glucose and glucose+ammonium
treatments across ecosystems) was less than that explained
in the lab (r2= 0.317). This pattern is similar to that
observed for the RNA-to-DNA ratio, which has sometimes
been found to increase with growth rate and metabolic
activity in laboratory cultures [38, 39], but fails to reflect
variation among taxa in either growth or metabolic activity
in soil bacterial communities [40, 41]. Soils are far more
complex than laboratory cultures, and the large unexplained
variation in the soils indicates the importance of other
limitations to growth not related to maximum potential
growth rate.

The simplest explanation for increased growth in
response to glucose addition is direct utilization of glucose
as a growth substrate. This is consistent with the idea that

Fig. 3 Positive correlation (Pearson) between 13C and 18O atom frac-
tion excess in treatments with added glucose, indicating that increased

growth rates in response to glucose addition were associated with
utilization of glucose as a growth substrate

J. Li et al.



microbial growth in soil is limited by carbon [42]. However,
some taxa responded to glucose addition by reducing
growth, a response most simply explained by competition
[12]: taxa whose growth rates were stimulated by glucose
addition may have produced compounds inhibitory to other
bacteria, or they may have appropriated resources limiting
to the growth of other bacteria in the community, whose
growth rates declined in response. Glucose addition may
cause toxicity to microbes, but the amounts added are likely
too low to elicit toxic responses caused by osmotic stress
[43] or acidification [44]. We have no direct evidence for
either mechanism, but we find competition the more likely.

A simple and sufficient explanation for the positive slope
between 16S rRNA gene copy number and growth is
increased growth among taxa with high numbers of 16S
rRNA gene copies. However, the reduced growth among
low 16S rRNA gene-copy-number taxa that we observed
(Table 3) also contributed to the positive slope. This means
that the number of copies of the rRNA gene might predict
not only growth potential but also competitive ability, a
metric of performance accessible only when examining
organisms in communities. These results align with recent
findings of smaller genome size and reduced genetic
potential for competitive antimicrobial compound produc-
tion in coal-fire heated soils [45].

Our finding that ammonium addition alleviated the cost
of a larger genome for growth (Fig. 2, Table 2) is consistent
with the nutrient stress hypothesis [7]. Carbon addition to
soil often stimulates ammonium immobilization by hetero-
trophic microorganisms, exacerbating N limitation of
growth and of associated genome replication, and therefore
conferring an advantage to a smaller genome with lower N
cost of replication. When N and C are added together, this
advantage is diminished. This also explains the results from

the synthesis of pure culture studies (Fig. 1b), because with
no nutrient limitation, there would be no growth advantage
to having a smaller genome.

Microbiology has advanced by studying microorganisms
in pure culture in the laboratory, and calls for improved
culturing strategies promise new insights [46]. Ecology has
advanced by studying organisms in nature, accepting
environmental heterogeneity and community interactions as
essential features of the world organisms inhabit. Microbial
ecology should bridge these approaches. Attempts to do so
are widespread using molecular tools, inferring function
based on gene sequence data collected from the field.
However, the translation from genes to function rests on a
pure culture foundation, and that foundation can fail, as
demonstrated here for unamended soils where a commonly
applied prediction from culture failed in nature. The failure
is not surprising: performance of an organism under near
optimal conditions in pure culture will differ from the per-
formance of the very same organism in nature, subject to
competitive interactions, limited by resources, and stressed
by suboptimal environmental conditions. Results presented
here show how microbial ecology can advance by mea-
suring quantitative trait variation of microorganisms in the
habitats where they naturally occur. Techniques like qSIP
can evaluate where principles derived from the laboratory
apply to microorganisms in nature, and where they fail. It
is not surprising that growth responses to resource pulses
corresponded with traits derived from studies of resource-
rich laboratory cultures. At the same time, the high variation
in growth rates observed without resource amendment
points to important phenotypic variation in growth (Fig. 1),
even under resource-limited conditions, and the need to
explore the genomic traits and environmental conditions
that drive that variation.

Assigning ecological strategies based on taxonomy is a
common approach for interpreting microbiome data, but
this effort to date is largely divorced from measurements
testing whether the organisms actually utilize their assigned
strategies in nature. Growth is a useful metric for evaluating
ecological strategies, because it integrates ecological and
evolutionary processes, from metabolism [2], to resource
uptake and use [47] and thus the imprint of biology on
element cycles, to fitness [48], the ultimate result of varia-
tion in genomic traits. Assessing growth in natural micro-
bial communities, combined with molecular tools, provides
access to a richer suite of ecological mechanisms influen-
cing organismal performance than can be assessed in
laboratory cultures. Findings presented here show that it is
now possible to pair genomic traits of microorganisms with
their growth rates in nature. Such efforts hold promise for a
refined and evidence-based foundation for proposed ecolo-
gical strategies, whether best defined by a single axis
of copiotrophic to oligotrophic [49], by a triangle of

Table 3 Variance partitioning for regression analyses for growth
versus 16S rRNA gene copy number

Positive Negative

Desert Grassland 93.9% 5.4%

Pinyon-Juniper 94.6% 5.3%

Ponderosa Pine 97.5% 2.4%

Mixed Conifer 74.5% 24.9%

We predicted (‘predict’ function in R) the excess atom fraction (EAF)
values of OTUs in the glucose-amended treatment of each ecosystem
using the regression model between EAF and 16S rRNA gene copy
number of the control treatment, and we calculated the residuals using
the observed EAF value in the glucose-amended treatment. We then
subsetted the positive and negative responders: an OTU was
considered to be a positive responder if the smaller residual of the
OTU at 95% confidence was greater than 0; an OTU was considered to
be a negative responder if the larger residual of the OTU at 95%
confidence was less than 0. We finally calculated the partitioning
variance by dividing the residual sum of squares for positive or
negative responders by the total residual sum of squares
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competitive, ruderal, and tolerance [50], or by multi-
dimensional spectra of traits and tradeoffs [51].
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