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Abstract

Extracellular enzymes catalyze rate‐limiting steps in soil organic matter decomposi-

tion, and their activities (EEAs) play a key role in determining soil respiration (SR).

Both EEAs and SR are highly sensitive to temperature, but their responses to cli-

mate warming remain poorly understood. Here, we present a meta‐analysis on the

response of soil cellulase and ligninase activities and SR to warming, synthesizing

data from 56 studies. We found that warming significantly enhanced ligninase activ-

ity by 21.4% but had no effect on cellulase activity. Increases in ligninase activity

were positively correlated with changes in SR, while no such relationship was found

for cellulase. The warming response of ligninase activity was more closely related to

the responses of SR than a wide range of environmental and experimental method-

ological factors. Furthermore, warming effects on ligninase activity increased with

experiment duration. These results suggest that soil microorganisms sustain long‐
term increases in SR with warming by gradually increasing the degradation of the

recalcitrant carbon pool.
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1 | INTRODUCTION

The average global surface temperature is predicted to increase

between 1 and 4°C by the end of the twenty‐first century (Collins &

Knutti, 2013; O'neill et al., 2017). Rising temperatures have cascad-

ing impacts on ecosystem carbon (C) budgets, and these can cause

both positive and negative C cycle–climate feedbacks (Carey et al.,

2016; Chen, Sang, Zhang, & Hu, 2016; Chen, Zhou et al., 2017;

Karhu et al., 2014; Paustian et al., 2016; Peñuelas et al., 2017; Yang

et al., 2018). Soil respiration (SR) represents the largest C flux from

soils to the atmosphere (Bradford et al., 2016; Tucker, Bell, Pendall,

& Ogle, 2013) and is primarily driven by the microbial decomposition

of soil organic matter (SOM). However, we know little about the

mechanisms underlying the response of SR to climate warming

(Chen, Luo, Xia, Wilcox et al., 2016; Conant et al., 2011; Van Gestel et

al., 2018). It is specific that there is a lack of information regarding the

degree to which soil extracellular enzymes (EEs), which catalyze the

rate‐limiting step in SOM decomposition (Allison, Wallenstein, & Brad-

ford, 2010; Jing et al., 2014; Sinsabaugh, 2010; Stone et al., 2012), are

affected by warming. These enzymes, primarily produced by microbes,

are considered proximate agents of SR because they lower the activa-

tion energy of key reactions and speed up the breakdown of polymers

(Chen, Luo et al., 2017; Chen et al., 2018; Janssens et al., 2010; Sus-

eela, Tharayil, Xing, & Dukes, 2014). Although the rates at which these

enzymes are produced and degraded are sensitive to temperature (Alli-

son & Treseder, 2008; German, Marcelo, Stone, & Allison, 2012;

Papanikolaou, Britton, Helliwell, & Johnson, 2010; Steinweg, Dukes,

Paul, & Wallenstein, 2013), it is still unclear how warming responses of

enzymes affect SR.

Cellulose and lignin are the two most abundant SOM com-

pounds, and microbially mediated decomposition of these materials

composes a main source of SR (Carreiro, Sinsabaugh, Repert, & Par-

khurst, 2000; Chen et al., 2018; Janssens et al., 2010; Waldrop, Zak,

Sinsabaugh, Gallo, & Lauber, 2004). Cellulose and hemicellulose com-

prise the main composition of primary plant cell walls. Hydrolysis of

cellulose and hemicellulose is mainly catalyzed by cellulase, including

β‐1,4‐glucosidase (BG), β‐1,4‐xylosidase (BX), and β‐D‐cellobiosidase
(CBH) (Carreiro et al., 2000; Chen, Luo et al., 2017; Jian et al.,

2016). The aromatic C polymer lignin is found in secondary plant cell

walls, where it covers and shields cellulose from microbial decay.

Oxidation and degradation of phenolic‐containing recalcitrant com-

pounds are facilitated by ligninase, that is, peroxidase (PER), phenol

oxidase (PO), and polyphenol oxidase (PPO; Dashtban, Schraft, Syed,

& Qin, 2010; Romero‐Olivares, Allison, & Treseder, 2017; Sinsabaugh

et al., 2008; Zhou et al., 2012). The critical roles of cellulase and

ligninase in mediating SOM decomposition suggest that climate

warming may affect SR through its effects on EEAs, yet we still lack

direct evidence.

Cellulase and ligninase are synthesized by specific groups of

microorganisms (Burns et al., 2013; Carreiro et al., 2000; Wang et

al., 2012), and it may take years for microbial communities to adapt

to environmental changes (Deangelis et al., 2015). Thus, responses

of cellulase and ligninase activities to warming may vary over time.

Because warming methods differ in their effects on soil temperature

and moisture (Chen et al., 2015, Lu et al., 2013), soil microbial com-

munity (Chen et al.,2015), and belowground C allocation (Rustad et

al., 2001; Schindlbacher, Schnecker, Takriti, Borken, & Wanek, 2015),

they may differ in their effects on EEAs as well. Including cellulase

and ligninase activities in soil C models may improve future predic-

tions of soil C stocks (Ali et al., 2015; Luo, Chen, Chen, & Feng,

2017; Moorhead, Sinsabaugh, Hill, & Weintraub, 2016). However,

warming effects on cellulase and ligninase activities, as well as the

underlying mechanisms, are still unclear.

To address this knowledge gap, we conducted a meta‐analysis of

the responses of cellulase and ligninase activities to warming and

their links with SR responses. More specifically, our study seeks (a)

to quantify the effects of warming on cellulase and ligninase activi-

ties, (b) to investigate the factors affecting the responses of cellulase

and ligninase activities to warming, and (c) to test whether the

responses of cellulase and ligninase activities to warming are linked

with changes in SR.

2 | MATERIALS AND METHODS

2.1 | Data collection

We extracted results for enzyme activities of ligninase and cellulase

under warming experiments conducted in the field. We used Web of

Science (http://apps.webofknowledge.com/), Google Scholar (http://

scholar.google.com/), and China National Knowledge Infrastructure

(http://www.cnki.net/) for an exhaustive search of journal articles

published before June 2018, using the following key words : (a) “cli-
mate change” or “experimental warming” or “elevated temperature”
and (b) “cellulase,” or “ligninase,” or “glucosidase,” or “xylosidase,”
or “cellobiosidase,” or “peroxidase,” or “phenol oxidase,” or

“polyphenol oxidase,” and (c) “terrestrial” or “soil” or “land.”
To be included in our dataset, experiments had to meet several cri-

teria: (a) the warming treatment lasted at least 1 year; (b) vegetation,

soil physicochemical parameters, and climate were similar between

control and warming treatments; (c) sample size and standard devia-

tions were reported; and (d) warming protocols (i.e., warming method,
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warming magnitude, warming time, and warming season) were clearly

described. All studies in our dataset measured enzyme activity for

warmed and control soils at the same incubation temperature (i.e.,

temperature differences between treatments occurred only in the field

and not during the incubation). As such, differences in enzyme activity

between warmed and control soils were not related to the tempera-

ture sensitivity of enzymes, but reflect warming effects on enzyme

production by soil microbes. We found 56 articles that met our

requirements (see Supporting information Dataset and Figure S1).

For each study in our dataset, we extracted information on cellu-

lase and ligninase activities (Supporting information Table S1). If a

paper reported multiple warming responses (e.g., in multifactor experi-

ments or studies applying more than one warming protocol), each

experiment was included separately in our dataset. If one paper

reported two or three kinds of cellulase or ligninase, then their sum

values were considered as the overall responses of cellulase and ligni-

nase activities. We also recorded a wide range of environmental vari-

ables, including latitude, longitude, elevation, climatic variables (mean

annual temperature (MAT), mean annual precipitation (MAP)), sam-

pling date, sampling temperature, vegetation type (http://www.worldc

lim.org/), and soil type (http://www.fao.org/about/en/). Regarding the

warming protocols, we recorded the magnitude (i.e., the average tem-

perature difference between the warming and control plots), duration

(in years), and methods (open top chamber (OTC), infrared heater (IH),

green house (GH), heating cable, and curtain). We also recorded SR,

soil C:N, microbial biomass, and the ratio of fungal to bacterial abun-

dance for both control and warming treatments when these data were

reported. When warming responses of SR were not available, we used

responses of heterotrophic respiration or weight loss in litter bag

experiments as proxy values. To extract data from figures, we used

Engauge Digitizer 4.1 (http://digitizer.sourceforge.net). When some

critical information was not reported in the article, we tried to obtain

this information by contacting the corresponding author.

2.2 | Data analysis

We used meta‐analysis to evaluate the effects of warming on cellu-

lase, ligninase, individual enzyme activity, and other ancillary vari-

ables (García‐Palacios et al., 2014; Hedges, Gurevitch, & Curtis,

1999; Van Groenigen, Qi, Osenberg, Luo, & Hungate, 2014; Zhao et

al., 2017). The effects of warming on EEAs were evaluated using the

natural logarithm of the response ratio (lnR):

lnR ¼ ln
XW

XC

� �
¼ lnðXWÞ � lnðXCÞ; (1)

with XW and XC as the arithmetic mean concentrations in the warm-

ing and control treatments, respectively. The variances (ν) of lnR

were calculated as follows:

ν ¼ S2W
nWX2

W

þ S2C
nCX2

C

; (2)

with nW and nC as the number of replicates and SW and SC as the

SDs for warming and control treatments, respectively.

The overall effect and the 95% confidence interval were calcu-

lated using the “rma.mv” function in the R package “metafor”
(Viechtbauer, 2010). Because incubation temperature for enzyme

measurements varied among studies, we included “incubation tem-

perature” as a random factor in the meta‐analysis. Because several

papers contributed more than one response ratio, we also included

the variable “paper” as a random factor (Chen et al., 2018; Terrer,

Vicca, Hungate, Phillips, & Prentice, 2016; Van Groenigen et al.,

2017). The effects of warming were considered significant if the

95% confidence interval did not overlap with zero. The results for

the analyses on lnR were back‐transformed and reported as percent-

age change with warming (i.e., 100 × (elnR − 1)) to ease interpreta-

tion.

The meta‐analytic models were selected using the same

approach as in Chen et al. (2018), Terrer et al. (2016), and Van

Groenigen et al. (2017). In brief, we analyzed all potential combina-

tions of the studied factors in a mixed‐effects metaregression model

using the “glmulti” package in R (Bangert‐Drowns, Hurley, & Wilkin-

son, 2004; Calcagno & De Mazancourt, 2010). The importance of a

specific predictor was expressed as the sum of Akaike weights for

models that included this factor, which can be considered as the

overall support for each variable across all models. A cutoff of 0.8

was set to differentiate between important and nonessential predic-

tors.

3 | RESULTS

Across the whole dataset, warming significantly enhanced ligninase

activity by an average of 21.4%. It is specific that warming signifi-

cantly increased activities of PER by 18.4%, PO by 13.5%, and PPO

by 28.6%. In contrast, warming had no effect on cellulase activity

(Figure 1a) or any of the individual cellulase enzymes BG, BX, and

CBH. The responses of cellulase and ligninase activities to warming

were normally distributed (Figure 1b,c), and they were independent

of the sample size (Supporting information Figure S2).

None of the variables tested for the effects of warming on cellu-

lase activity reached the threshold value (0.8) of the summed Akaike

weights (Figure 2a). In contrast, effects of warming on ligninase

activity were best explained by warming duration and warming

method (Figure 2b). Linear regression analysis confirmed that lnR of

ligninase activity was positively correlated with warming duration,

while no such relationship was found for cellulase activity (Figure 3a,b).

Regarding warming methods, warming did not affect cellulase activ-

ity for any of the warming methods (Figure 3a). In contrast, OTC,

GH, and IH significantly increased ligninase activity by 15.5%, 31.4%,

and 22.3%, respectively, while cables had no effect on ligninase

activity (Figure 3b).

Warming significantly increased microbial biomass‐specific ligni-

nase activity (i.e., the ratio of ligninase activity to total microbial

abundance) by 40.6% (Supporting information Figure S3a). This

increase was weakly positively correlated with warming‐induced
changes in the ratio of fungal to bacterial abundance (Supporting

information Figure S3b). At last, our analyses suggest that warming
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had stronger positive effects on biomass‐specific ligninase activity

for long‐term than short‐term studies, while this relationship was not

observed for biomass‐specific cellulase activity (Supporting informa-

tion Figure S4a and S4b).

Warming on average increased SR by 15.8% (95% CI: 6.3%–
26.1%) in our dataset. We found no relationship between the

responses of cellulase activity and the responses of SR to warming

(Figures 4a). However, the warming response of SR was positively cor-

related with the response of ligninase activity and the positive rela-

tionship held when analyzed for PER, PO, and PPO individually

(Figure 4b; Supporting information Figure S5). To compare the relative

importance of cellulase and ligninase activities in explaining the

response of SR to warming, we limited our model selection analysis to

studies that simultaneously reported the effects of warming on cellu-

lase and ligninase activities and SR. Effects of warming on SR were

best predicted by the responses of ligninase activity over a wide range

of ecosystem types, climatic variables, and warming protocols (Fig-

ure 4c). Experiment duration had no significant impact on SR

responses to warming, either in the subset of studies that reported

responses of both enzymes (Figure 4c) or across the entire dataset.

4 | DISCUSSION

Our results show that warming significantly enhanced ligninase activ-

ity and that warming responses are positively correlated with warm-

ing duration. In contrast, warming does not affect cellulase activity.
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Why does warming have differential effects on cellulase and ligni-

nase activities? We propose three possible mechanisms. First, the

enzyme responses reflect warming‐induced changes in substrate

availability. Enzyme activity can be described by the Michaelis–Men-

ten relationship, which primarily depends on substrate availability

(Davidson & Janssens, 2006; Sinsabaugh et al., 2008). Initial

stimulation of SR by warming depletes easily hydrolyzable substrates

(Allison, Mcguire, & Treseder, 2010; Luo, Wan, Hui, & Wallace,

2001), limiting the positive response of cellulase activity to increas-

ing temperatures (Davidson & Janssens, 2006; Stone et al., 2012;

Weedon, Aerts, Kowalchuk, & Van Bodegom, 2014). At the same

time, warming‐induced declines in easily hydrolyzable C pools can
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lead to microbial C starvation (Crowther & Bradford, 2013; Fenner

et al., 2006; Melillo et al., 2017; Metcalfe, 2017). Under these cir-

cumstances, soil microbial communities may adapt to utilize previ-

ously inaccessible recalcitrant C pools to fuel their metabolic

activities. Microbial utilization of recalcitrant substrates such as phe-

nol requires depolymerization, a process catalyzed by ligninase (De

Gonzalo, Colpa, Habib, & Fraaije, 2016; Jassey, Chiapusio, Gilbert,

Toussaint, & Binet, 2012; Sinsabaugh, 2010).

Second, warming may increase ligninase activity through its

effect on soil N availability. Warming‐induced redistribution of N

from soils to vegetation could progressively lead to microbial N limi-

tation, particularly in high C:N regions (Bai et al., 2013; Beier et al.,

2008; Melillo et al., 2011). In that case, soil microorganisms are

expected to invest C and energy to acquire N through decomposi-

tion of N‐containing molecules (Chen, Luo et al., 2017; Sinsabaugh

et al., 2008), which are often physically or chemically protected by

other aromatic macromolecules such as lignin (Hobbie, 2008; Wee-

don et al., 2012; Zhao et al., 2014). This explanation is supported by

the positive correlation between warming effects on ligninase activ-

ity and soil C:N, while no clear relationship is found for the

responses of cellulase activity (Supporting information Figure S6). At

last, warming‐induced changes in soil microclimate (Domínguez,

Holthof, Smith, Koller, & Emmett, 2017; Zhou et al., 2013), fresh C

input (Bhattacharyya, Roy, Neogi, Dash et al., 2013; Xue et al., 2016;

Yin et al., 2013), and plant community composition (Kardol, Cregger,

Campany, & Classen, 2010; Steinauer et al., 2015) can all cause sub-

stantial changes in microbial communities as well.

Increased ligninase production with warming might reflect shifts

in the microbial community composition. Indeed, several studies sug-

gest that warming‐induced changes in soil microbial community com-

position cause differential responses of cellulase and ligninase

activities (Deangelis et al., 2015; Pold, Grandy, Melillo, & Deangelis,

2017). This explanation is also consistent with studies showing that

fungi are main contributors to ligninase production (De Gonzalo et

al., 2016; Kinnunen, Maijala, Jarvinen, & Hatakka, 2017) and that

experimental warming increases fungal abundance (A'bear, Jones,

Kandeler, & Boddy, 2014; Delarue et al., 2015). However, warming

may also directly or indirectly cause physiological adaptation of soil

microorganisms to increase enzyme production (Manzoni, Taylor,

Richter, Porporato, & Gren, 2012; Nie et al., 2013; Schindlbacher et

al., 2015), even when warming decreases total microbial biomass

(Pold et al., 2017; Sistla & Schimel, 2013; Sorensen et al., 2018). This

is consistent with recent findings that experimental warming tends

to decrease microbial C use efficiency (Manzoni et al., 2012; Tucker

et al., 2013).

Why does the effect of warming on ligninase activity increase

over time? Soil microorganisms can adjust their community composi-

tion or alter their C utilization strategies to adapt to warming, but it

requires several years or even decades for significant changes in

their community composition to occur (Deangelis et al., 2015; Feng

et al., 2017; Rousk, Smith, & Jones, 2013). Furthermore, warming‐in-
duced N limitation may take several years to manifest (Bai et al.,

2013; Melillo et al., 2011). In addition, long‐term warming could also

restructure plant community and alter litter quality toward decay

resistance (e.g., high lignin content) (Melillo et al., 2011; Talbot, Yelle,

Nowick, & Treseder, 2012), thereby promoting the microbial produc-

tion of ligninase.

Regardless of the mechanism underlying the differential warming

response of ligninase and cellulase, our results suggest that warming‐
induced shifts in cellulase and ligninase activities could help to sus-

tain long‐term increases in SR with warming (Lin, Zhu, & Cheng,

2015; Romero‐Olivares et al., 2017; Souza et al., 2017). This is

because warming responses of ligninase activity exert far larger con-

trol over SR than a broad range of environmental and experimental

variables. These results suggest that responses of SR to warming are

largely modulated by a single group of lignin‐modifying enzymes,

which contributes to sustained positive responses of SR to long‐term
climate warming.

Warming methods constituted the second important predictor of

the warming effects on ligninase activity. Cables only warm soils and

are reported to have negative effects on microbial biomass, litter

inputs, and root exudates (Rustad et al., 2001; Schindlbacher et al.,

2015). It is similar that a recent meta‐analysis shows that cables gen-

erally decrease total microbial, fungal, and bacterial abundance, while

other warming methods increase microbial abundance (Chen et al.,

2015). We hypothesize that these negative responses suppressed

microbial activity and microbial enzymatic production (Chen et al.,

2015, Hanson et al., 2017). In addition, high warming magnitude and

large reductions in soil moisture in cable experiments may decrease

microbial C use efficiency (Schindlbacher et al., 2011, 2012), which

could potentially suppress microbial cellulase and ligninase produc-

tion.

Model projections of soil C dynamics often lack representation

of EEA‐regulated SOM decomposition (Davidson & Janssens, 2006;

Luo et al., 2016; Wieder, Bonan, & Allison, 2013). However, our

finding that warming‐induced shifts in cellulase and ligninase activi-

ties may facilitate sustained increases in SR under long‐term climate

warming highlights the need for a closer integration of enzymatic

decomposition into soil biogeochemical models. It is unfortunate that

responses of SR and EEAs to long‐term climate warming remain

understudied, as experiment duration is often constrained by funding

availability. If the relationship between ligninase and warming dura-

tion holds across a wide range of land ecosystems, our results sug-

gest that ecosystem climate–carbon feedbacks could be stronger

than previously assumed.
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