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Abstract: Tree–grass ecosystems are widely distributed. However, their phenology has not yet been
fully characterized. The technique of repeated digital photographs for plant phenology monitoring
(hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology,
and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to
evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e.,
greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean
sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates
(GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of
vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy
covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different
VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then
evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while
CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in
tracking growing season length of GPP. In summary, the results show it is promising to track structural
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and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled
PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.

Keywords: phenology; tree–grass ecosystem; Dehesa; PhenoCam; near-infrared-enabled digital
repeat photography; phenological transition date (PTD); growing season length (GSL)

1. Introduction

Phenology is the study of recurring life cycle stages, and their timing and relationship with
environmental factors [1,2]. Phenology controls the seasonality of ecosystem functions and plant
feedbacks to climate through diverse processes, such as changes in the surface albedo and the exchange
of CO2 between atmosphere and biosphere [3–6]. Despite its importance, phenology is not always well
described in Earth system models [7–9], in particular, the environmental factors controlling phenology
are still uncertain [6,10]. Therefore, additional efforts to monitor and model plant phenology are
needed to improve the representation of phenology in Earth system models [6,11].

Conventional visual monitoring of phenology dates back to 705 CE [12], and still plays an
important role in evaluating the impacts of climate change on ecosystems [13–16]. However,
conventional monitoring requires substantial field work, which limits spatial and temporal
representativeness [17].

Near-surface remote sensing is becoming a more frequently used tool to monitor vegetation
phenology at the ecosystem scale. In recent years, installation of commercial digital cameras
for phenology monitoring (i.e., PhenoCam) has proliferated throughout diverse biomes and
continents [18–23], which has led to the consolidation of national and continental monitoring
networks [24–28]. The use of PhenoCam consistently reduces manual labor, guarantees time series of
high temporal resolution, and creates a permanent data record from which visual interpretation and
qualification can be made at any later point in time [29]. The proximity to the target ecosystem allows
the cameras to track phenological transition dates (PTDs), such as leaf emergence, leaf discoloration,
senescence, and green up and senescence of vegetation with high temporal resolution [23,30], as well
as monitor the different plant types within the camera’s field of view (FOV; [24]). Nowadays, the
increasing number of sites with digital cameras co-located with ecosystem-atmosphere CO2 flux
measurements collected using the eddy covariance (EC) technique are contributing to understanding
the relationship between phenology of structure and function of ecosystems [28,31,32].

Green chromatic coordinates (GCC) is the most commonly used vegetation index (VI) extracted
from PhenoCam, due to the requirement of only three visible spectral bands for computation, and it
is used to represent plant development throughout the season [33]. PhenoCam, with an additional
near-infrared (NIR) band which is more sensitive to vegetation structural change than visible bands,
has increased the use of the PhenoCam-based normalized difference vegetation index (CamNDVI)
for the same purpose [29,34,35]. Both GCC and CamNDVI are considered plausible indexes to bridge
satellite and ground-based observations of phenology [24]. For instance, GCC and CamNDVI have
been shown to be effective (though not always consistent) tools for describing greenness variation
of individual plant species and ecosystems in a variety of plant functional types [29,36], and for
evaluating and linking remote sensing phenology products [18,37–39] with ground observations [40].

Recently, Badgley et al. [41] introduced a new vegetation index called near-infrared reflectance
of vegetation index (NIRv), designed to mitigate the mixed pixel problem (determining the fraction
of vegetated land surface and reconstructing the signal attributable to vegetation) to better represent
photosynthesis of ecosystems. A strong correlation between satellite-based NIRv and gross primary
productivity (GPP) at global scale was observed, which outperforms the correlation between NDVI
and GPP [40]. As such, it would be interesting to know if this new index could provide an advantage
in tracking seasonal GPP and phenology compared to the widely used CamNDVI and GCC at
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ecosystem-scale. The computation of NIRv, as well as other VIs, such as the ratio vegetation
index (RVI [42]), is possible with NIR-enabled PhenoCam by following the approach proposed by
Petach et al. [29] and Filippa et al. [34] for the computation of CamNDVI. However, up to now, we are
not aware of studies evaluating the differences between PTDs derived from multiple PhenoCam-based
VIs from PhenoCam (GCC, CamNDVI, CamNIRv, and CamRVI).

Past studies related to derived PTDs from PhenoCam mainly focus on temperate/boreal forests
and grassland (e.g., [32]), and only a few recent studies have focused on seasonally dry tree–grass
ecosystems [43,44]. Considering that tree–grass ecosystems are a widely distributed land cover type,
which occupies 16–35% of the Earth’s land surface [45–47], it is necessary to further investigate the
methods to extract PTDs for these ecosystems.

Moreover, the increasing number of sites with PhenoCam associated with EC flux measurements
open interesting perspectives to evaluate: first, the consistency between PTDs derived from
PhenoCam-based VIs and PTDs of ecosystem functioning (physiological phenology, i.e., [48]); second,
the direct relationship between PhenoCam-based VIs and GPP. However, to our knowledge, only a
few studies pay special attention to the differences between phenology of ecosystem structure and of
ecosystem functioning and carbon fluxes [28,32].

In this study, our main objective is to evaluate the potential of PhenoCam to monitor phenology of
seasonally dry Mediterranean tree–grass ecosystems. Specifically, the objectives are (1) to characterize
structural and physiological phenology of tree–grass ecosystems and their main climatic drivers
using PhenoCam and GPP derived from EC measurements; (2) to compare the PTDs and growing
season length (GSL) derived from different PhenoCam-based VIs, and to evaluate their performance in
tracking the PTDs and GSL derived from GPP.

2. Materials and Methods

2.1. Sites Description, Instrument Set-Up, and Data Sources

The sites used in this study are Mediterranean tree–grass ecosystems, composed predominantly of
an herbaceous layer and low-density evergreen broadleaf oak trees (Quercus ilex; ~20 tree ha−1;
Figure 1). Three sites are located approximately 500 m apart from each other in Majadas de
Tiétar, Cáceres, Spain (39◦56’24.68”N, 5◦46’28.70”W), while one site is located in La Albuera, Spain
(38◦42’6.48”N, 6◦47’9.24”W). The experimental sites in Majadas de Tiétar belong to a large-scale
manipulation experiment, where the three areas of approximately 20 ha were manipulated with
addition of nitrogen (FLUXNET ID ES-LM1), nitrogen and phosphorous (FLUXNET ID ES-LM2),
and the last was kept as control (FLUXNET ID ES-LMa). The experimental site in the La Albuera
(FLUXNET ID ES-Abr) is a natural ecosystem with no manipulation. In this study, we did not focus
on the fertilization, but only on the evaluation of the effectiveness of different vegetation indexes
to represent the ecosystem functions. The Majadas de Tiétar and La Albuera are characterized by a
long-term annual mean air temperature of 16.7 ± 0.2 ◦C and 18.3 ± 1.5 ◦C, respectively; while mean
annual rainfall is ca. 650 mm and 400 mm, respectively. The rain falls typically from November to May
with a very dry summer [49].

In each site, an EC system was installed at 15 m of height to measure the carbon, water and
energy fluxes (Section 2.2 for more details). The fluxes data are available from March 2014 in ES-LM1,
ES-LM2, and ES-LMa; and from October 2015 for ES-Abr. Two broadband Decagon SRS (spectral
reflectance sensor) sensors with a FOV of 36 degrees were installed on a rotating arm in each tower
area. Downwelling irradiance and upwelling radiance at 650 nm (red spectral band) and 810 nm
(near-infrared spectral band) were measured every 5 min for tree and grasses from 30 October 2015.

A NIR-enabled digital camera (Stardot NetCam 5MP), was mounted at the top of the EC tower
(facing north) at each site. Images were collected every 30 min (from 10:00 to 14:30 UTC) as JPEG
format. The camera settings were defined according to the “PhenoCam” protocol (https://phenocam.
sr.unh.edu/webcam/tools/). Sequential red, blue, green (RGB) and RGB + NIR images were collected

https://phenocam.sr.unh.edu/webcam/tools/
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by the Stardot camera according to Petach et al., [29]. FOVs of cameras in ES-LM1 and ES-LM2 were
stable during the study period (from 1 August 2014 to 31 July 2017), whereas the FOV of ES-LMa
was not constant and the camera experienced a white balance problem until 3 December 2015. At the
ES-Abr site, images were available from 1 January 2016. Hence, RGB and RGB+NIR images were
available for the analysis from 1 August 2014 to 31 July 2017 for ES-LM1 and ES-LM2; from 3 December
2015 to 31 July 2017 for the ES-LMa site; and from 1 January 2016 to 31 July 2017 for the ES-Abr site.
This guarantees a total of 9 site-years for the following analysis.
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Figure 1. Experimental setup at Majadas de Tiétar and La Albuera in the Spain (left panel) and an
example of regions of interest (ROIs) in each experimental site (right panel): Grass, Tree, and Ecosystem
ROIs, respectively. At each site, an eddy covariance (EC) system was installed at a height of 15 m to
measure the fluxes of the whole ecosystem. A near-infrared-enabled camera was installed at 15 m
beside the EC system to take pictures half-hourly between 10:00 and 14:30. Three EC towers are in the
Majadas de Tiétar (FLUXNET IDs are ES-LM1, ES-LM2, and ES-LMa, respectively) and an EC tower
in the La Albuera (FLUX ID: ES-Abr), respectively (not shown). The map of Majadas de Tiétar was
provided courtesy of the Spanish Program of Aerial Orthophotography.

2.2. EC Data Processing and Flux Partitioning to GPP

Each EC system consists of a three-dimensional sonic anemometer (R3-50, Gill LTD, Lymington
UK) and an infrared gas analyzer (LI-7200, Licor Bioscience, Lincoln, NE, USA) to measure mixing
ratios of CO2 and H2O. Additional vertical CO2 and H2O concentration profiles were measured at
seven levels between the surface and the measurement height in the EC tower (0.1, 0.5, 1.0, 2.0, 5.0, 9.0,
and 15 m above ground with a LI840, Licor Bioscience, Lincoln, NE, USA). Meteorological variables
such as air temperature (Ta), wind speed (WS), relative humidity (RH), incoming global radiation (Rg),
photosynthetically active radiation (PAR), and precipitation (Prec) were also measured at each site.

Raw EC data were collected at 20 Hz, and were then processed using EddyPro 6.2. The main
processing procedures for CO2 fluxes included (1) coordinate rotation using planar fit method [50];
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(2) CO2 time lag adjustments by covariance maximization in predefined windows; (3) spectral
corrections performed for low and high pass-filtering effects according to Moncrieff et al. [51] and
Moncrieff et al. [52]. The calculated flux for CO2 was then quality checked [53,54]. The net ecosystem
exchange (NEE) flux was corrected by adding storage fluxes (integrated CO2 fluxes using seven levels
of CO2 profiles when possible, otherwise using 1-point storage) to CO2 flux.

The u*-threshold, which was used as a criterion to discriminate low- and well-mixed eddies in the
nighttime, was estimated for each year and tower individually (the median of u*-threshold ranges from
0.11 to 0.18 for ES-LM1, ES-LM2, and ES-LMa while 0.20–0.24 for ES-Abr) following Papale et al. [55].

The time series of NEE were gap filled using the marginal distribution sampling (MDS)
method [56] which is based on lookup tables of temperature, global radiation, and water vapor
pressure deficit (VPD) classes for short temporal windows i.e., 14 days. The gap-filled time series of
NEE were then partitioned into GPP as described in Reichstein et al. [56]. In brief, the nighttime
flux (Rg < 10 W/m2) of NEE (i.e., only respiration) is extrapolated from nighttime to daytime
through a temperature response function, which is based on short term temperature sensitivities
(for details see [56]). The u*-threshold, gap-filling, and partitioning was performed with the R package
REddyproc [57].

2.3. Calculation of Vegetation Indexes from PhenoCam

Digital numbers (DNs) of each individual channel (RDN, GDN, BDN and NIRDN) were extracted
from each photograph, and averaged over the different regions of interest (ROIs) (Figure 1). The overall
brightness of each ROI (RGBDN) and the relative brightness of green channel, known also as green
chromatic coordinates—GCC, were computed with Equations (1) and (2):

RGBDN= RDN + GDN + BDN (1)

GCC =
GDN

RGBDN
(2)

CamNDVI was also computed in the different ROIs according to Petach et al. [29], using the
algorithm implemented in the “phenopix” R package [34,36]:

CamNDVI =
NIRDN

′ − RDN
′

NIRDN
′ + RDN

′ , (3)

where NIRDN‘ and RDN’ are the adjusted exposure values of NIRDN and RDN, respectively. For a
detailed calculation and the exposure adjustment formula, please refer to Petach et al. [29]. As the
RDN’ and NIRDN’ are not direct measurements of reflectance, the CamNDVI values are not directly
comparable to the NDVI from other data sources. Petach et al. [29] found a linear relationship between
CamNDVI and the NDVI derived from the radiometric sensor (ASD FieldSpec 3) using the bands of
750 nm for the NIR and 605 nm for the red. They suggested using the linear regression coefficients to
adjust the CamNDVI values for comparability with NDVI from radiometers [29,34].

Therefore, we applied the method suggested by Petach et al. [29] and Filippa et al. [34] to rescale
CamNDVI using the NDVI derived from the Decagon SRS (VIs was calculated and averaged over a
30 min period to be consistent with VIs from PhenoCam). The coefficients and statistics of the linear
regression used to compute the scaling factors are shown in Table 1. In the following only the rescaled
CamNDVI values are used and presented.

Likewise, the CamNIRv and CamRVI were also calculated with adopting Equations (4) and (5)
which refer to Badgley et al. [41] and Chen [42], respectively.

CamNIRv = CamNDVI×NIR′DN, (4)

CamRVI =
NIR′DN

R′DN
, (5)
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where NIRDN
′ and RDN

′ are the adjusted exposure values like Equation (3). A similar approach used
for the CamNDVI was used to compute CamNIRv and CamRVI: SRS-based NIRv and RVI were used
to adjust the CamNIRv and CamRVI in order to make them comparable with the data derived from
other sources (Table 1).

The analysis was conducted on various ROIs as depicted in Figure 1: we selected ROIs with only
trees, grass, and both (hereafter referred as Tree, Grass, and Eco ROI, respectively). The different sites
have different tree/grass proportions in the camera FOVs, as only one direction of ecosystems could
be captured from the PhenoCam. However, the fractional tree canopy covers were consistent (~0.20) in
the four sites by referring to field surveys and the classification analysis using airborne hyperspectral
imagery [58,59]. The analysis of each footprint for each EC tower also indicates GPP is contributed
from ~20% tree canopy and ~80% grasses [59]. In order to reduce the bias introduced by the different
ratios of tree/grass in the images and camera FOV, which has to do with logistical constrains during
the camera installation, the ecosystem VIs (GCC, CamNDVI, CamNIRv, CamRVI) were computed by
using the weighted average of the VIs derived from Grass ROIs of 0.8 and Tree ROIs of 0.2.

Table 1. Results of the linear regression between normalized difference vegetation index (NDVI),
near-infrared reflectance of vegetation index (NIRv), ratio vegetation index (RVI) retrieved from
PhenoCam and spectral reflectance sensor (SRS) at four experimental sites 1.

Site VIs N Intercept Slope R2

ES-LM1
NDVI 4000 0.60 1.51 0.69
NIRv 3282 0.06 0.01 0.60
RVI 3389 −2.03 6.61 0.54

ES-LM2
NDVI 4340 0.56 1.12 0.77
NIRv 4223 0.04 0.01 0.55
RVI 4268 −0.14 3.55 0.57

ES-LMa
NDVI 3549 0.67 0.89 0.89
NIRv 3522 0.06 0.01 0.73
RVI 3515 −0.20 5.17 0.84

ES-Abr
NDVI 3560 0.64 1.18 0.83
NIRv 3361 0.06 0.01 0.82
RVI 3564 −0.78 5.39 0.80

1 ES-LM1, ES-LM2, ES-LMa, and ES-Abr are the FLUXNET-IDs of four experimental sites, respectively. N, number of
observations used for each regression; Intercept and slope: the parameters of the linear regression between indexes
retrieved from the PhenoCam and SRS; R2: determination coefficient of linear regression. Regression coefficients are
all statistically significant (p < 0.001).

2.4. Data Filtering and to Compute Daily VIs and GPP

After computing the half-hourly VIs (GCC, CamNDVI, CamNIRv, CamRVI) at ecosystem scale,
we applied a series of steps to derive robust time series of daily VIs:

1. We discarded VIs measured with PAR below 600 µmol m−2 s−1. This procedure was used,
on one hand, to filter out the VI values measured during adverse meteorological conditions (i.e.,
rainy, foggy, or overcast half-hours [34,48]), and on the other hand, Petach et al. [29] suggests to
apply a threshold on PAR to reduce the variability of CamNDVI due to changes in illumination
conditions. Here, we selected a more conservative threshold than Petach et al. [29].

2. A max.density filter method was developed to filter and retrieve daily VIs. We constructed the
probability density function (PDF) of VIs in 3-day moving windows (30 observations), and
assigned the value that has highest probability density as the filtered daily value. We did not
apply the widely used max method [22,36], which uses the 90th percentile of the VIs value from
a 3-day moving window as the filtered daily value. This is because the variability of NIRDN is
larger compared to other channels (i.e., RDN, GDN, BDN) in the PhenoCam, which would result in
large variability of VIs (i.e., CamNDVI, CamNIRv and CamRVI) that is especially obvious for
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Mediterranean ecosystems compared to other ecosystems (some comparison using data retrieved
from [34], results are not shown in this study). Hence, we chose to apply the max.density filter to
retrieve time series of VIs with less variability, which were not always retrieved by applying max
filter in our study. We used an example to demonstrate the better filter performance of max.density
compare to max filter methods in our study (Figure A1).

3. Daily VIs were gap-filled using the Singular Spectrum Analysis (SSA) method implemented in
the “spectral.methods” R package [60].

4. Similar to the processing of VIs, the daily GPP was derived from half-hourly data following the
step (2) and step (3).

2.5. Phenological Transition Dates (PTDs) Extraction

The Mediterranean climate is characterized by rainy late autumn–winters, and warm dry summers.
Typically, the studied tree–grass ecosystems are dry and covered with senescent grasses in summer,
while they increase in greenness in the late autumn (after the onset of the rainy season) and spring.
Considering the characteristics of the phenological cycle described above, we decided to conduct the
analysis using the concept of “hydrological years”, which is, here, defined from 1 August to 31 July
(Figure 2).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 32 
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Figure 2. Conceptual figure of the seasonal dynamic of green chromatic coordinates (GCC),
PhenoCam-based normalized difference vegetation index (CamNDVI), near-infrared reflectance of
vegetation index (CamNIRv), ratio vegetation indexes (CamRVI), or daily maximum gross primary
productivity (GPP), as well as their phenological transition dates (PTDs) for a “hydrological year”.
The black circles represent the original vegetation indexes value (CamGCC, CamNDVI, CamNIRv,
CamRVI, or GPP). Results of the smoothing procedure and its uncertainty are shown by red circles and
gray area, respectively. The vertical dashed lines represent the PTDs and the corresponding names are
shown: UD, SOStrs, POS1, POS2, EOStrs, RD. Two periods are most focused upon in this study: the
Green-up period during autumn to winter (green rectangle which including UD, SOStrs, and POS1)
and Dry-down period in late spring to summer (light-red rectangle that including POS2, EOStrs and
RD). The time interval between UD and RD is defined as the growing season which indicated in the
figure. Detailed description of PTDs and the other phenological terms are reported in the Table 2.
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Table 2. Terms used in this study to describe the phenological transition dates (PTDs) and
phenological periods.

Terms Description

Phenological Transition
Dates (PTDs)

UD Upturn day in the green up period in the autumn
SOStrs When 50% of amplitude in the green up period in the autumn is reached
POS1 When the first peak of season is reached
POS2 When the second peak of season is reached

EOStrs
When 50% of amplitude in the senescent period in the summer is
reached

RD Recession day at the end of senescent period in the summer

Phenological periods

Green-up Greenness/GPP increasing period in the autumn (including UD, SOStrs,
and POS1)

Dry-down Greenness/GPP decreasing period in the summer (including POS2,
EOStrs and RD)

GSLRD-UD
Growing season length defined in the hydrological year (day length
between UD and RD)

GSLEOS-SOS

Growing season length defined for comparison with GSLRD-UD (day
length between EOStrs and SOStrs, which is widely used in land surface
phenology)

In this study, we developed a PTD extraction method for PhenoCam-based VIs in seasonally dry
tree–grass ecosystems. The methodology of PTDs extraction is composed by the following steps:

1. Data were smoothed using the spline method [20,36]; PTDs were extracted using the derivatives
of smoothed seasonal cycle [61] and applying thresholds (i.e., 50%) of amplitude of VIs [62].
As the start and end of the season are extremely important to characterize the phenology, we
defined two sets of PTDs in the start (UD, SOStrs; Table 2) and end of season (RD, EOStrs; Table 2)
for intercomparison and better characterizing the phenology. These two sets of PTDs are derived
based on different perception and methodology. UD and RD are retrieved as the intersection
dates between steepest slope and minimum value in the Green-up and Dry-down periods,
respectively [61]. In contrast, SOStrs and EOStrs are retrieved by using the thresholds of 50%
amplitude [62]; i.e., they are defined when 50% of amplitudes are reached in the Green-up and
Dry-down periods, respectively. Other extracted PTDs and the phenological periods analyzed in
this study were summarized in Figure 2 and Table 2. The detailed procedures and corresponding
code related to the extraction of PTDs are provided in Appendix B.

2. Uncertainty of extracted PTDs was assessed by extracting PTDs repeatedly (100 times) from an
ensemble of time series constructed by summing original data and random noise as described by
Filippa et al. [36].

2.6. Statistical Analysis

All the statistical analyses were conducted with the R 3.4.3 programming language [63].
The differences among PTDs extracted from the different datasets (GCC, CamNDVI, CamNIRv,
CamRVI, and GPP) were evaluated using the mean absolute error (MAE) and root mean squared error
(RMSE) (Equations (6) and (7)):

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣ (day), (6)

RMSE =

√
1
n

n

∑
i=1

(
y′i − yi

)2
(day), (7)

where yi’ and yi were the PTD dates extracted from two different datasets. Wilcoxon signed-rank tests
were used to test for statistically significant differences between each paired PTDs from the different
datasets given that were not normally distributed, while paired Student’s t tests were used when PTDs
were normally distributed.
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The linear regressions were conducted between time series of VIs and GPP, or between
meteorological variables and GPP using ordinary least squares regression (OLS). However, the linear
regression between PTDs and GSL extracted from different VIs and GPP was conducted using major
axis regression (R package “lmodel2”) to account for errors of similar magnitude in the y and x axis.

3. Results

3.1. Time Series of VIs (GCC, CamNDVI, CamNIRv, CamRVI), GPP, and Their Relationship with
Meteorological Conditions

The seasonal variation of VIs and GPP, as well as their correlations, are shown in Figure 3 and
Table 3, respectively. In general, all VIs have distinct seasonal variations and are consistent with the
temporal variability of GPP (Figure 3 and Table 3). At four sites, all VIs have significant and good
correlation with GPP (Pearson’s correlation coefficient: r≥0.85; Table 3). The determination coefficients
(R2) of linear regression between VIs and GPP also range from 0.72 to 0.87, in particular, with slightly
higher R2 for CamNDVI and CamRVI. However, VIs have distinct discrepancies on variation range.
For instance, the GCC of our sites ranges 0.32–0.42, while the CamRVI could vary between 1 and 7.

Distinct interannual variability of VIs and GPP are also observed at the four sites (Figure 3).
The time series (GCC, CamNDVI, CamNIRv, CamRVI, and GPP) have an obvious “two-humped”
shape in the hydrological year 2014 (Hydro-2014: 1 August 2014–31 July 2015) and hydrological year
2016 (Hydro-2016: 1 August 2016–31 July 2017), while the shape is not clear in the time series for
the hydrological year 2015 (Hydro-2015: 1 August 2015–31 July 2016; Figure 3). The absence of the
two-humped shape in Hydro-2015 coincides with the warmer mean air temperature (Ta) observed in
winter 2015 (9.4 ± 2.4 ◦C) and lower Ta in spring 2016 (13.5 ± 3.5 ◦C) compared to Hydro-2014
(6.4 ± 3.3 ◦C and 16.3 ± 4.3 ◦C, respectively) and Hydro-2016 (8.0 ± 3.4 ◦C and 16.4 ± 4.6 ◦C,
respectively; Table A1 and Figure 4). The onset of growing season in each hydrological year clearly
followed the onset of the rainy season, confirming that autumn phenology in these ecosystems is
driven by precipitation (Figure 3). Larger precipitation (281.7 mm) in the spring of Hydro-2015 also
leads to higher GPP compared to Hydro-2014 (94.9 mm) and Hydro-2016 (94.0 mm; Figure 4 and
Table A1), both characterized by less than half of the precipitation compared to Hydro-2015.

Table 3. Statistics between daily time series of vegetation indexes (PhenoCam-based green chromatic
coordinates (GCC), normalized difference vegetation index (CamNDVI), near-infrared reflectance of
vegetation index (CamNIRv), ratio vegetation index (CamRVI)) and gross primary productivity (GPP)
at four experimental sites 1.

Site VIs-GPP N r

ES-LM1

GCC 1096 0.90
CamNDVI 1096 0.91
CamNIRv 1096 0.93
CamRVI 1096 0.91

ES-LM2

GCC 1096 0.86
CamNDVI 1096 0.87
CamNIRv 1096 0.87
CamRVI 1096 0.87

ES-LMa

GCC 607 0.89
CamNDVI 607 0.90
CamNIRv 607 0.85
CamRVI 607 0.90

ES-Abr

GCC 635 0.86
CamNDVI 635 0.91
CamNIRv 635 0.86
CamRVI 635 0.91

1 ES-LM1, ES-LM2, ES-LMa, and ES-Abr are the FLUXNET-IDs of four experimental sites, respectively. N, number
of daily data; r, Pearson’s correlation coefficients.
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IDs are ES-LM1, ES-LM2, ES-LMa, and ES-Abr, respectively). Daily mean temperature (Ta) and total 
precipitation (Prec) of the Majadas de Tiétar (Maj) and La Albuera (Ala) are shown in the bottom 
panel. 

Figure 3. Time series of PhenoCam-based green chromatic coordinate (GCC), normalized difference
vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio
vegetation index (CamRVI), maximum gross primary productivity (GPP), and meteorological variables
(temperature and precipitation) for four Mediterranean tree–grass ecosystems (FLUXNET IDs are
ES-LM1, ES-LM2, ES-LMa, and ES-Abr, respectively). Daily mean temperature (Ta) and total
precipitation (Prec) of the Majadas de Tiétar (Maj) and La Albuera (Ala) are shown in the bottom panel.
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spring in hydrological year 2014 to 2016 in four Mediterranean tree–grass ecosystem in Spain. The 
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respectively. The regression line and the formula are shown if the linear regression is statistically 
significant (p < 0.05). The gray area represents 95% confidence interval. R2: determination coefficient 
of linear regression. 

3.2. Comparison of Phenological Transition Dates (PTDs) Derived from Different VIs 

The comparison of PTDs extracted from different VIs is shown in Figure 5. Generally, the PTDs 
derived from the different VIs show smaller difference between each other at Dry-down periods 
(POS2, EOStrs, RD) compared to the Green-up periods (UD, SOStrs, POS1). Specifically, PTDs derived 
from GCC have the smallest differences with PTDs derived from CamNIRv, while they are 
significantly advanced from the ones from CamNDVI at the Dry-down period (Figure 5). During 
Green-up periods, the PTDs derived from GCC are more advanced than the ones from CamNDVI 

Figure 4. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation
(Prec), and monthly mean gross primary productivity (GPP) during day time of (a,b) winter, and (c,d)
spring in hydrological year 2014 to 2016 in four Mediterranean tree–grass ecosystem in Spain. The data
in hydrological years of 2014, 2015, and 2016 are colored with green, red, and blue color, respectively.
The regression line and the formula are shown if the linear regression is statistically significant (p < 0.05).
The gray area represents 95% confidence interval. R2: determination coefficient of linear regression.

3.2. Comparison of Phenological Transition Dates (PTDs) Derived from Different VIs

The comparison of PTDs extracted from different VIs is shown in Figure 5. Generally, the PTDs
derived from the different VIs show smaller difference between each other at Dry-down periods (POS2,
EOStrs, RD) compared to the Green-up periods (UD, SOStrs, POS1). Specifically, PTDs derived from
GCC have the smallest differences with PTDs derived from CamNIRv, while they are significantly
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advanced from the ones from CamNDVI at the Dry-down period (Figure 5). During Green-up periods,
the PTDs derived from GCC are more advanced than the ones from CamNDVI and CamRVI, while
they are also delayed compared to PTDs extracted from CamNIRv. By contrast, the PTDs derived from
CamNDVI are all more delayed than the PTDs from CamNIRv, in particular, with more than 10 days
difference at Green-up period. However, they have small differences compared to the PTDs extracted
from CamRVI (<5 days), but they are significantly advanced at Green-up and delayed at Dry-down
periods, respectively. Similar to GCC, the PTDs derived from CamNIRv are also advanced than the
ones derived from CamRVI with large difference at Green-up period (>15 days).
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Figure 5. Barplots of the differences between phenological transition dates (PTDs) extracted from
different PhenoCam-based vegetation indexes: green chromatic coordinate (GCC), normalized
difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv),
ratio vegetation index (CamRVI). The error bars represent the standard error of the PTDs derived from
different experimental sites, and hydrological years. The statistically significant differences were tested
using Wilcoxon signed-rank tests (when PTDs were not normally distributed) and paired Student’s
t tests (when PTDs were normally distributed). p-values are as follows: *** p≤ 0.001, ** 0.001 < p ≤ 0.01,
* 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of each PTD in the Table 2.
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3.3. Comparison of Phneological Transition Dates (PTDs) Derived from VIs and GPP

The comparison of PTDs derived from different VIs and GPP is shown in Figures 6 and 7.
The PTDs derived from VIs for the Green-up period (UD, SOStrs, and POS1), with the exception of
CamNIRv, are systematically delayed from the ones derived from GPP (Figure 6). By contrast, the
PTDs extracted from the VIs have a good agreement with the PTDs extracted from the GPP in the
Dry-down period (POS2, EOStrs, RD). The difference between PTDs extracted from VIs and GPP
ranges within 10 days in the Dry-down period. By contrast, their difference ranges from 8–25 days for
the Green-up period, with the only exception of CamNIRv and GPP, which show a smaller difference
(Figure 7 panel UD and EOStrs).

Specifically, the PTDs derived from CamNIRv at the Green-up period and the ones derived from
CamNDVI at the Dry-down period have no significant difference compared to the ones derived from
GPP, respectively (Table 4). The PTDs extracted from CamNIRv and GCC have smaller differences
(9.4 and 7.0 days, respectively) with the ones derived from GPP in the Green-up period, while they
have larger difference with the PTDs derived from GPP compared to CamNDVI (difference of 4.6 days)
and CamRVI (difference of 5.0 days) in the Dry-down period (Tables 4 and A2).

The results show that POS1 derived from VIs have a large difference with the POS1 derived
from GPP especially for CamNDVI and CamRVI (>20 days). All the POS2 derived from VIs have no
statistically significant difference with the ones extracted from GPP, with the difference between VIs
and GPP ranging within 5 days (Figure 7).
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Figure 6. Comparison of phenological transition dates (PTDs) extracted from vegetation indexes
(VIs): PhenoCam-based green chromatic coordinate (GCC), normalized difference vegetation index
(CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio vegetation index (CamRVI),
and gross primary productivity (GPP). Please see the definition of each PTD in the Table 2.
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Figure 7. Barplots of the differences between phenological transition dates (PTDs) extracted from
different PhenoCam-based vegetation indexes (green chromatic coordinate (GCC), normalized
difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv),
ratio vegetation index (CamRVI)) and gross primary productivity (GPP). The error bars represent the
standard error of the PTDs derived from different experimental sites, and hydrological years. The
statistically significant differences were tested using Wilcoxon signed-rank tests (when PTDs were not
normally distributed) and paired Student’s t tests (when PTDs were normally distributed). p-values are
as follows: *** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of
each PTD in the Table 2.

Table 4. Comparison between phenological transition dates (PTDs) derived from PhenoCam-based
green chromatic coordinate (GCC), normalized difference vegetation index (CamNDVI), near-infrared
reflectance of vegetation index (CamNIRv), ratio vegetation index (CamRVI), and PTDs derived from
GPP in four Mediterranean experimental sites 1.

Season Summary

GCC CamNDVI CamNIRv CamRVI

Stats Green-Up Dry-Down Green-Up Dry-Down Green-Up Dry-Down Green-Up Dry-Down

N 24 30 24 30 24 30 24 30
MAE (day) 9.4 6.3 17.4 4.6 7.0 7.4 20.5 5.0
RMSE (day) 12.8 8.6 20.4 5.5 11.0 8.9 22.7 6.3

p-value *** *** *** ns ns *** *** *
1 Statistics are computed using the phenological transition dates (PTDs, defined in Table 2) of the Green-up period
(UD, SOStrs, and POS1) and the Dry-down period (EOStrs, RD, and POS2). N, number of observations; MAE, mean
absolute error; RMSE, root mean squared error. p-values are as follows: *** p ≤ 0.001, * 0.01 < p ≤ 0.05, ns for
p > 0.05.

3.4. Comparison of Growing Season Length (GSL)-Derived VIs and GPP

The growing season length (GSL: defined as the difference between PTDs of RD and UD) derived
from GPP shows no statistically significant difference with GSL calculated from CamNIRv (Figure 8).
By contrast, GSLs derived from GCC, CamNDVI, and CamRVI is statistically significantly different
from GSL derived from GPP with mean absolute error (MAE) of 12.2, 10, and 15.5 days, respectively
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(Figure A4). We also compare the GSLs derived from GPP and VIs with the GSL defined as the
difference between EOStrs and SOStrs, which is widely used in the remote sensing field. The results
(Figure A5) also agree with the above results.
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Figure 8. Growing season length (GSLRD-UD) derived from gross primary productivity (GPP),
PhenoCam-based green chromatic coordinate (GCC), normalized difference vegetation index
(CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), and ratio vegetation index
(CamRVI) for four Mediterranean tree–grass ecosystems (FLUXNET IDs are ES-LM1, ES-LM2, ES-LMa,
and ES-Abr, respectively). The gold squares stand for mean GSL in all site-years, while the black points
stand for the GSL derived from ES-Abr. Data from ES-LM1, ES-LM2, and ES-LMa falling outside the
10%–90% percentile range are plotted as cross. The statistically significant differences were tested
between GPP and vegetation indexes—GCC, CamNDVI, CamNIRv, and CamRVI. p-values are as
follows: * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of GSLRD-UD in the Table 2.

In general, the GSL calculated from GPP is larger than the ones derived from the VIs
(Figures 8 and A4). Most of GSLs range from 240 to 270 days, with the exception of GSL derived
from ES-Abr sites, which is the driest site among the four studied (Figure A4). GSLs derived from
different VIs have good correlation between each other (r >0.8; Figure A4). Specifically, GSL derived
from GCC has the least difference (MAE: 4.8 days) between the ones derived from CamNDVI. GSL
derived from CamNDVI and CamRVI has a difference of 5.8 days. Contrastively, GSL derived from
GCC, CamNDVI and CamRVI has a relatively high difference (>8 days) between the GSL derived from
the CamNIRv (Figure A4).

4. Discussion

4.1. Characterizing Variatoin and Drivers of Structural and Physiological Phenology

Here, we discuss and characterize the phenology of a seasonally dry Mediterranean tree–grass
ecosystems using high temporal resolution of VIs (i.e., daily) derived from PhenoCam and GPP from
EC towers. We found large seasonal variations in both PhenoCam-based VIs (structure) and GPP
(physiology). In general, seasonal variations in PhenoCam VIs were in phase with those of GPP
(Figure 3 and Table 3). We argue that seasonal variations in VIs and GPP are driven by the herbaceous
layer, which dominates the ecosystem dynamics in our study sites [59]. Our sites are characterized by
relatively sparse evergreen broadleaf trees (~20%) and a larger fraction of annual grasses [59]. Foliage
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amount in evergreen tree species remain relatively constant throughout the year, and they can utilize
their vast root system to access the water deep within the soil [64–66]. By contrast, grasses are highly
responsive to rainfall variations in rainy seasons as they tend to use water and nutrients in topsoil with
dense shallow roots [11,67]. The yellowing grasses in senescence lose their vigor during the dry and
hot summer. Being that the VIs derived from the tree are relatively constant during the year, grasses
contribute a large proportion of VIs (Figure A6) and GPP in rainy seasons, but trees contribute more
during dry periods [49].

Meteorology plays an important role in governing seasonal variation of VI and GPP
(Figures A2 and A3), though the role and importance of water availability and temperature varies
across seasons (phenological stages). In autumn, after the dry season, the onset of greenness and GPP
is initiated by the onset of the rainy season (Figure 3). In winter, water is not a limiting factor, due
to the typical ample precipitation in late autumn and early winter. On the other hand, we observed
that winter temperature is an important limiting factor of plant photosynthetic activity [68] (Figure 4).
In spring, with the increase in incoming radiation and day length, temperature, and associated
increase in atmospheric evaporative demand (i.e., VPD), we found precipitation strongly correlated
with both GCC and GPP (Figure 4); this is consistent with previous findings over Mediterranean
ecosystems [69–71]. In summer, which is the dry season, precipitation triggers an abrupt increase of
VIs and GPP, as observed after the heavy rain that occurred in the June-2016 and July-2017 (Figure 3).
The large rain pulses caused a decrease in temperature and an increase in water availability, further
contributing to the regrowth of plants, in particular, at the early stage of the dry season (Figure 3).
On the annual scale, growing season lengths (GSLs) derived from ES-Abr tower are significantly
shorter than the GSL derived from the other sites in Majadas de Tiétar (i.e., ES-LM1, ES-LM2, and
ES-LMa; Figure 8), which might be attributed to a lower water availability at the ES-Abr tower more
than the other sites. In fact, ES-Abr is characterized by about 200 mm of rain less than the sites located
in Majadas de Tiétar.

In this study, we also observed the important influence of both structural (VIs) and physiological
phenology (i.e., GPP) exerted by extreme climate events. There was an extremely warm winter followed
by wetter than average spring in Hydro-2015 [72], which led to a significant impact on both VIs and
GPP over our study sites (Figure 3 and Table A1). The growth and productivity, in particular of the
herbaceous layer, was stimulated by high temperature and concomitant water availability in the winter
of Hydro-2015, while lower temperature and higher precipitation (~2 times more than Hydro-2014 and
Hydro-2016) slow down the growth of plants in the spring (Figure 4 and Table A1). This reduced the
difference of VIs and GPP between winter and spring, and further caused the observed disappearance
of the typical “two-humped” shape of Mediterranean ecosystems (Figure 3). Moreover, the warm
spell in winter contributed to an extremely high GPP and greenness (Red dots in Figure 4) that
substantially contributed to the annual total GPP [72]. These results point towards the important,
and often neglected, contribution of winter periods to interannual variability of GPP and phenology
in the Mediterranean ecosystems. In this study, we did not focus on the effects of the fertilization
on PTDs, productivity, and growth; rather, we focused on the development of the framework to
characterize phenology in seasonally dry Mediterranean ecosystems using PhenoCams. Therefore,
further analysis will focus on better understanding the sensitivity of structural and physiological
phenology to nutrient availability, meteorological drivers and rain pulses by means of model–data
integration (e.g., [7,20,73,74]).
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4.2. Utilizing Different PhenoCam-Based VIs to Represent Structural Phenology

We found distinct differences in the PTDs extracted from GCC and CamNDVI, two widely used
indexes from PhenoCam (Figure 5). Overall, the PTDs derived from the GCC anticipate the ones
derived from the CamNDVI, which is in line with previous studies [28,29,34,75]. In the Green-up
period (UD, SOStrs, and POS1), changes in CamNDVI are more gradual than the changes in GCC
(Figure 5) [29], which is likely due to the fact that GCC is more sensitive to color changes of leaves
under low value of leaf area index (LAI; LAI < 2 [28]). Wingate et al. [28] found that the initial increase
of GCC during the early growing season is caused by the rapid changes in leaf area and leaf chlorophyll
content (Chl). With the increase of foliar biomass associated with shoot elongation and the formation
of new leaves [28,76] after the early growing season, CamNDVI, which is more sensitive to the changes
of canopy structure, increases continuously while GCC has no substantial changes [34]. Previous
studies also found that GCC becomes saturated when nitrogen content or Chl only reaches half of
the maximum value at Green-up periods [35,75]. By contrast, NDVI continues to increase with the
maturation of leaves [77] and the increase of LAI in the canopy [35,75]. This likely explains why there
is a big difference in the timing of the first peak (POS1) of greenness between GCC and CamNDVI
(Figure 5).

Similar to the Green-up period, during the Dry-down period, GCC is more sensitive to color
changes in leaves from green to yellow, while CamNDVI is a better proxy for variation of LAI and
biomass [28,29,34]. During the Dry-down, the total green LAI of grasses start decreasing, but there is a
large amount of dry and senescent biomass presented in the top canopy [78]. As such, we observed an
earlier decline of GCC than CamNDVI during the Dry-down period [34] (Figure 5). The complementary
information provided by GCC and CamNDVI point towards the need of using both indices to monitor
structural changes of the canopy [29,34], as well as the need for investigating different VIs that can be
computed from PhenoCam.

To our knowledge, this study is the first attempt to compute the CamNIRv and CamRVI, and to
compare them with the more widely used GCC or CamNDVI [34,41]. There is a systematic difference
in PTDs extracted from CamNIRv as compared to those derived from other VIs, particularly for PTDs
from the Green-up period. The PTDs derived from CamRVI tend to be later than those from CamNDVI
and other VIs. This result is in agreement with Viña et al. [79], which also showed that satellite-based
NDVI increases faster than RVI with the increase of LAI in maize and soybean fields.

Our results confirmed that PhenoCam-based VIs provide complementary information that
can be used to monitor phenology of structure (biomass, greenness). The systematic differences
observed between VIs are consistent with results reported in the literature [34,75] and obtained with
spectroradiometers [29,34] or satellites [80]. Future studies are needed to analyze the systematic
differences between PhenoCam-based VIs (e.g., the comparison between NIRv and other VIs).
For instance, studies that combine physiological measurements and plant traits collected in the
field with PhenoCam data [75,77], in parallel with the use of radiative transfer models (e.g.,
Wingate et al., [28]) can provide valuable information to better understand the difference between VIs
and different aspects of vegetation phenology.

4.3. Combing Different PhenoCam-Based VIs to Represent Physiological Phenology

The relationship of VIs derived from PhenoCam imagery with ecosystem-scale carbon fluxes in
semi-arid systems is recently receiving more attention. However, to our knowledge, previous studies
focused mainly on the relationship between GPP and GCC, and here, we move forward to include
other potential VIs that can be derived from PhenoCams. We observed varying performance among
PhenoCam-based VIs in tracking physiological phenology as measured by GPP. During Green-up
period, the PTDs derived from CamNIRv agreed the best with the PTDs derived from GPP (Figure 6
and Table 4). Apart from CamNIRv, the UD and SOStrs derived from the GCC, CamNDVI, and
CamRVI are statistically delayed more than the ones derived from the GPP (Figure 7). Our results
about the differences between GPP and GCC are contrasting to previous studies [20,32,75], which
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mostly focused on temperate deciduous forests, evergreen needleleaf forests or grasslands, while
the relationship between GCC and GPP is comparable to a study focused on a grassland understory
of a “open forest savanna” in Australia [30]. One possible explanation for the discrepancy between
previous studies [20,32,75] and this study, can be related to the patterns of re-greening of the vegetation
in autumn after the onset of the rainy season. At the beginning of the Green-up period, the canopy of
the grass is characterized by a relevant amount of dry biomass (~38% senescent grasses as measured
between October to November 2014–2015). Therefore, the new emerging grasses contribute to the
photosynthetic activities, but not so much to the measureable greenness. For this reason, the GPP
increases systematically earlier than GCC. However, there is evidence in the literature that this
systematic delay is dependent on the greening patterns and mechanisms of vegetation phenology,
therefore, it is vegetation type-dependent [20,32,75].

During the Dry-down period, the PTDs derived from CamNDVI are closer to the ones derived
from GPP. The PTDs of EOStrs, and RD derived from GCC and CamNIRv are more advanced than
the ones derived from GPP. Dry biomass starts to accumulate in the senescent period at the top of
the grass canopy with still a certain amount of living biomass at the bottom. As mentioned above,
GCC is sensitive to the changes of color [28,29,34,75], hence, PTDs derived from GCC are anticipated
to advance more than the PTDs derived from GPP at Dry-down period. However, more investigations
are needed to explain why CamNIRv is also more advanced than GPP at the Dry-Down period.
By contrast, PTDs derived from CamNDVI and CamRVI have no statistically significant differences
compared to the ones from GPP, which implies the potential to use CamNDVI or CamRVI to represent
GPP in the Dry-down period.

For the timing of max structural and physiological phenology, we did not observe the systematic
differences between PhenoCam-based VIs and GPP for the POS1 (Figure 7). However, the POS1 in
our study is not comparable to the timing of the maximum value in other studies, as the POS1 in our
study is in the winter time, while others are in the late spring or summer [32,75]. By contrast, the POS2
extracted from GPP is delayed compared to the POS2 extracted from VIs during the spring period
(Figure 7), which agrees with previous studies [32,75].

As a key factor controlling net uptake of carbon dioxide [81,82], accurate estimates of GSL has
rendered substantial interest, since it has distinct impacts on ecosystem function [83]. In this study,
we also study the GSL as extracted from GPP and PhenoCam-based VIs. GSL derived from CamNIRv
is most representative of the GSL derived from GPP (Figures 8, A4 and A5). NIRv is claimed to explain
a large fraction of the variance of GPP, and has better representation than NDVI on monthly to annual
time scales [41]. However, from our study, the CamNDVI better tracks the PTDs of GPP more than
CamNIRv on the Drying-down period (Figure 7), which makes the GSL derived from the CamNDVI
also close to GSL derived from GPP, though with a larger error compared to CamNIRv. Yang et al. [35]
reported high correlation between physiological properties (e.g., leaf nitrogen content, leaf chlorophyll
content) and CamNDVI, which implies CamNDVI could potentially track the GPP well.

In summary, NIR-enabled PhenoCam-based VIs (e.g., CamNDVI and CamNIRv) can improve the
performance of PhenoCam to represent physiological phenology (i.e., variability of PTDs and GSL as
derived from GPP). Compared to conventional PhenoCam (only with blue, green, and red channels),
NIR-enabled PhenoCam-based VIs take advantage of the fact that green vegetation reflects more NIR
than visible light, which makes them more relevant to monitor variation in biomass and seasonal
variability in photosynthetic capacity [84]. More studies investigating other PhenoCam vegetation
indices are needed, for instance NIRv and 2-band enhanced vegetation index (EVI2; EVI computed
without blue band) could be complementary indexes to be applied to track GPP in future, as both
indexes are reported to have a good relationship with GPP [41,85,86] and could be computed with two
bands (Red and NIR).Our results confirmed that it is promising to utilize the NIR-enabled PhenoCam
as a complementary and cost-effective way to characterize GPP, biomass, and phenology. In this study,
we mainly focused on seasonal variability (PTDs and GSL) but at shorter time scales; it is still unclear
how the different PhenoCam-based VIs presented in this study fully present the variability of GPP.
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For instance, some VIs could not accurately reflect the variation of GPP during short-term changes
of weather conditions, like sudden warm spells or droughts, as pointed out in other studies [32,87].
Hence, we strongly suggest using multiple VIs to better characterize the GPP together with additional
ancillary measurements, such as meteorology and leaf traits.

5. Conclusions

In this study, we assessed the potential to jointly use near-infrared-enabled digital repeat
photography and eddy covariance data for monitoring structural and physiological phenology
in seasonally dry Mediterranean tree–grass ecosystems. We analyzed 9 site-years using four
PhenoCam-based vegetation indices (GCC, CamNDVI, CamNIRv, and CamRVI) and GPP, and we
compared the phenological transition dates (PTDs) and growing season length (GSL) derived from the
different data streams.

We show that, in Mediterranean tree–grass ecosystem, meteorology plays an important role in
governing seasonal variation of vegetation indices and GPP, though the importance of water availability
and temperature vary across seasons.

We show the PTDs derived from VIs differ from each other. For the widely used GCC and
CamNDVI, the PTDs extracted from CamNDVI are delayed compared to the ones derived from the
GCC, which is likely attributed to GCC, and is more sensitive to color changes, while CamNDVI is
more sensitive to LAI and biomass.

CamNIRv is best at representing the PTDs of GPP at the Green-up period, while CamNDVI is the
best proxy to represent the PTDs of GPP at the Dry-down period. CamNIRv performs best regarding
the representation of the GSL of GPP.

In summary, we show that it is possible to determine crucial PTDs of structural and physiological
phenology through using near-infrared-enabled digital cameras. GPP could be well represented when
combining the use of different VIs for this purpose.
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Appendix A

Table A1. Mean air temperature (Ta_mean), sum of precipitation (Prec), and mean gross primary productivity (GPP) of different seasons at Majadas de Tiétar from
hydrological year 2014 to 2016 (Hydro-2014 to Hydro-2016) 1.

Autumn Winter Spring Summer

(September–November) (December–February) (March–May) (June–July)

Ta Prec GPP Ta Prec GPP Ta Prec GPP Ta Prec GPP

(◦C) (mm) (µmol m−2 s−1) (◦C) (mm) (µmol m−2 s−1) (◦C) (mm) (µmol m−2 s−1) (◦C) (mm) (µmol m−2 s−1)

Hydro-2014 17.5 333.4 4.7 6.4 105.6 4.3 16.3 94.9 9.4 27.5 67.7 4.2

Hydro-2015 16.8 296.0 3.6 9.4 181.6 5.7 13.5 281.7 11.7 26.4 14.1 7.0

Hydro-2016 17.2 272.7 3.6 8.0 205.9 5.2 16.4 94.0 8.9 27.3 46.4 4.2
1 Mean GPP is the average of day time (6:00–18:00) of GPP from Control tower (ES-LMa), Nitrogen tower (ES-LM1), Nitrogen and Phosphorous tower (ES-LM2) at Majadas de Tiétar.

Table A2. Comparison between phenological transition dates (PTDs) derived from PhenoCam-based green chromatic coordinate (GCC), normalized difference
vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio vegetation index (CamRVI) and PTDs derived from GPP in four
Mediterranean experimental sites 1.

Green-Up Period Dry-Down Period

GCC CamNDVI CamNIRv CamRVI GCC CamNDVI CamNIRv CamRVI

Stats UD SOStrs UD SOStrs UD SOStrs UD SOStrs EOStrs RD EOStrs RD EOStrs RD EOStrs RD

N 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10
MAE (day) 8.0 13.1 14 17.5 4.8 2.8 16 20.2 7.0 7.1 4.9 5.5 8.7 8.8 6.9 4.4
RMSE (day) 10.6 10.4 14.5 19 6.3 3.3 16.6 21.6 9.6 10.0 6.0 6.3 10.2 9.9 8.0 5.5

r 0.61 0.64 0.94 0.77 0.91 0.98 0.91 0.75 0.90 0.91 0.94 0.94 0.91 0.95 0.92 0.95
p-value * * *** * ns ns *** ** * * ns ns * * ns ns
1 Statistics are computed using the PTDs at the Green-up period (including PTD UD, SOStrs, and POS1) and the Dry-down period (including PTD EOStrs, RD, and POS2). Here only show
the statistics for UD, SOStrs, EOStrs, and RD which are most important in Green-up and Dry-down period. Please refer to each PTD in Table 2. N, number of observations; MAE, mean
absolute error; RMSE, root mean squared error. p-values are as follows: *** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05.
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near-infrared reflectance of vegetation index (NIRv). The black points are original half-hourly NIRv data, while red points stand for the filtered daily NIRv data
retrieved by using max or max.density method.
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Spain. The data in hydrological years of 2014, 2015 and 2016 are colored with green, red and blue 
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determination coefficient of linear regression. 

Figure A2. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation
(Prec) and green chromatic coordinate (GCC) during day time of (a) autumn, (b) winter, (c) spring,
and (d) summer in hydrological year 2014 to 2016 in four Mediterranean tree–grass ecosystem in
Spain. The data in hydrological years of 2014, 2015 and 2016 are colored with green, red and blue
color, respectively. The regression line and the formula are shown if the linear regression is statistically
significant (p-value: p < 0.05). The gray area represents 95% confidence interval. R2: determination
coefficient of linear regression.
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Figure A3. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation
(Prec) and gross primary productivity (GPP) during day time of (a) autumn, (b) winter, (c) spring,
and (d) summer in hydrological year 2014 to 2016. The data in hydrological years of 2014, 2015 and
2016 are colored with green, red and blue color, respectively. The regression line and the formula are
shown if the linear regression is statistically significant (p-value: p < 0.05). The gray area represents
95% confidence interval. R2: determination coefficient of linear regression.
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difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), 
and ratio vegetation index (CamRVI). Upper right boxes display the scatterplots and 1:1 line. Lower 
left boxes show the mean absolute error (MAE (days); bold in the center), the Pearson’s correlation 
coefficient (r; gray colored in the top), and slope of linear regression (slope: gray colored in the bottom) 
between respective variables. p-values are for correlation test for respective variables and as follows: 
*** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05. Please see the definition of GSLRD-UD in the Table 2. 

Figure A4. Matrix plots of growing season length (GSLRD-UD) calculated from different data source:
gross primary productivity (GPP), PhenoCam-based green chromatic coordinate (GCC), normalized
difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv),
and ratio vegetation index (CamRVI). Upper right boxes display the scatterplots and 1:1 line. Lower
left boxes show the mean absolute error (MAE (days); bold in the center), the Pearson’s correlation
coefficient (r; gray colored in the top), and slope of linear regression (slope: gray colored in the bottom)
between respective variables. p-values are for correlation test for respective variables and as follows:
*** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05. Please see the definition of GSLRD-UD in the Table 2.
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Figure A5. Growing season length (GSLEOS-EOS) derived from gross primary productivity (GPP), 
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(CamRVI) for four Mediterranean tree–grass ecosystems (FLUXNET IDs are ES-LM1, ES-LM2, ES-
LMa, and ES-Abr, respectively). The gold squares stand for mean GSL in all site-years, while the black 
points stand for the GSL derived from ES-Abr. The statistically significant differences were tested 
between GPP and vegetation indexes—GCC, CamNDVI, CamNIRv and CamRVI. p-values are as 
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Figure A5. Growing season length (GSLEOS-EOS) derived from gross primary productivity (GPP), PhenoCam-based green chromatic coordinate (GCC), normalized
difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), and ratio vegetation index (CamRVI) for four Mediterranean
tree–grass ecosystems (FLUXNET IDs are ES-LM1, ES-LM2, ES-LMa, and ES-Abr, respectively). The gold squares stand for mean GSL in all site-years, while the black
points stand for the GSL derived from ES-Abr. The statistically significant differences were tested between GPP and vegetation indexes—GCC, CamNDVI, CamNIRv
and CamRVI. p-values are as follows: ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of GSLEOS-SOS in the Table 2.
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Figure A6. Time series of green chromatic coordinate (GCC) computed for Grass, Tree and Ecosystem
region of interest (ROI) in four experimental sites (FLUXNET IDs are ES-LM1, ES-LM2, ES-LMa, and
ES-Abr, respectively) during year of 2014 to 2017. The increase of GCC for Tree ROI during spring is
concomitant with the leaf flushing.

Appendix B. The Procedures and Code for Extracting Phenological Transition Dates (PTDs)

The procedures to extract PTDs from time series of vegetation indexes (VIs) or gross primary
productivity (GPP) are as follows (also referring to Figure A7:

• Try to find interminD. The linking point of two peaks (interminD) is the minimum between the
two peaks between the Julian day of the year (Doy) 150–250.

• Once we found the interminD, the time series is split into two parts and for each part the main
PTDs are computed. The date of POS is calculated by determining the date at which the maximum
value of the time series (using f(t) to refer to the time series hereafter) is reached. Baseline and
maxline are the minimum and maximum value in each part of f(t), respectively.

• The maximum and minimum of the first derivative of the f(t) (f’(t)) represent the maximum slopes
of the upward and downward period (dashed lines). The intersections between these lines and
the baseline are defined as upward day (UD) and recession day (RD). UD stands for the value
when the f(t) begins to increase during the Green-up period. RD stands for the value when the f(t)
stops decreasing during the Dry-down period. The intersections between these lines and maxline
are the saturating day (SD) and downward day (DD). The SD indicates when the plants begin
to reach full greenness or maximum photosynthesis, while DD stands for the date when plants
begin to senesce [61].
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• SOStrs and EOStrs are retrieved by computing the date when the value reaches 50% of the
maximum in the upward and downward period, respectively [62].

The Code for extracting PTDs is shared in the attached file (PTD_extraction.R). You can also use
the example in the attached example folder for a test to extract PTDs.
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B (The number in the left of each panel corresponds to the order of procedures in the Appendix B). 
The black circles represent the original vegetation indexes value (CamGCC, CamNDVI, CamNIRv, 
CamRVI, or GPP). Results of the smoothing procedure are shown by red circles. The PTDs extracted 
in each step are highlighted with orange color, while the threshold values are indicated by the blue 
dotted line. The PTDs colored with dark green are the PTDs we study in this article. Their names are 
corresponding to UD, SOStrs, POS1, POS2, EOStrs, and RD in the Table 2, respectively. 
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Figure A7. Procedures to extract phenological transition dates metrics (PTDs) from different vegetation
indexes (VIs) or daily maximum gross primary productivity (GPP). The procedures for extracting
PTDs from seasonal VIs or GPP trajectory f(t) are described in detail in the text of Appendix B
(The number in the left of each panel corresponds to the order of procedures in the Appendix B).
The black circles represent the original vegetation indexes value (CamGCC, CamNDVI, CamNIRv,
CamRVI, or GPP). Results of the smoothing procedure are shown by red circles. The PTDs extracted
in each step are highlighted with orange color, while the threshold values are indicated by the blue
dotted line. The PTDs colored with dark green are the PTDs we study in this article. Their names are
corresponding to UD, SOStrs, POS1, POS2, EOStrs, and RD in the Table 2, respectively.
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