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Abstract
Most soil bacterial taxa are thought to be dormant, or inactive, yet the extent to which they synthetize new rRNA is poorly
understood. We analyzed 18O composition of RNA extracted from soil incubated with H2

18O and used quantitative stable
isotope probing to characterize rRNA synthesis among microbial taxa. RNA was not fully labeled with 18O, peaking at a
mean of 23.6 ± 6.8 atom percent excess (APE) 18O after eight days of incubation, suggesting some ribonucleotides in soil
were more than eight days old. Microbial taxa varied in the degree they incorporated 18O into their rRNA over time and there
was no correlation between the APE 18O of bacterial rRNA and their rRNA to DNA ratios, suggesting that the ratios were
not appropriate to measure ribonucleotide synthesis. Our study indicates that, on average, 94% of soil taxa produced new
rRNA and therefore were metabolically active.

Introduction

Most bacteria in soil are thought to be dormant [1, 2], while
only small active fractions control ecosystem processes [3].
Active bacterial cells have higher metabolic rates than
dormant cells, leading to higher protein and rRNA synth-
esis. In contrast, dormant bacteria have very-low metabolic

activity [4]. RNA concentrations likely decrease as most
metabolic processes, including RNA synthesis, are halted,
while DNA concentrations may remain stable because
dormant cells are alive.

The relative abundances of ribosomal RNA (rRNA) and
DNA extracted from environmental samples are commonly
used as indicators of microbial metabolic activity [5].
However, rRNA to DNA ratios among taxa in communities
substantially vary, often unrelated to metabolic activity,
suggesting RNA alone may not be reliable indicator of
active populations [6].

Stable isotope probing (SIP) can assess microbial activity
independent of rRNA to DNA ratios. SIP with 18O-labeled
water is powerful for assessing growth and activity of
microbial communities because water is a universal sub-
strate for nucleic acid synthesis [7]. In this study, we
incubated 2 grams of soil with 400 µl of sterile 95 atom %
H2

18O or with 400 µl of sterile, natural abundance H2
18O,

for 1, 4, and 8 days (N= 18), and extracted total RNA
following each incubation. Newly synthetized 18O-
containing RNA has higher buoyant density than old
RNA, and can be separated through isopycnic ultra-
centrifugation on a CsTFA density gradient. We fractio-
nated the ultracentrifuged RNA, purified the fractions and
sequenced a fragment of the 16S rRNA gene from com-
plementary DNA (cDNA) as described in Supplement S1.
Sequencing data were analyzed using a QIIME 1.7 based [8]
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chained workflow: https://github.com/alk224/akutils-v1.2 [9].
To assess rRNA synthesis of individual taxa, we measured
the incorporation of 18O into rRNA by calculating taxon-
specific shift in rRNA density and by converting it to atom
percent excess (APE) 18O using a freely available R code
(https://bitbucket.org/QuantitativeSIP/qsip_repo). APE 18O
indicated the excess of 18O in microbial rRNA relative to
natural abundance of the isotope, and was used to estimate
rRNA synthesis rate, a measure of microbial activity. We
assessed temporal patterns and variation in rRNA synthesis
rates among soil microbial populations using qSIP, and
compared our results to RNA to DNA ratios.

All taxa contained 18O-labeled rRNA after four days of
incubation with H2

18O. Densities of rRNA in non-labeled
incubations varied slightly around the mean (1.7808 ±
0.0011 g/ml), whereas densities of labeled rRNA sig-
nificantly differed on each day (Fig. 1), which likely reflects
taxonomic variation in the rate of metabolic activity [10] or
differential reliance among taxa on de novo ribonucleotide
synthesis [11] vs. ribonucleotide salvaging. If ribonucleo-
tides are synthesized de novo, 18O will be assimilated
throughout the ribonucleotide in addition to its assimilation
into phosphodiester bonds [12], which will increase the 18O
composition of rRNA more than recycling alone.

Entirely dormant soil taxa were absent in our study,
which challenges the widely accepted idea that dormancy is

widespread among microbial taxa in the environment [13, 14].
We would observe many populations with non-labeled
rRNA (i.e., containing 18O only at the natural abundance
level) if dormancy were common under the incubation
conditions. However, the average, positive 18O labeling we
observed for all populations detected does not rule out
individual cells within these populations that are dormant—
non-labeled with 18O and exhibiting no rRNA synthesis.
Positive APE 18O could also result from potential interac-
tions between RNA molecules during ultracentrifugation
[15], which possibly influenced our results and deserve
additional research. Our observation of a weak correlation
between the rRNA to DNA ratio and the APE 18O of rRNA
across taxa (Spearman’s rank-order correlation, ρ(574)=
−0.082, p= 0.051, Fig. 2) suggests that the ratio may be a
poor proxy for metabolic activity, despite its positive cor-
relation with microbial growth rate in some pure culture
studies [16]. We expected that taxa with high rRNA to
DNA ratios would have highly labeled rRNA, but this was
not observed.

We observed a significant temporal increase in 18O
content for total RNA (F2,4= 15.404, p= 0.013, Figure S1
and S2) and for RNA of phyla (Figure S3). RNA is thought
to turn over rapidly [17], with estimates ranging from 20%
per day [18] to 25% per hour [19]. In our experiment, we
modeled rRNA turnover varied between 9 and 18% per day,
which was slower than previously reported. The labeled
RNA had ~23% of its oxygen atoms replaced with 18O,
indicating that either some of the rRNA that was formed
prior to H2

18O addition remained intact, and that the rRNA
was newly synthesized but partly made with ribonucleotides
that were more than 8 days old, or that newly synthesized
ribonucleotides obtain part of their oxygen from organic
substrates. Assuming that 50% of oxygen atoms come from
H2

18O and 50% come from organic substrates [20], the
isotopic composition of rRNA would be 50% at the fast
modeled turnover rate and would have increased only

Fig. 1 Densities of rRNA extracted from soil incubated with 95 atom
% H2

18O (♦) or natural abundance H2
18O ( ) on three time points.

a rRNA densities of taxa detected on day 1, b, c rRNA densities of
taxa detected on day 4 and 8, respectively. Taxa are ranked by the
same alphabetical order in each panel. Symbols represent means ±
standard deviations

Fig. 2 Relationship between rRNA to DNA ratios and APE 18O of
rRNA among soil taxa on three time points: open symbols—day 1,
black symbols—day 4, and gray symbols—day 8
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minimally over time. The observed increase in 18O com-
position of RNA over time suggested that increasingly more
ribonucleotides were synthesized and that the turnover rate
of ribonucleotides in soil is ~23% per week.

Our knowledge of ribosome biosynthesis and degrada-
tion derives mostly from pure culture experiments, but,
based on the soil we assessed, bacterial rRNA dynamics in
soil may differ from those observed in pure cultures. Spe-
cifically, synthesis of new rRNA was slower than expected
and unrelated to rRNA to DNA ratios in a soil microbial
community, which is thought to have many dormant
members. Yet, we found that all detected taxa synthesized
new RNA during the 8-day incubation. Further research,
conducted over longer incubations, will help determining
maximum rRNA labeling and time required to reach it. Our
work illustrates how RNA-qSIP can quantify taxon-specific
activity relating to synthesis of new nucleic acids, opening
doors to broader tests about microbial dormancy and
metabolic activity across a range of soils and environments.

Accession numbers

All sequences have been deposited in NCBI SRA (accession
numbers SAMN07960499 to SAMN07960874, SAMN079
65143 to SAMN07965605, and SAMN07968111 to SAMN07
968486). Data can directly be accessed at https://www.ncbi.
nlm.nih.gov/Traces/study/?acc=SRP123236.
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