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Ecosystem warming extends vegetation activity but 
heightens vulnerability to cold temperatures
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Shifts in vegetation phenology are a key example of the biological 
effects of climate change1–3. However, there is substantial uncertainty 
about whether these temperature-driven trends will continue, or 
whether other factors—for example, photoperiod—will become 
more important as warming exceeds the bounds of historical 
variability4,5. Here we use phenological transition dates derived 
from digital repeat photography6 to show that experimental whole-
ecosystem warming treatments7 of up to +9 °C linearly correlate 
with a delayed autumn green-down and advanced spring green-up 
of the dominant woody species in a boreal Picea–Sphagnum bog. 
Results were confirmed by direct observation of both vegetative 
and reproductive phenology of these and other bog plant species, 
and by multiple years of observations. There was little evidence 
that the observed responses were constrained by photoperiod. 
Our results indicate a likely extension of the period of vegetation 
activity by 1–2 weeks under a ‘CO2 stabilization’ climate scenario 
(+2.6 ± 0.7 °C), and 3–6 weeks under a ‘high-CO2 emission’ scenario 
(+5.9 ± 1.1 °C), by the end of the twenty-first century. We also 
observed severe tissue mortality in the warmest enclosures after a 
severe spring frost event. Failure to cue to photoperiod resulted in 
precocious green-up and a premature loss of frost hardiness8, which 
suggests that vulnerability to spring frost damage will increase in a 
warmer world9,10. Vegetation strategies that have evolved to balance 
tradeoffs associated with phenological temperature tracking may 
be optimal under historical climates, but these strategies may not 
be optimized for future climate regimes. These in situ experimental 
results are of particular importance because boreal forests have 
both a circumpolar distribution and a key role in the global carbon 
cycle11.

In temperate and boreal regions, rising temperatures are advanc-
ing spring onset (for example, budburst and flowering) and delaying 
autumn senescence (for example, leaf coloration and leaf fall)12,13. 
Whether these trends will be maintained is an open question4.  
Warm and cold temperatures, photoperiod and insolation, and  
precipitation and water availability have all been shown to influence 
plant phenology2,5,14,15. However, the future response of phenology 
to rising temperatures still remains largely unknown because of the 
high degree of uncertainty associated with interactions among these  
drivers12. Importantly, it has previously been proposed that photoperiod  
may constrain the phenological response to rising air temperatures4,5,16. 
Although there is evidence for this in some species8,15, the generality of 
these results—and whether there are robust patterns across functional 
types—has yet to be demonstrated5.

Analyses of observational datasets to disentangle the effects of these 
drivers are challenged by the lack of variability in natural systems, the 
inherent correlation among drivers and the realism of space-for-time 
assumptions12. Experimental approaches are thus required. However, 
there are sizable challenges associated with conducting realistic 
environmental manipulations, particularly for ecosystems with tall 

vegetation. Because of financial, logistical and technological hurdles, 
experimental warming treatments have not previously been applied to 
forest stands, and have only rarely been applied to single mature trees17. 
Although experiments with seedlings and branch cuttings are relatively 
common18,19, artefacts associated with these approaches may limit their 
broader applicability20,21.

We have been studying the effect of experimental whole-ecosystem  
warming treatments on vegetation phenology at the ‘Spruce and 
Peatland Responses Under Changing Environments’ (SPRUCE) facility, 
a long-term, multi-factor manipulative experiment situated in a boreal 
peatland forest in the Upper Midwest of the United States7. To our 
knowledge, this experiment is unique in that the five levels of warming 
(from 0 to +9 °C, see Methods, Extended Data Fig. 1, Supplementary 
Note 1, Extended Data Table 1) are being applied to intact communi-
ties of native plants, including woody shrubs and mature trees. The 
dominant plant species at SPRUCE represent key genera that are found 
across the vast boreal forest (taiga), which covers much of the land  
surface of the Northern Hemisphere from 45° to 70° N. Knowledge of 
the environmental controls on the phenology of these species is poor 
and does not at present provide a strong basis for making predictions 
about the capacity for phenological tracking of a warmer climate. 
Results from SPRUCE will therefore inform our understanding of the 
effects of climate change on processes related to biogeochemical cycling 
and biosphere–atmosphere feedbacks for this globally extensive biome.

Our focus here is on the effect of the experimental ecosystem warm-
ing treatments on spring and autumn phenology in this forested peat 
bog. Specifically, we tested three competing hypotheses: first, that 
temperature is the dominant control on phenological events (hereafter 
referred to as H1). This hypothesis predicts that the observed phenolog-
ical transition date is directly related to the degree of warming (Fig. 1 a).  
Second, that photoperiod is the dominant control on phenological 
events (hereafter referred to as H2). This hypothesis predicts that the 
observed phenological transition date is constant regardless of the 
degree of warming (Fig. 1 b). Third, that photoperiod constrains the 
phenological response to temperature (hereafter referred to as H3). 
This hypothesis predicts that the observed response to temperature is 
flat beyond a threshold temperature, t* (Fig. 1 c).

We tracked phenological responses to the experimental treatments in 
two ways. Since August 2015 we have monitored the vegetation within 
each enclosure using digital repeat photography6 (Fig. 1 d, e), and since 
April 2016 we have made weekly ground observations of vegetative and 
reproductive phenology on a variety of plant species.

For our analysis of camera imagery, we distinguished between 
three distinct vegetation types: an evergreen conifer, Picea mariana 
(black spruce); a deciduous conifer, Larix laricina (eastern tamarack 
or larch); and a mixed, ground-level shrub community dominated by 
Rhododendron groenlandicum (Labrador tea) and Chamaedaphne cal-
yculata (leatherleaf). For each vegetation type, green-down—as deter-
mined by GCC, a colour index derived from the digital images—in 
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autumn 2015 was delayed with increasing warming (Fig. 2a–c). The 
response to warming was significantly stronger (interaction effect 
between temperature and species, P < 0.001) for the mixed shrub com-
munity (about 5 days delay per 1 °C warming) than for either of the tree 
species (1–2 days delay per 1 °C warming), but was in all cases highly 
linear. Our results unequivocally support H1; that is, that temperature 
is the dominant control on the timing of autumn phenology. The fact 

that the temperature sensitivities were in all cases significantly different 
from zero allows us to reject H2. In no case did our breakpoint analysis 
(see Methods) identify a t* value that substantially improved model fit 
(Extended Data Table 2), allowing us to reject H3. The above results 
are for autumn 2015, and comparable results were observed in autumn 
2016 and 2017 (Supplementary Note 2).

Similarly, green-up in spring 2016 was advanced with increasing 
warming (Fig. 2d–f). The response to warming (1–2 days advancement 
per 1 °C warming) was not significantly different among vegetation 
types (interaction effect between temperature and species, P = 0.34). 
As in autumn, the fact that the temperature sensitivities were signif-
icantly different from zero allows us to reject H2. Breakpoint model 
analysis allowed us to reject H3, as in no case was a t* value identified 
that would improve model fit (Extended Data Table 2). In spring, as 
in autumn, H1 is best supported by the experimental results. Results 
in spring 2017 were generally consistent with those for spring 2016 
(Supplementary Note 2).

The above results clearly indicate a continued extension of the period 
of vegetation activity in response to future warming. By combining 
downscaled climate projections (Extended Data Fig. 2) from CMIP522 
with the phenological temperature sensitivities estimated from Fig. 2 
(Supplementary Note 3), we predict that the physiologically active sea-
son of the two conifer species may be extended by about a week under a 
‘CO2 stabilization’ climate scenario (representative concentration path-
way (RCP)4.5, +2.9 ± 0.7 °C), and up to three weeks under a ‘high CO2 
emission’ scenario (RCP8.5, +5.9 ± 1.1 °C) by the year 2100 (Extended 
Data Table 3). Active season extension for the shrub layer is projected to 
be roughly twice as large as that of the conifers. These results are judged 
to be entirely plausible, given that future warming is not projected to 
exceed the levels of experimental warming at SPRUCE and that we are 
thus not extrapolating into unsampled climate space.

Previous work has shown that the seasonality of GCC is a robust 
proxy for the seasonality of vegetation photosynthesis in both conifer 
forests and wetland ecosystems23,24, and thus earlier plant green-up 
and delayed green-down at SPRUCE are almost certainly associated 
with a longer photosynthetically active period, and probably associated 
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Fig. 1 | Testing competing hypotheses for phenological responses to 
warming using data from a whole-ecosystem warming experiment.  
a–c, Conceptual model of relationship between temperature and 
vegetation phenology, illustrating three competing hypotheses.  
a, Temperature is the dominant control (H1). b, Photoperiod is the 
dominant control (H2). c, Photoperiod limits the temperature response 
above the temperature threshold, t* (H3). d, e, Sample digital camera 
imagery showing the inside of plot 19 (unheated control enclosure) (d) 
and plot 17 (+9.0 °C warming treatment enclosure) (e) on 6 April 2016. At 
the time the photographs were taken, the air temperature was 5 °C in  
plot 19 (note the last snow of the season), compared to 14 °C in plot 17.
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Fig. 2 | Effect of whole-ecosystem warming treatments on dates of 
autumn green-down and spring-green up, as derived from digital 
camera imagery. a–f, Response of autumn green-down (a–c, 2015) 
and spring green-up (d–f, 2016) phenology to experimental warming 
treatments for L. laricina, P. mariana and a mixed shrub layer community 
dominated by R. groenlandicum and C. calyculata, based on observations 
across n = 10 experimental enclosures (n = 9 for Larix, as in one 

enclosure this species was not within the camera field of view). Green-
down and green-up are proxies for autumn senescence and spring 
onset, respectively. Error bars indicate 95% confidence interval around 
estimated phenological transition dates. Additional results are presented 
in Supplementary Note 2 and Extended Data Table 2. DOY, day of year; 
RMSE, root mean squared error.
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with enhanced annual photosynthetic uptake (though not necessarily 
increased vegetation growth). This result is consistent with the analysis 
of long-term data from FLUXNET sites (http://fluxnet.fluxdata.org/, 
Supplementary Note 4, Extended Data Fig. 3), as well as previous experi-
mental19 and observational25 studies. However, this does not necessarily  
indicate an increase in net carbon uptake or carbon sequestration under 
future warming, because the long-term carbon balance of this peatland 
forest ecosystem is probably dependent on the stability of the under-
lying peat deposits26.

Camera-based results are generally consistent with direct observa-
tion of spring (2016 and 2017) and autumn (2017 only) phenological 
transitions for plant species spanning a range of leaf habits and growth 
forms (Table 1; see also Supplementary Note 5, Extended Data Tables 4, 
5). Spring phenophases advanced by just over three days per 1 °C warm-
ing, providing strong support for H1. Autumn phenophases related to 
leaf coloration or senescence were delayed by almost three days per 1 °C 
warming, again providing support for H1. Relatively little variation was 
observed in dates of autumn bud set for Chamaedaphne and Picea, pro-
viding support for H2 for this particular phenophase of these species. 
Although t* breakpoints that improved model fit were commonly iden-
tified, we note that in most cases the small-sample-corrected Akaike’s 
information criterion (ΔAICC; see Methods) was greater than zero, 
which means that the simpler, linear temperature model was better 
supported by the data. Furthermore, the identified breakpoint temper-
atures were generally very high—below 4.5 °C in only a few instances—
indicating that future warming would have to greatly exceed RCP4.5 
projections before photoperiod constraints begin to limit phenological 
shifts. The ground observations therefore robustly support H1 over 
H2 or H3, and are consistent with the future extension of the active 
season at both ends.

There is abundant evidence in the literature that photoperiod has a 
role in triggering phenological events27,28. In many species, there has 
been a local adaptation of phenology to both photoperiod and tem-
perature cues5,15. In some species and environments, photoperiod sets 
a hard limit on the phenological response to rising temperatures4,15. 
But, with warming of up to +9 °C above current levels, we found little 
evidence for this in most of the species and phenophases that we stud-
ied. Thus, photoperiod requirements are still being met even during 
the shortened winter simulated by the warmest enclosures. In the few 
cases in which there was evidence of a photoperiod effect, it was gen-
erally only a factor at temperatures well above current temperatures, 
again indicating that substantial future warming would be required for 
photoperiod to become limiting. These findings are consistent with a 
recent analysis showing that for high-latitude species, spring leaf-out 
was generally not sensitive to photoperiod8.

The purported role of photoperiod as a phenological constraint is to 
prevent plants from responding to temperature signals at the ‘wrong’ 
time of the year4. However, if photoperiod is not a strong constraint 
on spring phenological development, then a counterintuitive predic-
tion is that continued warming coupled with increasing frequency of 

climate extremes may increase the likelihood of spring frost damage9,10. 
At SPRUCE, atypical weather in March (unusually warm) and April 
(extreme cold) 2016 showed that in addition to triggering visually 
apparent phenological shifts, the warming treatments also advanced 
tissue de-hardening and thereby heightened the potential for spring 
frost damage (Supplementary Note 6, Extended Data Fig. 4). Following 
a spring frost event in which ambient temperatures dropped to −15 °C, 
we observed extensive foliar damage in the +9.0 °C enclosures (in 
which temperatures dropped to about −4 °C) and moderate damage  
in the +6.75 °C enclosures. Minimal damage occurred in the enclosures  
that received less warming and thus experienced colder minimum 
temperatures. This suggests that the transition from frost-hardy to 
frost-vulnerable is cued by warm temperatures9, and is not constrained  
by photoperiod. Without photoperiod as a safety check on the  
de-hardening process, frost damage may be more severe and/or more 
frequent under future climate conditions. Woody plants generally have 
sufficient nonstructural carbon reserves to recover from occasional frost 
damage10, but repeated damage could impair the competitive ability  
of susceptible species9,29 (Extended Data Table 6).

Results from the first two-and-a-half years of the SPRUCE experi-
ment, conducted in a winter-dormant ecosystem, show decisively that 
warming treatments directly influence vegetation phenology at both the 
start and end of the annual period of vegetation activity. These pheno-
logical shifts will almost certainly influence photosynthesis and tran-
spiration3,16, as well as feedbacks to the climate system through effects 
on the surface energy budget12. Future extension of the active season in 
most cases appears unlikely to be strongly constrained by photoperiod 
in this boreal ecosystem. Potentially inopportune responses to envi-
ronmental signals may occur as the climate moves beyond the range 
of historical variability, as demonstrated by the spring frost damage in 
the warmest enclosures. Thus, temperature-tracking strategies evolved 
to guide phenological responses to historical year-to-year variation in 
weather may be increasingly mismatched to future conditions5.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0399-1.
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METhodS
Statistical methods were not used to predetermine sample size for the regression 
design. The warming treatments were randomized among 10 plots with similar 
vegetation and uniform peat depths. Investigators were not blinded to allocation 
during experiments and outcome assessment.
Study site and experimental design. The SPRUCE experiment is located within 
the S1 peat bog at the Marcell Experimental Forest (47° 30.171′ N, 93° 28.970′ W)30, 
approximately 40 km north of Grand Rapids in north-central Minnesota. The 
historical climate at the site is sub-humid continental: mean annual temperature is 
4 °C, mean annual precipitation is 750 mm, and extreme temperatures range from 
−38 °C to +30 °C. Because this ecosystem is located at the southern edge of the 
boreal zone, it is considered particularly vulnerable to climate change.

The S1 bog is an ombotrophic peatland with a perched water table. Trees 
are approximately 5–8 m in height. Canopy vegetation is dominated by the tree  
species P. mariana (Mill.) B.S.P. (black spruce), with additional contributions from 
L. laricina (Du Roi) K. Koch (eastern tamarack or larch). P. mariana and L. laricina 
both have a vast geographic range across North America, from Alaska east to 
Quebec and Labrador, and south to the Great Lakes and New England. A number 
of closely related Picea and Larix species are distributed across the boreal zone 
of northern Europe, Scandinavia and much of Russia and Siberia, indicating the 
relevance of results of this experiment to our understanding of boreal ecosystem 
processes globally.

The SPRUCE understory is dominated by the evergreen shrubs  
R. groenlandicum (Oeder) Kron and Judd (Labrador tea) and C. calyculata (L.) 
Moench. (leatherleaf), and is underlain by a bryophyte layer dominated by 
Sphagnum spp. moss. Other common plant species include the evergreen shrub 
Kalmia polifolia Wangenh. (bog laurel), the deciduous shrub Vaccinium angusti-
folium Aiton 1789 not Benth. 1840 (lowbush blueberry), the sedge Eriophorum 
spp. (cottongrass), and the perennial herb Maianthemum trifolium (L.) Sloboda 
(false Solomon’s seal).

At SPRUCE, experimental temperature (+0 °C ‘unheated control’ to +9.0 °C, 
in 2.25 °C increments for both air and deep soil) and CO2 (ambient and elevated, 
approximately 400 and 900 p.p.m., respectively) treatments are being applied 
through the use of large (approximately 12-m wide, 8-m high) open-topped octag-
onal enclosures7. Overall, five temperature treatments are paired with two CO2 
treatments, yielding a total of ten enclosures (additionally, there are two ‘ambient 
environment’ plots without constructed enclosures). Each enclosure is hydrologi-
cally isolated from the rest of the bog by a sheet pile corral which has been driven 
3–4 m through the peat into the underlying ancient lake sediments. Outflow pipes 
allow for lateral drainage from each enclosure. Within each enclosure, warming 
of the deep soil began in June 2014, while aboveground warming was initiated in 
August 2015 and at this time the phenological observations were commenced in 
each individual plot (note that pre-treatment observations were made in a common 
area, outside of the enclosures, beginning in 2010). CO2 treatments were switched 
on in June 2016.

For context, the warmest enclosures (+9.0 °C) simulate current climate condi-
tions of Wichita, Kansas (mean annual temperature 13 °C, mean annual precip-
itation 850 mm), located approximately 1,100 km (10° of latitude) to the south. 
The SPRUCE experiment, with treatments that will exceed the historical range of 
climatic variability (Extended Data Fig. 1), is intentionally planned to push the 
system past projected warming levels to approach or include tipping points for 
any number of ecosystem response variables. The regression-based experimental 
design facilitates the estimation of temperature response functions, which may 
be nonlinear7.

The enclosure design, and detailed performance metrics for the above- and 
belowground warming, along with a discussion of potential artefacts, are more fully 
described and assessed in a previous publication7. Observed temperature differen-
tials were consistent with the nominal warming treatments for target enclosures. 
Warming was homogeneous within individual enclosures, and was sustained over 
time (see Supplementary Note 1, Extended Data Table 1).
Phenological observations. We are using two methods to track the phenological 
responses of vegetation to warming and elevated CO2 in each enclosure. First, 
beginning in August 2015, we installed digital cameras31, or phenocams32, in each 
enclosure to track seasonal variation in vegetation ‘greenness’, a proxy for vegetation 
phenology and associated physiological activity6,33–35. Second, beginning in April 
2016, human observers have been directly tracking phenological events of both 
woody and herbaceous species.
PhenoCam imagery. Digital cameras (NetCam model SD130BN, StarDot 
Technologies) were configured and installed following standard protocols of the 
PhenoCam network36. Cameras record sequential visible-light (red, green, blue; 
RGB) and visible + infrared images37 every 30 min from 4:00 to 22:00, every day 
of the year. Minimally compressed JPEG images, accompanied by a metadata file 
containing the current status of all camera settings and diagnostics, are uploaded 
via file transfer protocol to the PhenoCam server for archiving and processing; 

a local copy is also maintained on a server running at SPRUCE. The filename of 
every image identifies the enclosure in which the picture was recorded, as well as 
a date and time stamp in local standard time.

The aluminium structural members of each enclosure provided convenient 
and consistent mounting points for the cameras. All cameras were mounted, at 
a height of 6 m, in the middle of the third horizontal structural member on the 
south wall of each enclosure. Cameras were enclosed in lightweight, compact 
weatherproof enclosures (model ENC-OUTD3, StarDot Technologies). Network 
connectivity and DC power were delivered to each camera using a single Ethernet 
cable and standard power-over-Ethernet technology. To reduce the likelihood of 
lightning damage, an Ethernet surge protector (ProtectNet model PNET1GB, APC 
by Schneider Electric) was installed on the camera end of each Ethernet cable, and 
grounded to the mounting point.

All imagery is posted in near-real time to the PhenoCam project web page 
(http://phenocam.sr.unh.edu/), where it is publicly available. Images are processed 
nightly, using standard PhenoCam routines6,36. In brief, this consists of several 
steps. First, we defined three separate regions of interest (ROIs) for each camera 
field of view, demarcating (1) Picea trees; (2) Larix trees; and (3) the mixed shrub 
layer. The ROI definitions are converted to binary masks, so that image analysis 
can be completed separately for each vegetation type. Next, images were read in 
sequentially, and for each vegetation type the mean pixel value for each of the three 
colour channels (red, green and blue; for the purposes of the present analysis we 
used only the visible-wavelength imagery) was calculated across the corresponding 
ROI, yielding a digital number (DN) triplet (RDN, GDN, BDN). Then for each ROI in 
each image, we calculated the green chromatic coordinate GCC, which has previ-
ously been shown to be a reliable metric for characterizing the seasonal trajectory 
of vegetation colour and activity6,31,38:

=
+ +
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Basic quality control included eliminating images that were recorded when the 
sun was less than 5° above the horizon, images that were too dark or images that 
were too bright. Additionally, because snow might obscure the vegetation of inter-
est, for each day from late August 2015 through the end of December 2017, we 
visually inspected the mid-day image from each camera. We flagged images in 
which there was (1) snow on the ground; or (2) snow on trees. We excluded from 
further processing all days on which the camera’s view of the vegetation of interest 
was potentially contaminated by snow. For the shrub layer, this meant eliminating 
images from days with snow on the ground; for Picea and Larix, this meant elimi-
nating images from days with snow on trees. The frequency of snow decreased with 
increasing plot temperature, from over 100 days per year with snow on the ground 
in the unheated enclosures (from late October to early May), to less than 30 days 
per year in the +9.0 °C enclosures (from late November to early February). The 
longest period of continuous snow cover was almost three months in the unheated 
enclosures, compared with only two weeks in the +9.0 °C enclosures.

Next, we determined 3-day GCC values using the 90th quantile method6. We 
then used a spline-based method to sequentially remove outliers in three iter-
ative steps. Finally, we re-fit the spline, and used the summertime maxima and 
dormant-season minima to define the seasonal GCC amplitude, from which we 
were then able to identify dates at which 10%, 25% and 50% of the seasonal ampli-
tude were reached in autumn (senescent or green-down phase) and spring (onset 
or green-up phase). Uncertainties on these dates were then derived based on the 
uncertainty around the smoothing spline. Our analysis here focuses on the 25% 
amplitude threshold dates.
Ground observations. Ground observations of spring phenology were made at 
approximately weekly intervals by W.R.N. and J.M.L. in 2016, and by R.R.H. in 
2017. The protocol used by W.R.N. and R.R.H. involved recording, on a pre-
printed form for each of the 10 enclosures and the two ambient environment plots, 
whether or not (‘yes’ or ‘no’) specific vegetative and reproductive phenophases were 
observed each week. Observations were conducted on a selection of woody species 
(the trees Picea and Larix; the evergreen shrubs leatherleaf, bog laurel, Labrador tea 
and lowbush blueberry), as well as a sedge (cottongrass) and a perennial herb (false 
Solomon’s seal). We transcribed the data by taking as the observed date the first 
survey date on which an event was definitively observed (that is, ‘no’ through week 
4, followed by ‘yes’ in week 5: the event occurred in week 5). Not all phenophases 
were observed for all species, and in some difficult-to-observe cases, the data were 
deemed not reliable because of some inconsistencies in the recorded data (for 
example, blank cells rather than ‘no’, or ‘no’ followed by ‘yes’ followed by ‘no’ again) 
or poor representation of the species in question in some of the plots (for example, 
bog laurel and lowbush blueberry are sparsely distributed). All transcribed data of 
questionable reliability were excluded from the analysis.

J.M.L.’s protocol involved recording the first date at which Larix leaf buds  
were observed to be just beginning to break (data recorded for all ten enclosures, 
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plus the two ambient environment plots), and the first date on which flowers of 
leatherleaf, bog laurel and Labrador tea were observed in each enclosure (data 
recorded in only half of the treated enclosures, plus one or both of the ambient 
environment plots). Although data recorded by J.M.L. are not as complete as 
those recorded by W.R.N., they are included to demonstrate the robustness of the 
observed patterns.
On-site meteorological data. Air temperature and relative humidity were  
measured (model HMP-155, Vaisala) at four points above the peat surface  
within each enclosure (0.5, 1, 2 and 4 m), and 30-min mean values recorded. We 
used the measured air temperature at 2 m in our analyses. SPRUCE environmen-
tal data39 are available through the Vista Data Vision portal (http://sprucedata. 
ornl.gov).
Historical perspective and future climate projections. To put the weather dur-
ing winter and spring of 2016 in historical context (122 year record), we used 
data from the National Climatic Data Center of the NOAA. Specifically, we used 
summary data from the State of the Climate report (https://www.ncdc.noaa.gov/
sotc/national/), and three-month divisional temperature rankings (https://www.
ncdc.noaa.gov/temp-and-precip/climatological-rankings/). The SPRUCE site falls 
within Minnesota’s climate division 2.

To place our results in the context of projected warming trends over the coming 
century, we used downscaled (1/8°) climate projections from a selection of ten 
models (see Supplementary Note 2) contributing to the CMIP5 multimodel ensem-
ble dataset22,40. We used output for two RCP scenarios: RCP4.5 (CO2 stabilization) 
and RCP8.5 (high CO2 emission)41,42. To quantify future trends, we calculated the 
projected decadal mean air temperature change relative to the 2006–2015 mean 
for each model.
Statistical analysis. To characterize the relationship between air temperature and 
phenological timing (H1 and H2), we used ordinary linear regression, with the 
observed phenological date as the dependent variable, yi, and the measured air tem-
perature differential for each plot (see Supplementary Note 1) as the independent 
variable, xi. The regression slope β thus gives the temperature sensitivity in days 
per 1 °C warming for the ‘linear temperature model’. To account for potential effects 
of elevated CO2 on phenology, we also analysed data (where appropriate) using a 
‘linear temperature and CO2 model’, which included temperature, CO2 (elevated 
and ambient) and a temperature × CO2 interaction effect. All tests were two-sided, 
at a significance level of 0.05.

For breakpoint analysis (H3), we fit a three-parameter (α, β and t*) ‘breakpoint 
temperature model’, which was specified as:

α β= + + < ∗εy x x tfori i i i

and

α β= + + ≥∗ ∗εy t x tfori i i

in which xi and yi are as for the ordinary linear regression, εi is the regression 
residual and t* is the temperature breakpoint, as illustrated in Fig. 1. We con-
strained t* to fall in the range of 2–9 °C. An edge-hitting value of t* = 9 °C was 
obtained when the linear model fit the data every bit as well as the breakpoint 
model.

We used AIC43 to identify whether the linear model or the breakpoint model 
was best supported by the available data. AIC is typically calculated as:

σ= +n pAIC log 22

in which n is the number of observations, p is the number of fit parameters plus 
one, and σ2 is the residual sum of squares divided by n. When n is small relative to 
p, the small-sample-corrected criterion, AICC, is preferred43:

= +
+

− −
p p
n p
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AIC effectively balances improving explanatory power (lower σ2) against increasing 
complexity (larger p), and thus AIC selects against over-parameterized models. 
The model with the lowest AIC is considered the best model given the data, and 
the absolute difference in AICC scores between two models can be used to evaluate 
the weight of evidence in support of the better model. If the difference (ΔAIC) 
is small or zero then the two models are equally good. But, if ΔAIC ≈ 2.0, then 
the model with the lower AICC is almost three times more likely to be the best43.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Data availability. PhenoCam imagery is publicly available through the project 
web page (http://phenocam.sr.unh.edu), and the phenological datasets used in 
this study are available through the SPRUCE data portal44,45.
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Extended Data Fig. 1 | Air temperature and precipitation in the 
SPRUCE S1 bog (August 2015 to December 2017) relative to long-term 
(1960–2000) means and variability. a, Long-term daily mean temperature 
(°C, ± 1 s.d. indicated by shading), compared with daily mean temperature 
(calculated from 30-min means, based on n = 2 sensors mounted at 2-m 
height in each enclosure) in a +0 °C enclosure (unheated control) and 
a +9.0 °C enclosure. b, Long-term monthly mean temperature (mean 

daily maximum and mean daily minimum indicated by shaded bars), 
compared with monthly mean temperature (calculated from daily means, 
as in a) in different experimental treatments. c, Long-term monthly 
mean precipitation (mm, ± 1 s.d. indicated by shading, with maxima and 
minima indicated by dotted lines), compared with measured monthly 
precipitation (n = 1 rain gauge) in the S1 bog.
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Extended Data Fig. 2 | Decadal mean temperature change (relative to 2006–2015 mean) projections from ten CMIP5 earth system models for the 
SPRUCE site. a, Stabilization climate scenario (RCP4.5). b, High emission climate scenario (RCP8.5).
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Extended Data Fig. 3 | Relationships between air temperature and the 
start and end of the photosynthetic uptake period, as derived from 
FLUXNET data for evergreen conifer-dominated sites. a–d, Across-
site patterns in spring (a) and autumn (b) in relation to mean annual 

temperature (n = 12 sites), and within-sites patterns in spring (c) and 
autumn (d) in relation to seasonal temperature anomalies (n = 86  
site-years).
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Extended Data Fig. 4 | Unusually warm weather in late winter, followed 
by extreme cold in early April, resulted in severe frost damage in the 
warmest enclosures at SPRUCE in 2016. a, Time series of daily mean air 
temperature, comparing plot 17 (+9.0 °C warming) and plot 19 (unheated 
enclosure), during the winter and spring of 2016. By the time the frost 
event occurred (grey shading), the daily mean temperature in plot 17 
had been above freezing for over a month, but had repeatedly dropped 
below freezing in plot 19. b, Time series of 30-min air temperature—again 
comparing plot 17 and plot 19—leading up to and immediately following 
the frost event, which occurred on the morning of 9 April and again on 12 
April. The thin red lines indicate the variability (maximum and minimum) 
across n = 5 temperature sensors in plot 17. c, Time series of daily GCC, the 

green chromatic coordinate, for Picea trees in plot 17 and plot 19. Arrows 
denote spring green-up dates (progressively larger arrows corresponding 
to 10%, 25% and 50% of seasonal amplitude) estimated from GCC. The 
pronounced decline in GCC in plot 17 following the frost event (grey 
shading) is readily apparent. Trees in plot 19 retained sufficient frost 
hardiness that they were undamaged, despite experiencing much colder 
temperatures. d, Brown frost-damaged Larix foliage in plot 17. e, Picea 
branches in plot 17, showing loss of most foliage from previous years, with 
green foliage from the 2015 flush retained only at branch tips. f, Picea 
branches with frost-damaged foliage from previous years, but healthy 
green foliage from the 2016 flush.
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Extended data Table 1 | Mean daily air temperature and temperature differentials associated with whole-ecosystem warming

Daily means are calculated on the basis of the mean half-hour data for two temperature sensors mounted at 2-m height. Temperature differentials (ΔT) are calculated relative to the mean of the two 
unheated enclosures (plots 19 and 6). Plots are arranged in order of increasing ΔT; overall mean ± 1 standard deviation (SD). ΔT is calculated across n = 5 multi-month means.
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Extended data Table 2 | Effect of SPRUCE warming treatments on spring green-up and autumn green-down

Results (derived from PhenoCam imagery) are shown from the start of the whole-ecosystem warming experiment (autumn 2015), on the basis of observations across n = 10 experimental enclosures 
(n = 9 for Larix, as in one enclosure this species was not within the camera field of view). Mean transition dates are reported ± 1 s.d. Statistics for the linear temperature model are based on regression 
of transition date (y) on warming treatment (x), and the model slope is the phenological temperature sensitivity in days per 1 °C warming. The ‘T effect’ column reports the P value for the null hypothe-
sis of no temperature effect. Statistics for the breakpoint temperature model are based on a model in which the response to warming treatment is assumed to be linear up to a temperature threshold 
t*, and flat thereafter (see Methods for additional details). No statistics are reported for cases in which a t* could not be identified or where the addition of t* did not improve model fit. ΔAICC is the 
difference in AIC (corrected for small sample sizes) between the linear temperature model and the breakpoint temperature model, with a positive value indicating that the linear temperature model 
is better supported by the data and a negative value indicating that the beakpoint temperature model is better supported by the data. RMSE, root mean squared error. SE, standard error. Results not 
shown for the linear temperature and CO2 model as the CO2 effect and CO2 × T interaction effect were generally not significant (see Supplementary Note 2 for additional information).
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Extended data Table 3 | Projected future extension of the period of vegetation activity

The model is based on linear extrapolation of experimental results, using CMIP5 climate projections. Temperature sensitivities are derived from Fig. 2; total projected active season extension is the 
product of the temperature sensitivity of total active season length multiplied by the mean projected temperature increase (decadal means, relative to 2006–2015). Uncertainties in active season 
extension represent the uncertainty in the climate projections (s.d. across ten models) rather than the uncertainty in the temperature sensitivities.
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Extended data Table 4 | Effect of SPRUCE warming treatments on observed vegetative and reproductive phenological transitions (2016)

Data are from 2016 growing season, based on observations across n = 12 plots. Species are ordered by functional type, and within each species, phenophases are ordered according to the mean  
(± 1 s.d.) day of year (DOY) on which the event occurred. Statistics for the linear temperature model are based on regression of transition date (y) on warming treatment (x), and the model slope is the 
phenological temperature sensitivity in days per 1 °C warming. The ‘T effect’ column reports the P value for the null hypothesis of no temperature effect. Statistics for the breakpoint temperature model 
are based on a model in which the response to warming treatment is assumed to be linear up to a temperature threshold t*, and flat thereafter (see Methods for additional details). No statistics are 
reported for cases in which a t* could not be identified, or where the addition of t* did not improve model fit. ΔAICC is the difference in AIC (corrected for small sample sizes) between the linear  
temperature model and breakpoint temperature model, with a positive value indicating that the linear temperature model is better supported by the data, and a negative value indicating that the 
breakpoint temperature model is better supported by the data. RMSE, root mean squared error. SE, standard error.
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Extended data Table 5 | Effect of SPRUCE warming treatments on observed vegetative and reproductive phenological transitions (2017)

Data are from the 2017 growing season, based on observations across n = 12 plots. Species are ordered alphabetically, and within each species, phenophases are ordered according to the mean 
( ± 1 s.d.) day of year (DOY) on which the event occurred. Statistics for the linear temperature model are based on regression of transition date (y) on warming treatment (x), and the model slope is the 
phenological temperature sensitivity in days per 1 °C warming. The ‘T effect’ column reports the P value for the null hypothesis of no temperature effect. Statistics for the breakpoint temperature model 
are based on a model in which the response to warming treatment is assumed to be linear up to a temperature threshold t*, and flat thereafter (see Methods for additional details). No statistics are 
reported for cases in which a t* could not be identified, or where the addition of t* did not improve model fit. ΔAICC is the difference in AIC (corrected for small sample sizes) between the linear temper-
ature model and breakpoint temperature model, with a positive value indicating that the linear temperature model is better supported by the data, and a negative value indicating that the breakpoint 
temperature model is better supported by the data. RMSE, root mean squared error. SE, standard error. Results not shown for the linear temperature and CO2 model as the CO2 effect and CO2 × T 
interaction effect were generally not significant (see Supplementary Note 5 for additional information).
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Extended data Table 6 | Impact of premature foliar senescence on nutrient content of L. laricina and P. mariana litter

Following the 9 April 2016 spring frost event, damaged foliage from trees that had lost frost hardiness began a period of senescence, culminating in heavy leaf fall during early May as air temperatures 
frequently exceeded 30 °C in the +9.0 °C plots (temperatures over 40 °C were observed in plot 10 and plot 17 on 5 and 6 May). Prematurely senescent litter was collected on 6 May from the ground 
underneath damaged trees in the two warmest treatments (+6.75 and +9.0 °C) (n = 3–7 trees). Normally senescent litter was collected on 4 November from ambient environment plots outside of  
the experimental treatments using litter baskets (n = 8 trees). Litter was analysed for carbon and nitrogen by combustion using 0.1-g samples of oven-dried and finely ground tissue on a TruSpec 
elemental analyser (LECO). Data are presented on a per cent dry matter basis.

© 2018 Springer Nature Limited. All rights reserved.



1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Andrew D. Richardson

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection PhenoCam imagery and data processed as described in Richardson et al. (2018) Scientific Data 5: 180028. Links to processing code on 
GitHub are contained in this paper.

Data analysis Data analysis conducted in SAS v9

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data are publicly available. PhenoCam imagery is publicly available through the project web page (http://phenocam.sr.unh.edu), and the phenological data sets 
used in this study are available through the SPRUCE data portal, https://doi.org/10.3334/CDIAC/spruce.045 and https://doi.org/10.3334/CDIAC/spruce.044. 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description There are 10 experimental enclosures. The experiment uses a regression-based design, with 5 levels of warming from +0 (control) to 
+9 °C, in 2.25 °C increments. Thus each level of warming is replicated twice. The temperature treatments are crossed with a CO2 
treatment, so that at each level of warming, one replicate receives ambient CO2 and the other replicate receives elevated CO2. Thus 
5 of the 10 enclosures receive elevated CO2. Treatments were randomly assigned, and treatments were independently applied to 
each enclosure. Thus an enclosure is an experimental unit. For further details, see Hanson et al  (2017) Biogeosciences 14: 861-883.  
 
Our analysis treats temperature as a continuous variable and CO2 as a class variable with two levels (elevated and ambient). In 
testing for temperature effects, we evaluate both linear and breakpoint models, as described in Methods. In testing CO2 effects, we 
include both CO2 and a CO2 x temperature interaction effect. 

Research sample Observations were conducted at the species level within each enclosure. Because most species were found in each of the 10 
enclosures, we consider the sample size to be n = 10. An exception is Larix, which was not visible in the camera imagery for one 
enclosure. Hence for this species, n = 9 for the camera data.

Sampling strategy Statistical methods were not used to predetermine sample size.  The range of temperatures applied was selected to ensure that at 
least the warmest enclosures exceed model-based projections of future temperature increase expected by 2100. Financial 
considerations precluded additional replication at each level of warming.

Data collection Phenological ground observations were conducted by WRN and RRH, with data recorded (was a particular phenophase observed, yes 
or no?) on a pre-printed form for each enclosure ADR transcribed the data and determined phenological transition dates, based on 
the first "yes" observation following a series of "no" observations.  
 
PhenoCam imagery was recorded automatically every 30 minutes from 4 am to 10 pm, following standard PhenoCam procedures (as 
described in Richardson et al. (2018) Scientific Data). ADR drew the masks used to define the three vegetation types for which data 
was extracted. Automated image processing and extraction of phenological transition dates follows Richardson et al (2018) Scientific 
Data.

Timing and spatial scale Phenological ground observations were conducted in Spring 2016 (April to July) and Spring and Autumn 2017 (April to December), at 
approximately weekly intervals. While twice-weekly surveys would have been ideal, and would have enabled more precise 
identification of transition dates, the observers had other duties at the site which made more frequent observations impossible. 
Ground observations represent the consensus across multiple individuals of a species within each enclosure. 
 
PhenoCam imagery was recorded automatically every 30 minutes from 4 am to 10 pm, beginning August 2015. Here we use data 
through December 2017 but note that image acquisition is ongoing.

Data exclusions For the ground observations of phenology, the rationale for excluding some phenophases from the analysis is described in Methods. 
Briefly, for certain phenophases for certain species, the observers felt either that (1) the phenophase was difficult to observe reliably 
or (2) the species was not sufficiently well distributed for the observations to be robust. No individual data points were excluded.  
 
No data were excluded from PhenoCam observations. 

Reproducibility Due to costs, full replication of the experiment was not feasible. Instead, we show that the observed patterns are consistent from 
year-to-year over the 2.5 y (to date) of the experiment, and consistent between ground observations and PhenoCam data. The 
experiment is scheduled to run for 10 y.

Randomization 17 permanent plots were established within the SPRUCE S1 bog in 2012. Assignment of the experimental treatments to 10 of these 
permanent plots was random. See Hanson et al. (2017) Biogeosciences for additional details.

Blinding Blinding is not feasible. It is impossible for observers not to be aware of the temperature treatments in each enclosure.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions The historic climate at the site is subhumid continental: mean annual temperature is 4°C, mean annual precipitation is 750 mm, 

and extreme temperatures range from –38 °C to +30 °C. Temperatures in the warmest (+9 °C) enclosures exceed those in the 
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control (+0 °C) enclosures by the target amount. Temperatures in the control enclosures exceed ambient temperatures by 1-2 °
C.

Location The SPRUCE experiment is conducted at the Marcell Experimental Forest, near Grand Rapids, Minnesota, USA ((47° 30.171’ N, 
93° 28.970’ W), on land owned by the US Forest Service.

Access and import/export The SPRUCE experiment is a collaborative effort between DOE's Oak Ridge National Laboratory (operated by UT-Battelle) and the 
US Forest Service's (USFS) Northern Research Station, conducted under a memorandum of understanding between UT-Battelle 
and the Forest Service dated 11/03/2009. DOE completed an Environmental Assessment (DOE/EA-1764) and DOE and USFS 
determined that the "proposed action is not a major federal action that would significantly affect the quality of the human 
environment within the meaning of the National Environmental Protection Act (NEPA) of 1969". Therefore, based on the "finding 
of no significant impact", the preparation of an Environmental Impact Statement was not necessary.

Disturbance A geotechnical site survey was completed in 2011 by American Engineering Testing, Inc. (report 07-05001).  
 
Prior to the installation of the experimental enclosures, a network of raised boardwalks was constructed to minimize disturbance 
and damage to the site. Within each enclosure a circular boardwalk permits access to vegetation without trampling or further 
disturbance.  
 
Potential artifacts associated with the construction of the enclosures are discussed by Hanson et al. (2017) Biogeosciences. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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