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Abstract Improved quantification of the factors

controlling soil organic matter (SOM) stabilization

at continental to global scales is needed to inform

projections of the largest actively cycling terrestrial

carbon pool on Earth, and its response to environmen-

tal change. Biogeochemical models rely almost

exclusively on clay content to modify rates of SOM

turnover and fluxes of climate-active CO2 to the

atmosphere. Emerging conceptual understanding,

however, suggests other soil physicochemical proper-

ties may predict SOM stabilization better than clay

content. We addressed this discrepancy by synthesiz-

ing data from over 5,500 soil profiles spanning

continental scale environmental gradients. Here, we

demonstrate that other physicochemical parameters

are much stronger predictors of SOM content, with

clay content having relatively little explanatory

power. We show that exchangeable calcium strongly

predicted SOM content in water-limited, alkaline

soils, whereas with increasing moisture availability

and acidity, iron- and aluminum-oxyhydroxides

emerged as better predictors, demonstrating that the

relative importance of SOM stabilization mechanisms

scales with climate and acidity. These results highlight

the urgent need to modify biogeochemical models to
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better reflect the role of soil physicochemical proper-

ties in SOM cycling.

Keywords Soil organic matter � Biogeochemistry �
Carbon cycle

Introduction

A clear description of soil organic matter (SOM)

stabilization mechanisms is needed to inform society’s

ability to manage carbon and meet desirable climate

targets (Minasny et al. 2017). An established and

tested hypothesis is that clay content, i.e., the mineral

fraction\ 2 lm in size, principally determines SOM

storage and stabilization by promoting the sorption of

organic matter to mineral surfaces and aggregate

formation (Oades 1988; Schimel et al. 1994; Wagner

et al. 2007). Clay content may also alter SOM stability

indirectly, by influencing microbial community com-

position, soil hydrology, drainage, and O2 availability

(Andrews et al. 2011; Fierer and Schimel 2002). The

small size of clay particles imbues them with high

specific surface area, and clay particles typically

exhibit a combination of permanent structural charge

and variable pH-dependent surface charge. The com-

bination of charge and high surface area allows clay

sized particles to dominate mineral–mineral, mineral-

organic, mineral-metal, and mineral–water interac-

tions in soils (Sposito et al. 1999). Thus, total clay

content has been used as a proxy for the direct effects

of aggregation and sorption, and indirect controls of

soil water content on SOM stability (Kahle et al. 2003;

Mikutta et al. 2006; Oades 1988). These insights are

broadly applied in biogeochemical models (e.g.,

Coleman and Jenkinson 1996; Parton et al. 1987;

Wieder et al. 2015) in which clay or clay ? silt

content describes variation in SOM storage by mod-

ifying carbon fluxes into particular pools, and their

rate of turnover. All of these models predict slower

SOM turnover and higher SOM storage in more finely

textured soils (Fig. S1). Although numerically tract-

able, these relatively simplistic considerations of SOM

stabilization may not apply across diverse soil systems

or capture the efficacy of different clay-sized particles

for stabilizing SOM.

Current understanding suggests other physico-

chemical parameters may be better predictors of

SOM content and stabilization. Observational and

manipulative studies indicate that SOM content may

be more related to the amount of extractable metals,

here defined to include measures of exchangeable

cations, pedogenic oxyhydroxides, short–range-order

(SRO) phases, and organically complexed metals

(Kaiser and Guggenberger 2000; Lawrence et al.

2014; Percival et al. 2000; Rasmussen et al. 2006;

Torn et al. 1997). These studies highlight the fact that

not all clay-sized particles are equivalent in their SOM

stabilization capacity. The clay fraction includes some

combination of phyllosilicates, crystalline and SRO

oxyhydroxides and aluminosilicates, and organo-

metal complexes, each of which vary in their surface

area, reactivity, solubility, and sorptive capacity

(Kaiser et al. 1997; Sposito et al. 1999). Furthermore,

silicate clays are often coated with Al- and Fe-

oxyhydroxides that contribute to their SOM stabiliza-

tion capacity. Clay content as a sole measure can thus

mask the diversity of mineral properties and may not

effectively capture specific SOM stabilization mech-

anisms. It follows that other soil properties may serve

as better surrogates of SOM stabilization than clay

content alone.
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Recently, several attempts have been made to

quantitatively link soil physicochemical variables

with SOM abundance and stability across larger,

regional spatial scales (Augustin and Cihacek 2016;

Doetterl et al. 2015; Garrido andMatus 2012; Mathieu

et al. 2015). In many of these studies, clay content was

not a significant predictor of SOM content or stability,

and climatic variables were identified as secondary in

importance compared to soil mineralogical and mor-

phological characteristics. Here, we address whether

other soil physicochemical parameters are better

predictors of SOM using a comprehensive set of soil

profile data from the US National Cooperative Soil

Survey Database that spans continental scale gradients

in climates, ecoregions, and soil taxa.

Materials and methods

Global soil, climate, and ecoregion datasets

Soil data were compiled from the U.S. Department of

Agriculture’s National Cooperative Soil Survey

(NCSS) Soil Characterization Database (http://

ncsslabdatamart.sc.egov.usda.gov/). The data consist

of 392,710 individual soil horizons sampled from

62,843 pedons described as part of NCSS activities.

Data were assessed for quality assurance and control

purposes by analyzing the distributions of each data

type and errors corrected where possible or excluded

when no obvious correction could be applied. Histosols

and all organic horizons were excluded; only 240

horizons occurred in Gelisols and were not included in

soil order specific analyses. The soil properties ana-

lyzed included SOC (%) used as a measure of SOM,

horizon midpoint depth (depth; cm), clay (%), clay ?

silt (%), pH in H2O, and extractable metals that

included exchangeable Ca as determined by ammo-

nium acetate extraction at pH 7.0 (Caex; cmol? kg-1),

dithionite extractable iron (Fed; %), oxalate

extractable iron (Feo; %) and aluminum (Alo; %). The

selected physicochemical variables were chosen to

encompass a range of soil properties related to various

proposed SOM stabilization mechanisms. This selec-

tion of variables also maximized the number of soil

horizons that could be included in the analysis while

maintaining a broad spectrum of soil properties. Soil

organic carbon data were compiled following Wills

et al. (2007), correcting total reported C for carbonate

C, and converting Walkley–Black organic carbon

values to the equivalent of combustion C.

The soil data were paired with properties extracted

from global maps of ecoregion, climate, and soil order.

Ecoregion data were compiled from the World Wild-

life Foundation terrestrial ecoregions map (Olson et al.

2001). Climate data, including mean annual temper-

ature (MAT; �C), mean annual precipitation (MAP;

mm year-1), and potential evapotranspiration (PET;

mm year-1) were extracted from the 0.5 degree CRU

climate dataset of New et al. (New et al. 1999). The

climate data were used to calculate an aridity index for

each location, defined as the ratio of annual PET/

MAP, where ratios[ 1 indicate water-limited systems

and values\ 1 indicate energy-limited systems. The

aridity index data were further divided into seven

humidity classes using hierarchical clustering, with

the number of classes chosen to maximize the number

of locations in each class and to correspond with

climate zones. Soil order information was extracted

from the NCSS database when available. For locations

lacking taxonomic information, soil order was

extracted from the NRCS Global Soil Region map

available at: https://www.nrcs.usda.gov/wps/portal/

nrcs/detail/soils/use/?cid=nrcs142p2_054013. Spatial

data were handled using ArcMAP 10.3.1 (ESRI,

Redlands, CA) and all statistical analyses performed

using JMP Pro v12.1.0 (SAS Institute, Cary, NC).

Statistical analyses and model development

The data were filtered such that only horizons with a

complete set of soil and climate variables were

included, providing a total of 5587 pedons with

28,819 horizons. To standardize variation among

variables and meet normality assumptions of the

applied statistical tests, all continuous predictors and

the soil organic carbon (SOC) data were transformed to

normal distributions using Box-Cox transformations,

followed by standardization to a mean of 0 and

standard deviation of 1. The transformed and stan-

dardized data allowed for direct comparison of regres-

sion coefficient estimates among predictor variables.

Regression analyses

Linear mixed model (LMM) regression was imple-

mented to determine the soil and climate parameters

that best explained the variance in SOC content. LMM

Biogeochemistry (2018) 137:297–306 299

123

http://ncsslabdatamart.sc.egov.usda.gov/
http://ncsslabdatamart.sc.egov.usda.gov/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/%3fcid%3dnrcs142p2_054013
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/%3fcid%3dnrcs142p2_054013


was selected to address the non-independent nature of

multiple horizons within one pedon. The models were

structured with pedon ID as a random effect, allowing

the slope and intercept of the relationship between soil

depth and SOC to vary by each pedon based on the a

priori knowledge of a relationship between soil depth

and SOC content (Jobbagy and Jackson 2001). Three

LMM models were run: (1) using just soil depth as a

fixed effect, (2) using soil depth and the entire set of

the selected continuous physicochemical and climate

variables, including two-way interaction terms among

all variables, as fixed effects, and (3) a reduced final

model that included only those fixed effects that

contributed the most to the prediction of SOC based on

regression coefficient estimates and F-values. Specif-

ically, the final model only kept terms with regression

coefficient estimates[ 0.1 or\- 0.1 that corre-

sponded with F-values[ 400. The fixed-effect vari-

ables in the final model included depth, Alo, Caex, pH,

PET/MAP, and the pH by Alo interaction term

(Table 1). The relative importance and contribution

of fixed effects was determined based on regression

coefficient estimates and F values.

Additionally, LMM modeling of SOC was per-

formed across pH classes. Soil-pH data were grouped

using hierarchical clustering, with the number of

classes chosen to maximize the number of samples in

each class. We then ran LMM for each pH class, using

pedon ID as the random variable and allowing both the

slope and intercept to vary with depth, and included

depth, Alo, and Caex as fixed parameters. The F-values

for each fixed parameter were reported in Fig. 2b to

demonstrate the relative importance of each parameter

to account for SOC variance across pH classes. The

relative contribution of each fixed parameter by pH

class, in combination with soil physicochemical

property change by pH class (Fig. 2a), was used to

develop the conceptual figure of change in dominant

SOM stabilization mechanism with pH (Fig. 3).

Correlations by environmental categorical

variables

The conditional residuals of the soil depth-only LMM

were related to all soil physicochemical and climate-

continuous variables, parsed among three categorical

variables, using Spearman’s q (Fig. 1). The categories

were humidity class ecoregion, and soil order. This

approach allowed us to include collinear variables left

out of the LMM. Significance was evaluated based on

a Bonferroni’s corrected a value of 0.0002 (a = 0.05/

250 individual correlations). Only categories with

n[ 400 soil samples were used for correlation

determination.

Results and discussion

Soil organic carbon and physicochemical

parameters

Linear mixed model (LMM) regression indicated that

soil depth was the strongest predictor of SOC, with a

significant trend of decreasing SOC content with

increasing depth. After accounting for depth, Alo and

Caex were the best predictors, followed by pH, the

interaction of pH and Alo, and PET/MAP (potential

evapotranspiration over mean annual precipitation).

Alo and Caex showed a positive relationship with SOC,

whereas pH, the pH-Al interaction term, and PET/

MAP exhibited weaker, negative relationships with

SOC (Table 1).

Table 1 Fixed-effect parameters from the linear mixed model

Term Degrees of

freedom

Regression

coefficient

95% lower 95% upper F ratio Prob[F

Depth 5782 - 0.579 - 0.589 - 0.569 12,616 \ 0.0001

Alo 26,054 0.306 0.298 0.314 5135 \ 0.0001

Caex 25,934 0.342 0.330 0.354 3202 \ 0.0001

pH 23,444 - 0.258 - 0.270 - 0.245 1725 \ 0.0001

pH 9 Alo 27,852 - 0.141 - 0.148 - 0.134 1492 \ 0.0001

PET/MAP 6468 - 0.108 - 0.121 - 0.096 279 \ 0.0001

Intercept 5198 - 0.022 - 0.036 - 0.009 – –
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Correlation analysis of the conditional residuals

from a LMM using only depth as the fixed effect was

performed to further explore SOC relationships among

the categorical variables of humidity class, ecoregion,

and soil order (Fig. 1). There were few correlations of

SOC with climate variables within each category;

rather, a combination of either Feo and Alo, or Caex and

clay or clay ? silt best explained SOC. Exchangeable

Ca and soil texture exhibited the strongest correlation

in water-limited environments, whereas Al- and Fe-

oxyhydroxides exhibited the strongest correlations in

humid environments.

Among soil taxa, Entisols and Inceptisols, with

minimal pedogenic development, presented strong

positive correlations with nearly all soil properties

(Fig. 1), likely owing to their large range of soil

properties, and the diversity of environmental condi-

tions in which these soils are found (Buol et al. 2011).

At the other soil development and weathering extreme,

no significant correlation to any soil property was

observed for Oxisols. This may be due in part to the

rapid litter and SOC decomposition associated with

the warm, wet tropical climates typical of Oxisols

(Tiessen et al. 1992). Oxisols are highly weathered and

dominated by quartz and crystalline, variable charge

Fe- and Al-oxides and kaolinite, with few to no

weatherable minerals (Buol and Eswaran 2000). In

these soils, Fe-oxide cementations form very

stable concretions (El Swaify 1980) that serve as the

dominant mechanism for protecting SOM from

decomposition (Tiessen et al. 1994). However, these

concretions also confound soil textural analysis by

resisting dispersion, biasing results towards a coarse

classification while physically behaving more simi-

larly to fine-textured soils. Taken together, these

observations suggest a general decrease in the range of

soil properties that can facilitate SOM stabilization

with increased soil weathering (Lawrence et al. 2015;

Torn et al. 1997).

Prevalence of extractable Ca and texture in dry

climates

The regression and correlation analyses reflected

strong positive correlation of SOC to Caex, clay ? silt,

and clay in water-limited systems, that included

deserts, grasslands, savannas, and shrublands, largely

characterized by Aridisols, Mollisols and Alfisols

(Fig. 1). These ecoregions with less precipitation

maintain circum-neutral to alkaline pH values, and

retain non-hydrolyzing base cations. These conditions

favor the formation of 2:1 phyllosilicates with an

abundance of negatively charged exchange sites

(Douglas 1989; Kittrick 1971). When divalent ions,

such as Ca2?, occupy these exchange sites, they can

bind negatively charged organic moieties, such as the

carboxylic acid functional group common on SOM,

effectively forming a bridge with the underlying clay

Fig. 1 Heat maps indicating the Spearman correlation between

the conditional residuals of a mixed regression model using

pedon ID as a random factor and horizon depth as a fixed effect,

and soil physicochemical properties and climate parameters by

the categorical variables of a humidity class, b ecoregion, and

c soil order. Spearman correlations are scaled from dark blue for

negative correlations to dark red for positive correlations. Those

correlations with P[ 0.0002 are considered not significant

(NS), based on Bonferroni’s corrected a value
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(Mikutta et al. 2007). Such cation bridging is widely

recognized as an important SOM stabilization mech-

anism (von Lützow et al. 2006). In addition, exchange-

able Ca can cross-link two negatively charged organic

functional groups together, causing SOM aggregation

and immobilization (Kunhi Mouvenchery et al. 2012).

Calcium has a stronger influence on SOM stabilization

in dry climates than other divalent cations because of

its higher relative abundance (Smith et al. 2014) and

greater ionic radius, which facilitates stronger binding

energies (Muneer and Oades 1989). The strong

correlation of SOC to exchangeable Ca and texture

in water-limited systems is consistent with previous

work highlighting a central role for texture in mod-

ulating SOM cycling (Amato and Ladd 1992; Burke

et al. 1989; Hassink 1997; Nichols 1984), work that

served as the foundation for current biogeochemical

models.

Prevalence of extractable Al and Fe in humid

climates

Soil carbon content in humid, forested ecoregions

(generally represented by Inceptisols, Ultisols, Andis-

ols, and Spodosols) exhibited strong positive correla-

tions with Feo and Alo, a negative correlation with pH,

and little to no correlation with clay or clay ? silt

(Fig. 1). In these systems, the combination of water

availability, an abundance of low molecular weight

organic acids, or distinct primary mineral assem-

blages, facilitates high rates of mineral weathering that

may release Fe, Al, and Si faster than crystalline

minerals can precipitate (Shoji et al. 1993). This can

lead to soil solutions that are oversaturated with

respect to SRO phases, that once formed, have high

surface areas and high densities of reactive hydroxyl

sites (Harsh et al. 2002), allowing them to immobilize

large quantities of SOM. These SRO phases have also

been implicated as important drivers of aggregation,

which further protects SOM against decomposition

(Asano and Wagai 2014; Rasmussen et al. 2005). The

generally high SOM content in humid systems also

promotes Al and Fe-organic complexation and co-

precipitation of organo-metal complexes, which can

compete and occur in conjunction with SRO formation

(Dahlgren et al. 2004). Both phases are important to

SOM stabilization (Wagai and Mayer 2007), but the

analyses herein were based on SOC correlations with

oxalate-extractable Al or Fe, which includes both

organo-metal complexes and SRO phases, so we are

not able to directly separate these factors. We did not

include more direct measures of organo-metal com-

plexation because of the limited extent where it was

measured. However, as indicated below (Fig. 2), for

those locations with such measures, we observed

strong gradients in the relative concentration of

organo-metal complexes and SRO phases with soil

pH.

Soil pH and stabilization mechanisms

Our results suggest a complicated and important

influence of soil pH on SOM content. The LMM

results indicated a significant role for pH, and the

interaction of pH and Alo in accounting for SOC

content, but pH was not significantly correlated with

SOC across most categories. Soil pH reflects the

overall chemical state of the soil system and dictates a

number of geochemical gradients, including the

speciation of dissolved metals, the reactivity and

charge of minerals and organic molecules, and the

predominant type of organo-mineral bond (Deng and

Dixon 2002). Each of these influences SOM stabiliza-

tion, resulting in an overall influence of pH that is

nonlinear and driven by thresholds in aqueous speci-

ation and mineral stability, which are in turn modu-

lated by water availability and other soil-forming

factors.

Soil pH corresponded with distinct gradients in soil

properties (Fig. 2a). In particular, Caex increased

significantly above pH 6.5, whereas Alo was greatest

at pH values\ 6.5. Although there were not enough

data to include them in the full analysis, two additional

values, the coefficient of linear extensibility (COLE),

and pyrophosphate extractable Al (Alp) were summa-

rized by pH class to further elucidate soil property

changes with pH. COLE provides a measure of soil

shrink-swell capacity that corresponds with clay

content and presence of expansible 2:1 phyllosilicates;

Alp is a common metric for organically complexed Al.

COLE increased above pH 6.5, whereas the ratio Alp/

Alo, which provides an estimate of the proportion of

organo-metal versus organo-mineral Al species,

increased at pH values less than 5.5, with Alp
dominant at low pH.

Regression analyses across pH classes (Fig. 2b),

using Alo to represent SRO phases and organo-metal

complexes and Caex to represent 2:1 clays and
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exchangeable cations, indicated that, after accounting

for soil depth, Caex was the most important factor at

pH[ 6.5, and Alo was the dominant variable at

pH\ 6.5. The Ca-bridging mechanism is particularly

important in soils enriched in 2:1 phyllosilicates

(Laird 2001), corresponding with the increase in

COLE at pH[ 6.5 (Fig. 2a). The dominance of Alo
and the increase in the Alp/Alo noted at pH\ 5.5

(Fig. 2a) suggest that SRO is the dominant factor at pH

5.5–6.5, whereas at low pH, organo-metal complex-

ation is the dominant factor controlling SOC content

(Wagai and Mayer 2007).

Here, we propose a conceptual model whereby the

dominant SOM stabilization mechanism varies as a

function of pH (Fig. 3). The SOM stabilization

mechanisms vary with increasing soil pH from

predominantly organo-metal complexation, to associ-

ation with SRO phases, to Ca complexation and cation

bridging with phyllosilicates. Soil pH varies nonlin-

early with soil depth and soil-forming factors

(Fig. S5), and soil physicochemical properties vary

nonlinearly with pH (Fig. 2a), leading to a complex

and indirect relationship between pH and SOM

content.

Implications for model improvement

Our analyses demonstrated that variables other than

clay content serve as better predictors of SOM content

in many systems. This observation implies that models

for continental to global scale SOM content may be

improved by inclusion of alternate mineralogical

proxies. Variables of particular importance include

exchangeable Ca, SRO Al- and Fe-oxyhydroxides,

and Al-, Fe- organo-metal complexes, and the relative

contribution of each parameter can be scaled with pH

(Fig. 3). A step to improve models would be to

develop explicit functions that relate these variables to

specific rate and transfer coefficients.
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Fig. 2 a The change in soil

physicochemical properties

important for predicting

SOC content by soil-pH

class, including the soil

content of oxalate

extractable Al (Alo), the

fraction of Alo that is

partitioned to Al- organo-

metal complexes as

measured by Na-

pyrophosphate

extractable Al (Alp), the

amount of Ca on the cation

exchange complex (Caex),

and the coefficient of linear

extensibility (COLE)

(parameter values are

medians within each pH

class). b Fixed parameter

F-values for Alo, Caex and

horizon depth from linear

mixed effect models using

pedon ID as the random

effect performed for each

pH class
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For broad applicability in Earth system modeling, a

new set of global-scale data products are needed that

include the variables identified in our analysis. Cur-

rently, only data products on clay content and pH are

available at the global level (Hengl et al. 2017), but as

this analysis shows, extractable metal data do exist for

a wide range of locations and soil taxa, and some

globally gridded information about soil mineral com-

position has been derived (Ito and Wagai 2017;

Journet et al. 2014). Given the large number of soil

profiles that contain these data, compiling this infor-

mation into large-scale data products should be a

priority. With the current state of soil data products,

global grids of soil pH may provide the most

immediate and tractable variable for modifying bio-

geochemical models and their treatment of different

SOM stabilization mechanisms (Fig. 3). Implement-

ing such changes would strengthen the relationships

among our conceptual understanding of SOM stabi-

lization, model design and structure, and common

measurements of soil physicochemical properties.
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