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A B S T R A C T

Forest phenology is a multi-scale phenomenon, arising from processes in leaves and trees, with effects on the
ecology of plant communities and landscapes. Because phenology controls carbon and water cycles, which are
commonly observed at the ecosystem scale (e.g. eddy flux measurements), it is important to characterize the
relation between phenophase transition events at different spatial scales. We use aerial photography recorded
from an unmanned aerial vehicle (UAV) to observe plant phenology over a large area (5.4 ha) and across diverse
communities, with spatial and temporal resolution at the scale of individual tree crowns and their phenophase
transition events (10 m spatial resolution,∼5 day temporal resolution in spring, weekly in autumn). We validate
UAV-derived phenophase transition dates through comparison with direct observations of tree phenology,
PhenoCam image analysis, and satellite remote sensing. We then examine the biological correlates of spatial
variance in phenology using a detailed species inventory and land cover classification. Our results show that
species distribution is the dominant factor in spatial variability of ecosystem phenology. We also explore sta-
tistical relations governing the scaling of phenology from an organismic scale (10 m) to forested landscapes
(1 km) by analyzing UAV photography alongside Landsat and MODIS data. From this analysis we find that
spatial standard deviation in transition dates decreases linearly with the logarithm of increasing pixel size. We
also find that fine-scale phenology aggregates to a coarser scale as the median and not the mean date in autumn,
indicating coarser scale phenology is less sensitive to the tails of the distribution of sub-pixel transitions in the
study area. Our study is the first to observe forest phenology in a spatially comprehensive, whole-ecosystem way,
yet with fine enough spatial resolution to describe organism-level correlates and scaling phenomena.

1. Introduction

Forest phenology has gained wide recognition as a sensitive in-
dicator of global change, and determines the timing of ecosystem pro-
cesses that may elicit feedbacks within the earth system (Morisette
et al., 2009; Polgar and Primack, 2011; Richardson et al., 2013). The
advance of spring onset in temperate forests in recent decades (Ault
et al., 2015; Miller-Rushing and Primack, 2008; Schwartz et al., 2006),
and earlier canopy activity in the spring time, have been linked to

increased carbon sequestration in forest ecosystems (Badeck et al.,
2004; Keenan et al., 2014b; Richardson et al., 2010). Autumn extension
of the growing season has also been shown to increase net annual
productivity (Dragoni et al., 2011; Keenan et al., 2014b). As under-
standing of the causal factors of forest phenology develops, both global
scale observations from satellite remote sensing, and plot scale studies
of trees, will play crucial roles in linking phenological processes to
ecosystem function (Cleland et al., 2007; Ibáñez et al., 2010; Menzel
et al., 2006; Morisette et al., 2009; Vitasse et al., 2009).
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Harmonizing such diverse scales of information presents distinct
challenges to the characterization of phenology. Investigators rely on
satellite remote sensing for a complete view of the earth system, but at
the expense of spatial resolution, which is typically in the hundreds of
meters for global phenology data (Cleland et al., 2007; Verger et al.,
2016; White et al., 2009; Zhang et al., 2006, 2003). Discerning the plant
physiological processes governing phenology transitions relies on plot
scale observations and experiments with individuals, which must be
scaled up to represent ecosystem processes (Jarvis, 1995; Stoy et al.,
2009); heterogeneous landscapes, composed of diverse plant commu-
nities, complicate the scaling process (Doktor et al., 2009; Hufkens
et al., 2012; Klosterman et al., 2014). Even within one plant community
type, limited ground-based observations may not accurately represent
variability in ecosystem dynamics, if there is significant microclimatic
variation (Fisher and Mustard, 2007).

These challenges highlight the need for phenology observation at
intermediate scales, such as the canopy scale of phenocams (Richardson
et al., 2007). These tower-mounted digital cameras can be used to ob-
tain high temporal resolution, near-surface phenology data, akin to the
vegetation indices of satellite remote sensing (Huete et al., 2002; Verger
et al., 2016). Phenophase transition dates estimated from digital images
have been shown to correlate with plant life cycle features, such as
spring budburst and autumn senescence, carbon assimilation, and leaf
physiology parameters (Keenan et al., 2014a; Toomey et al., 2015;
Wingate et al., 2015; Yang et al., 2014).

While the low cost and familiar technology of digital cameras makes
the phenocam method popular (Brown et al., 2016), their stationary,
tower-mounted perspective limits the area of observation. Aerial pho-
tography is a natural extension of the phenocam technique. The recent
technological revolution in unmanned aerial vehicles (UAVs), also
known as drones, makes it feasible to collect aerial images with the
temporal resolution necessary to monitor plant phenology events
(Anderson and Gaston, 2013; Berra et al., 2016; Dandois and Ellis,
2013; Lisein et al., 2015). A low cost approach is possible (total hard-
ware and software cost ∼$2000), using a consumer grade digital
camera mounted on a UAV, and photogrammetry software to create
georeferenced mosaic images, similar to imagery available from plat-
forms such as Google Maps. UAVs continue to find new applications in
plant science and ecology, including detailed characterization of the 3D
structure of individual tree crowns (Gatziolis et al., 2015), 3D structure
and color properties of forest canopies (Dandois and Ellis, 2013), and
micro-topography of Antarctic mosses (Lucieer et al., 2014). In the
context of tree phenology, recent studies used UAV photography in a
validation study showing that ground-based observations of spring
budburst are correlated with individual tree-scale analyses of digital
photography (Berra et al., 2016), and presented phenological analyses
of individuals as a method for identifying tree species (Lisein et al.,
2015).

Here, we use a lightweight UAV to identify spring and fall pheno-
phase transition events on a landscape scale (5.4 ha area) corre-
sponding to a MODIS pixel, with fine spatial resolution (10 m, dividing
the MODIS pixel in to 540 micro-pixels). We break this area down into
plant communities, and use a detailed map of tree species and in-situ
phenology observations to explore variance between and within com-
munities. Then, by using several resolutions of image analysis, as well
as medium and coarse resolution remote sensing (Landsat and MODIS),
we describe the nature of spatial scaling in phenophase transition dates.
Specifically, we answer these questions:

• What is the timing of phenology events between and within plant
communities in a mixed forest ecosystem (deciduous trees, ever-
green trees, wetlands) and how do they scale up to aggregate
measures of ecosystem phenology?

• What is the biological interpretation of phenophase transitions de-
rived from UAV photography, and how well does in-situ observation
of a small set of individuals (3–5) represent the larger deciduous

community?

• To what degree does spatial variation in phenology correlate to
differences in species assemblage?

• What are the statistical relationships of landscape phenology tran-
sition dates across different spatial resolutions?

2. Methods

2.1. Study site

We conducted our study at Harvard Forest in Petersham, MA. The
study area is a mixed deciduous-evergreen forest, with some woody
wetlands, annual mean precipitation of 110 cm, and a temperate cli-
mate with mean annual temperature 7.1 °C. Deciduous trees in the
study area include predominantly red oak (Quercus rubra) and red
maple (Acer rubrum), but also yellow birch (Betula alleghaniensis),
American beech (Fagus grandifolia), and black oak (Quercus velutina).

2.2. Digital image acquisition and processing

Within Harvard Forest, our primary study area was a 250 m MODIS
pixel (ground area 5.4 ha) containing the PhenoCam mounted on the
Environment Measurement Station tower (EMS; 42.5378, −72.1715;
the ‘harvard’ PhenoCam, see http://phenocam.sr.unh.edu/). We ob-
tained aerial photography over the primary study area using a UAV
(3DR ArduCopter Quad-C Frame, 3D Robotics, Berkeley, CA) equipped
with a Canon Powershot A3300 camera. The camera took photos con-
tinuously throughout each flight, using an intervalometer script pro-
grammed with the Canon Hack Development Kit (CHDK, http://chdk.
wikia.com/wiki/CHDK). Images were taken at a minimum shutter
speed of 1/1000 s, with constant exposure during each flight. The same
color balance was used for all acquisition dates, as consistent color
balance has been shown to be important for reliable digital camera
observations of phenology (Richardson et al., 2009). We recorded
images in the JPEG file format, as opposed to RAW, for faster image
capture time and increased frequency of photos during flight. The uti-
lity of JPEGs for plant phenology study has been thoroughly demon-
strated (Ahrends et al., 2008; Keenan et al., 2014a; Sonnentag et al.,
2012; Toomey et al., 2015). We used the same camera and image set-
tings for all flights, and took pictures of a gray reference square (Col-
orChecker classic, X-rite, Grand Rapids, MI) before each flight on all but
the first date of image acquisition. Frequency of flights was roughly
every five days during spring leaf out and every week during fall se-
nescence and abscission in 2013, depending on weather conditions
(acquisition dates shown in Fig. 1G). We programmed the UAV to fly
between waypoints that covered the study area in two flights of ap-
proximately 10 min each (example flight logs shown in Fig. S1, with
flight plan description in caption).

We combined camera imagery (∼400 photos per acquisition date)
into orthophotos covering the study area, using the PhotoScan software
package (Agisoft, St. Petersburg, Russia). Initial estimates of camera
location for each photo were derived from flight logs of the GPS on
board the UAV, and timestamps of image files, using custom scripts
written in Matlab (The Mathworks, Natick, MA). We used the following
steps and options in PhotoScan:

1. Align Photos: Accuracy, High; Pair preselection, Ground Control;
Point limit, 40000; Constrain features by mask, No.

2. Build Dense Cloud: Quality, Medium; Depth filtering, Moderate;
Reuse depth maps, No.

3. Build Mesh: Surface type, Arbitrary; Source data, Dense cloud;
Interpolation, Enabled; Face count, Medium.

We exported orthophotos from PhotoScan and performed final
georeferencing in ERDAS IMAGINE AutoSync (Intergraph, Huntsville,
AL) using aerial photography obtained from the Massachusetts Office of
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Geographic Information (MassGIS) to identify control points, consisting
of large evergreen trees and other landscape features that were clearly
visible. Orthophotos had a nominal resolution of 6 cm, however we
noted errors in the spatial alignment of tree crowns across acquisition
dates, likely arising from a number of sources including inaccuracy of
the onboard GPS, wind-blown motion of trees, the automated ortho-
photo mosaicking process, and user error in final georeferencing. After
comparing orthophotos from two acquisitions on the same date, and
considering the nature of the species data, discussed further in Section
2.5, we decided to use a 10 m resolution as the finest scale for analysis.
We obtained similar results when the analysis was repeated with 5 m
and 3 m grids, and note that minimal additional spatial variance in
phenology could be gained by using these resolutions.

To calculate phenology time series data from images, orthophotos
were divided into regions of interest (ROIs) ranging in size from 10 m
by 10 m, up to the entire study area. For each region of interest, we
calculated time series of green chromatic coordinate (GCC):

=

+ +

G G
R G BCC (1)

by averaging the red (R), green (G), and blue (B) digital numbers from
the pixels in each ROI, on each acquisition date (Sonnentag et al.,
2012). Example GCC time series and additional details are available in
Fig. S2 and its caption. A record of all orthophotos and flight logs is
available in the Harvard Forest Data Archive at http://harvardforest.
fas.harvard.edu:8080/exist/apps/datasets/showData.html?id=hf294.

2.3. Remote sensing of phenology

Surface reflectances were obtained from Landsat (48 by 48 grid of
30 m pixels, weekly temporal resolution) and MODIS (8 by 8 grid of
250 m pixels, daily temporal resolution) over 346 ha of mixed decid-
uous-evergreen forest, containing the primary study area, for 2013.
This larger area encompasses much of the Prospect Hill tract of Harvard

Fig. 1. A–E; Orthophotos from before (April 30),
during (May 28), and after leaf out (June 20), and
during senescence of red maples (October 1) and red
oaks (November 4). F; A map showing the different
plant communities (deciduous = green, we-
tlands = red and blue, evergreen = black). G; Green
chromatic coordinate (GCC) from all dates of UAV
photography, averaged over each community, as
well as the entire study area. GCC time series have
been offset in the y direction for visibility; y-axis
ticks are spaced at an interval of 0.02; most time
series start at Gcc ≈ 0.36, except for evergreen which
starts at Gcc ≈ 0.40. Vertical bars show one standard
deviation. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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Forest, and some of the surrounding forested land.
Following the methods of Melaas et al. (2013), we used a 30 year

time series of Landsat images to identify spring and autumn phenology
dates. Since Landsat phenology data was scarce at Harvard Forest in
2013, due to cloud cover on acquisition dates during leaf-out, we used
the closest year with good data availability and similar phenology
based on PhenoCam data, which was 2008. However we also conducted
analysis using other nearby years with good data availability (2009,
2010, and 2011) and obtained similar results. We used the enhanced
vegetation index (EVI), a proxy of photosynthetic activity (Huete et al.,
2002), for calculating Landsat phenology:

=
−

+ − +

EVI
ρ ρ

ρ ρ ρ
2.5( )

( 6 7.5 1)
NIR R

NIR R B (2)

where ρNIR, ρR, and ρB are reflected light in the near-infrared, red, and
blue bands, respectively. MODIS data were obtained from the Nadir
BRDF Adjusted Reflectance (NBAR) product, custom prepared at 250 m
resolution as a daily retrieval for this study (Shuai et al., 2013). We
used only data flagged as “high quality” and with no snow present,
according to quality control products contained along with MODIS
NBAR surface reflectance data (Campagnolo et al., 2016; Schaaf et al.,
2008, 2002, 2011), and calculated EVI similar to Landsat, as well as GCC

similar to Eq. (1). For the Landsat surface reflectance and MODIS NBAR
data, we explored additional spatial resolutions by averaging re-
flectances over aggregates of 2 by 2, 4 by 4, etc. groups of pixels, as
detailed in Section 2.6, and calculating vegetation indices from these as
well.

2.4. Phenology dates from time series data

We used similar methods to calculate phenology dates from both
UAV GCC and MODIS EVI and GCC; these curve fitting methods are
described in detail in Klosterman et al. (2014). Briefly, sigmoid func-
tions were fit to vegetation index time series, using a greendown sig-
moid (Elmore et al., 2012) for UAV data and a simple sigmoid (Zhang
et al., 2003) for MODIS. These curve fit models represent vegetation
indices with logistic functions in spring and fall; the greendown sigmoid
includes a linear decrease in summer time greenness. Curve fit para-
meters were estimated using non-linear least squares in Matlab, and
phenology dates were calculated from curve fit parameters by finding
the dates of extrema in the curvature change rate. We used these
methods to calculate dates for the start, middle, and end of canopy
development in spring (three spring extrema in CCR), and the middle of
senescence in fall (middle of three fall extrema in CCR). An example of
derived phenology estimates is shown in Fig. S2. Uncertainties were
estimated using the Jacobian matrix of curve fit parameters to ap-
proximate the parameter covariance matrix, generate Monte Carlo en-
sembles of phenology dates, and calculate the variance and inner 95%
interval of these ensembles for each phenology date in each grid cell.

Phenology dates from tower-mounted PhenoCams were obtained for
the following PhenoCam sites located in or near the study area: “har-
vard” (image and ROI shown in Fig. S3), “harvardlph”, and “harvard-
barn”. PhenoCams had primarily deciduous trees in their ROIs. We used
dates calculated from GCC time series with the generalized sigmoid, a
curve fit model with additional flexibility over the greendown sigmoid
(Klosterman et al., 2014).

2.5. Ground observations

We used a record of direct observations of leaf phenology for red
oak (n = 4 trees), red maple (n = 5), yellow birch (n = 3), American
beech (n = 4), and black oak (n = 4) made every 3–7 days during
spring and fall. Budburst date was calculated as the day when 50% of
buds had broken on an individual, and leaf maturity was calculated as
the day when at least 50% of the leaves on a tree had reached 75% of

their final size. In autumn, leaf color date was determined as the day
when 50% of leaves on a tree had changed color. Linear interpolation
was used to infer the progression of budburst, leaf size, and leaf color
between observation dates; protocols and data methods are described
more fully in Richardson and O’Keefe (2009), and the underlying ob-
servational data are available in the Harvard Forest Data Archive
(http://harvardforest.fas.harvard.edu:8080/exist/apps/datasets/
showData.html?id=hf003). The trees under observation, as well as the
area of mapped species and the PhenoCam fields of view are shown in
Fig. S4 along with the primary study area (MODIS pixel).

Tree species were identified for UAV photography analysis using a
map of all woody stems ≥1 cm diameter at breast height (DBH) within
a 35 ha plot (http://harvardforest.fas.harvard.edu:8080/exist/apps/
datasets/showData.html?id=hf253). The species map included 76%
of the study area, with 17,946 woody stems (stems ≥5 cm DBH shown
in Fig. S5). Canopy species composition was calculated as fractional
basal area by species of live trees in 10 m grid cells. Grid cells in the
wetland had an average of 86 stems and 0.10 m2 basal area, while those
in the forest had an average of 27 stems and 0.43 m2 basal area. We
note that using smaller spatial grids than 10 m increased the chances of
incorrectly assigning portions of tree crowns in UAV imagery to grid
cells not containing their stems, as we found in separate work that the
average length of the major axis of dominant crowns (those most visible
in aerial imagery) was 8 m (± 3 m standard deviation, 36 ± 16 cm
stem DBH, n = 30 trees). We also noted decreased explanatory power
of the statistical modeling described below when using smaller grid
sizes, another reason we chose 10 m as the finest resolution for analysis.

2.6. Statistical analysis

To examine the correlates of variation in deciduous tree phenology
within the primary study area, we performed multiple linear regres-
sions using generalized least squares with the nlme package in the R
computing language. As predictors in the regressions, we used a cate-
gorical variable to distinguish wetlands and forest, and continuous
variables of species composition. We classified grid cells as wetlands or
forest based on visual inspection of images, as we observed that the
wetlands contained herbaceous vegetation with distinct phenology
from trees. We eliminated any 10 m grid cell that had< 50% of its area
in the images from this analysis. Woody species composition was de-
termined by basal area fraction, using all species that appeared in at
least 10 of 372 grid cells within the region of available species data, and
had at least 20% basal area fraction in at least one grid cell. The re-
maining species were lumped into one predictor to ensure the fractional
species composition of each grid cell summed to 1. Because species
predictors were mixture components, we used a no-intercept regression
to eliminate the redundant regression coefficient (Draper and Smith,
1998). Following our observation of spatially autocorrelated residuals
in initial results using ordinary least squares regressions, we used
generalized least squares to model autocorrelation and obtain more
robust coefficient estimates (Dormann et al., 2007).

In order to explore how statistical moments of phenology depend on
spatial resolution, we examined various sizes of ROIs of UAV photo-
graphy by dividing the primary study area. The bottom edge of the
study area (250 m MODIS pixel) measured approximately 232 m, and
we successively divided this area to get resolutions of 116, 78, … 10 m.
In the larger study area, we used aggregates of Landsat and MODIS
pixels: the 48 by 48 set of Landsat pixels was aggregated to obtain re-
solutions from 30 m through 720 m, and the 8 by 8 set of MODIS pixels
for resolutions 250 m through 1 km. MODIS and Landsat pixels were
aggregated by first averaging the reflectance values across pixels in
each group, then calculating vegetation indices and estimating phe-
nology dates as described above. We aggregated reflectances, as op-
posed to indices or derived dates, since our goal was to simulate dif-
ferent sensor resolutions. We calculated the standard deviation and
skewness of phenology dates for each spatial resolution, and quantified
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uncertainty using the 95% confidence interval of 2000 bootstrap sam-
ples. We also considered whether the phenology dates of larger, coarser
resolution ROIs (25 ROIs, 48 m resolution) in UAV imagery were most
closely related to the mean, GCC amplitude-weighted mean, or median
of phenology dates from the smaller, finer resolution ROIs they con-
tained (16 ROIs of 12 m resolution within each of the 25), to determine
the transfer function of phenology dates from finer to coarser spatial
scales.

3. Results

3.1. Landscape phenology

Orthophotos of the study area clearly show leaf-out of deciduous
trees (selected dates shown in Fig. 1A–E), with the primary study area
becoming greener during the period April–May–June, and deciduous
trees becoming harder to distinguish from the evergreens, which were
plainly visible on April 30. Senescence reveals differences among de-
ciduous species, with red maples displaying red leaves (Fig. 1D) before
red oaks turn a brownish-yellow color (Fig. 1E). The average GCC of the
deciduous community (Fig. 1G) has a larger amplitude of spring time
increase than other plant communities, coinciding with the period of
leaf-out; evergreen grid cells (classified as GCC > 0.39 before decid-
uous leaf out, which we found corresponded to approximately 95%
evergreen basal area) display a more gradual seasonal progression in
GCC and smaller seasonal amplitude. Wetland areas exhibit relatively
independent dynamics, both from each other and from the tree com-
munities, with different amplitudes and timing of greenness changes.
Clear differences in phenology among and within plant communities
(Fig. 1) are reflected in derived phenophase transition dates (Fig. 2).
For example, the wetland areas, in particular wetland 1, greened up
later and senesced earlier than the tree communities, as seen both in the
GCC time series and in phenology maps determined from curve fitting
(Fig. 2). There is more spatial variation in fall phenology than in spring
phenology, both across the primary study area as a whole, and within
the deciduous community. Due to the more gradual progression of
autumn leaf phenology, the uncertainty of the curve fitting method is
larger for fall than spring: two-sided 95% confidence interval widths are

11, 7, 14, and 15 days for SOS, MOS, EOS, and MOF, respectively,
averaged across all land cover types, and 10, 5, 12, and 14 days within
the deciduous land cover type. The transition where the GCC curve is
steepest, the middle of spring, has the lowest average uncertainty. The
uncertainties for all seasonal transitions are smaller than the range of
dates for that transition (e.g. Fig. 2), indicating UAV photo analysis is
effective for exploring phenological differences among communities. In
Sections 3.2 and 3.3, we compare start and end of spring to direct ob-
servations of phenology because they are closest to bud burst and leaf
maturity, but focus on middle of spring for regression analysis (also in
Section 3.3) and scaling analyses (Section 3.4), because of greater
certainty in this date.

3.2. Differences between and within plant communities

3.2.1. Budburst
Using the land cover classifications shown in Fig. 1F, we explored

differences between and within plant communities and validated UAV
results with in situ observations. The histogram of start of spring dates
from UAV imagery (Fig. 3A) has a peak at day of year 124 for the
community of all plants. The deciduous trees have the same peak, while
the average evergreen date is six days earlier, similar to findings of
Richardson et al. (2009), and wetlands four days later (means are dif-
ferent according to t-test at 5% significance level). Start of spring dates
for the dominant species red oak and red maple match the timing of
budburst observations from trees near the study area to within the
average inner 95% confidence interval of 10 days for deciduous grid
cells. This shows that UAV imagery analysis can reveal statistically sig-
nificant differences between plant communities’ phenology, and provide
similar results to ground-based observations at the species level.

PhenoCams located in and near the study area, and MODIS data for
the study area and surrounding pixels, provide validation and context
for the UAV imagery results. PhenoCams agree with each other on the
start of spring to within two days (average DOY 122), and are all within
the average 95% confidence interval of the peak of UAV photography
dates. The MODIS date for the primary study area (star symbol) is also
close to this date, for both MODIS GCC and MODIS EVI. The means of
both the MODIS GCC and EVI dates for the primary study area and the 8
surrounding pixels are within one day of the mean date of UAV pho-
tography ROIs across the community of all plants. Taken together, the
similarity with surrounding areas as seen by PhenoCam and MODIS and
the relatively small variance of start of spring dates in UAV imagery, in
comparison with later transitions (standard deviation 4 days versus
10 days for leaf maturity, Fig. 3B, and 12 days for fall color, Fig. 3C),
indicate that most vegetation in the study area begins green-up at
roughly the same time. The range between the earliest and latest dates
determined from UAV photography (24 days) is however three times
that of MODIS (8 days), indicating the presence of finer-scale phenology
variability than observable with MODIS.

3.2.2. Leaf maturity
By the end of green-up (Fig. 3B), UAV imagery shows that differ-

ences between plant communities become larger: the average date of
leaf maturity for evergreens in the primary study area (DOY 151) lags
the deciduous leaf maturity date (DOY 141) by over a week, and the
corresponding wetland date (DOY 162) is three weeks later (t-test at 5%
significance level). We note that the PhenoCams, which are focused on
the deciduous canopy, all have the same transition date (DOY 139),
which is close to the mean deciduous date from UAV photography.
However the aggregate phenology of MODIS depends on the index:
MODIS GCC is closer to the deciduous community (mean of 3 by 3
window of MODIS pixels is DOY 142), while EVI is later, and closer to
the wetland dates from UAV imagery (mean DOY 150). Deciduous trees
in the vicinity of wetland 1 have a later end of spring transition than
most other trees (result not shown), a trend already evident during their
middle of spring transition (Fig. 2).

Fig. 2. A, B: Maps of phenology dates for 10 m grid cells in the primary study area, for
middle of spring and middle of fall, 2013, determined from curve fitting. Grid cells shown
in white failed to generate phenology dates by the curve fitting method, primarily due to
lack of GCC variation in evergreen trees.
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3.2.3. Autumn leaf color
In fall, differences in the timing of phenology events within the

deciduous community are larger than at any point during spring. The
difference between average leaf coloring times of red oak and red maple
seen in the direct observations (∼20 days) is similar to UAV results
(Fig. 3C). This indicates that spatial variation of phenology within the
deciduous community (Fig. 2B) may be partially explained by spatial
differences in species assemblage. Across the deciduous community, the
average of UAV photography dates (DOY 281) is close to the average
PhenoCam date (DOY 282). However the earlier average of all com-
munities in UAV photography (DOY 277), which appears to be pri-
marily due to the wetlands (average DOY 262), is closer to the MODIS
dates for the study area (mean of 3 by 3 window = DOY 275 for GCC,
DOY 278 for EVI). This confirms that MODIS phenology, particularly
that of EVI, is similar to that of the community of all plants, while
PhenoCams are closer to just the deciduous trees, the land cover type
they target, during both spring and autumn transitions.

3.3. Biological correlation with landscape variability in phenology and
differences between and within deciduous species

We used multiple linear regressions to examine the correlation of
phenology dates to biological (species, land cover type) variability
across the landscape, and to infer phenology dates of different species.
Using semi-variograms to examine spatial autocorrelation of residuals
from initial regressions using ordinary least squares, we found that
regression residuals were autocorrelated up to a range of 30 m in spring
and 150 m in fall, with nuggets of 0.2 and 0.5 respectively (Dormann
et al., 2007). Consequently we performed generalized least squares
regressions, using these parameters in a spherical autocorrelation
model, and report the results here. The generalized least squares

regressions explained 75% of spatial variance in the middle of spring
transition, and 56% in the middle of fall transition. Adding the variance
of Monte Carlo ensembles over all grid cells, we obtained estimates of
curve fitting error, which constituted 7% of phenology variance in
spring and 10% in fall (Table S1). Therefore 18% of variance in spring
and 34% in fall was due to regression model lack of fit, possibly asso-
ciated with temperature microclimates or other environmental varia-
bility (Fisher et al., 2006), genetic variation within species (Sork et al.,
2013), age- or size-related effects (Richardson and O’Keefe, 2009),
disturbance, or other factors not included in the model.

The regression coefficients (Table 1) represent inferred phenology
dates for the middle of spring and fall transitions of select deciduous
species. Wetlands were observed in imagery to have a later spring
transition and earlier fall transition than the forest (Figs. 1–3). Simi-
larly, the regression model indicates that the wetlands have a sig-
nificant (p < 0.05) 9-day delay in the middle of spring transition as
compared to forested land, and 5-day advance for the middle of fall.

Most deciduous tree species transitioned through middle of spring
within a week of each other, while in fall the earlier dominant species
(yellow birch, red maple) senesced roughly two to three weeks earlier
than the later ones (red oak, American beech). Species abundance is
reflected in the certainty with which transition dates could be de-
termined: the species in Table 1 are ordered by total basal area, and the
most prevalent species near the top of the list have smaller standard
errors than the rarer species.

We compared species transition dates from UAV photography ana-
lysis with a ground truth of direct observations, calculating a similar
regression to that reported in Table 1 for middle of spring, but with start
of spring to compare with budburst observations, and using the autumn
results from Table 1 in comparison with leaf color observations. We
found that in spring, the regression analysis resulted in phenology dates

Fig. 3. A–C: Histograms of phenology transition
dates for each 10 m grid cell (ROI) in UAV imagery
for start of spring (bud burst, A), end of spring (leaf
maturity, B), and middle of fall (leaf color, C), color
coded by plant community type, and in the case of
deciduous trees, by species for grid cells with a spe-
cies majority as determined by basal area fraction
(“No majority” indicates grid cells with no majority
species, or that were not on the species map).
Outliers of more than three standard deviations from
the mean have been removed. Below the histograms
are shown: ground observations of nearby con-
specifics to dominant species in study area, where
the symbols represent individual trees, connected by
lines of the same color for each species; PhenoCam
transition dates for cameras located in (EMS) and
near (barn, LPH) the study area; and MODIS phe-
nology transition dates for the study area and the
eight surrounding 250 m MODIS pixels, determined
from GCC and EVI.
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within the range of observed trees for most species (Fig. 4A). Autumn
regression results were also close to observations of leaf color (Fig. 4B),
with oaks and beeches roughly two to three weeks later than maples
and birches from both methods. For the most populous species (red oak
and red maple), the range between the earliest and latest individuals
under direct observation was larger than the regression confidence in-
tervals in spring. This indicates that the more thorough sampling of
dominant species allowed by UAV photography can lead to more pre-
cise characterization of species-level phenology transition dates than
direct observation of a small number of individuals (3–5 per species).
However we note that in autumn, most species were more precisely
characterized by direct observation, likely corresponding to the fact
that species and land cover explain less phenological variability in fall
(56%) than in spring (75%).To examine within-species variability, we
isolated 10 m grid cells that had more than 75% of one tree species by
basal area in UAV imagery; these dominant species are red oak and red
maple. We found more variance in middle of fall than start of spring
dates for these species, and more variance for red maple than red oak in
fall (Table 2). Similar results were found for the same species under
direct observation. The larger variance of red maple in autumn may be
due to its spatial distribution: red maple is relatively evenly spread
throughout the study area, both in and around wetland areas, as well as
in upland areas, and therefore inhabits a wider range of land cover
types than red oak, which tends to be absent from wetter areas (Fig.
S5). Across New England, red maples growing in and around wetland
areas tend to change color well in advance of those on better-drained
soils. These results indicate that within-species variation, which may
account for 18% of landscape phenology variation in spring and 34% in
fall, could be unevenly distributed among species.

3.4. Scaling of phenology

In our scaling analysis, we used UAV photography to explore phe-
nophase transitions within Landsat and MODIS pixels, and link ob-
servations at different scales. First, we examined the statistical prop-
erties of transition dates at different spatial resolutions across these
imaging platforms. The goals of this analysis were to see whether and
how patterns in statistical moments from the coarser scales of remote
sensing extended to the higher resolution available with UAV photo-
graphy, and how much variation in phenology occurred at finer scales
than satellite remote sensing.

Overall, we found that spatial variability in phenology declines as
spatial resolution becomes coarser. Using ROIs ranging from 10 m to
1 km, standard deviation of phenological transition dates decreases
with increasing pixel size, following a significant (p < 0.001) linear
trend with logarithm of pixel length across observation platforms (UAV,
Landsat, and MODIS EVI, with similar results, not shown, from MODIS
GCC) in both middle of spring and middle of fall (Fig. 5A, B). While
there is an apparent discontinuity between UAV and Landsat standard
deviations in spring, and to a lesser extent in fall, this is probably

Table 1
Regression coefficients and standard errors (SE) for the multiple linear regression of
middle of spring and fall dates of grid cells (N = 372). Predictors include a categorical
variable for wetland land cover type (as opposed to forest) and species composition by
basal area fraction for the indicated species (select deciduous species). Species are or-
dered by prevalence in terms of total basal area in all grid cells, and include red oak
(Quercus rubra), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), American
beech (Fagus grandifolia), black oak (Quercus velutina), black cherry (Prunus serotina),
winterberry (Ilex verticillata), white ash (Fraxinus americana), black birch (Betula lenta),
paper birch (Betula papyrifera), highbush blueberry (Vaccinium corymbosum), uncertain
birches in the genus Betula, and maleberry (Lyonia ligustrina).

Variable Spring Coefficient Spring SE Fall Coefficient Fall SE

Cover type wetland 9 0.8 −5 2.4
Red oak 132 0.5 289 2.7
Red maple 134 0.5 272 2.7
Yellow birch 131 1.4 273 4.5
American beech 132 1.5 290 4.6
Black oak 134 2.3 292 6.1
Black cherry 132 4.3 272 12.2
Winterberry 138 1.3 273 4.4
White ash 134 5.1 255 14.8
Black birch 129 3.2 283 9.3
Paper birch 131 3.4 268 10.2
Highbush blueberry 135 3.7 262 10.7
Other birch 135 2.6 278 7.8
Maleberry 136 3.9 268 11.5

Inferred

Red oak

Red maple

Yellow birch

American
beech

Black oak

A

Red oak

Red maple

Yellow birch

American
beech

Black oak

B

Fig. 4. A, B: Comparison of start of spring (50% budburst) dates and middle of fall (50%
leaf color) dates inferred from linear regression analysis with species averages from direct
observation of trees, for species with a majority of basal area in at least one 10 m grid cell.
The diagonal line is the one–one line; horizontal lines are the 95% confidence intervals of
inferred dates; vertical lines are the ranges between earliest and latest trees under ob-
servation.

Table 2
Comparison of within-species variability in UAV photography and direct observation:
standard deviations (SD) of start of spring (budburst) dates and middle of fall (50% leaf
color) dates. Grid cells are those with greater than 75% basal area of the indicated spe-
cies.

Species N
grid
cells

Start of
spring
SD

Middle
of fall SD

N trees under
direct
observation

Budburst SD Leaf
color
SD

Red oak 20 3.4 3.6 4 2.5 3.5
Red maple 42 3.0 8.5 5 3.5 7.9
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caused by the area of later spring (earlier fall) phenology in the wet-
lands (Fig. 2), that constitutes a substantial fraction of the UAV study
area. The bootstrap samples used to generate confidence intervals may
not include this area, particularly at larger UAV pixel sizes, resulting in
lower variance for some samples; this is reflected in the low end of the
95% confidence intervals for these pixel sizes, which are close to
Landsat. We also tried sampling only the non-wetland regions of the
UAV study area and found a more clearly decreasing trend in spatial
variance with increasing pixel size. Because the wetlands had later
spring phenology than the forest, the distribution of spring dates in the
UAV study area was skewed toward later dates (skewness results not
shown).

However the larger study area as viewed by Landsat and MODIS had
a skew close to zero for spring, and both areas did for fall, indicating
that across the landscape at Harvard Forest, localized regions of later
phenology, such as the wetlands in the primary study area, are as
common as those of earlier phenology. These results imply that if we
had UAV photography over the larger study area observed with Landsat
and MODIS, we would likely observe a smooth transition in variance
across all observation platforms.

Standard deviation declines to near zero for both seasons at the
largest pixel sizes, indicating remote sensing at a resolution of roughly
1 km combines organisms and landscapes to such an extent that little
spatial variation is observed. Importantly, we note that most of the
spatial variability in phenology at Harvard Forest occurs at finer scales
than observable with MODIS.

In the second part of our scaling analysis, we examined the transfer
function governing the representation of finer scale phenology within
larger pixel sizes, using UAV photography at ∼12 m and ∼48 m re-
solutions. We found that dates of larger pixels were most closely related
to the median dates of their constituent smaller pixels in fall, while in
spring the median was similar to the mean and GCC amplitude-weighted
mean (Table 3).

4. Discussion

4.1. Patterns in community phenology

Using a combination of UAV photography and remote sensing
(MODIS NBAR and Landsat), we explore how the diverse phenological

behaviors of different plant communities aggregate to produce an
ecosystem-level phenology. We find that this scaling depends on which
seasonal transition is under consideration. Because plants from all
communities start to develop foliage around the same time, the dis-
tribution of phenology dates from UAV photography has a clear peak at
the start of spring, and a small standard deviation (4 days). The MODIS
GCC and EVI dates are very close to this, for the UAV photography area
as well as surrounding MODIS pixels (Fig. 3A). However at the end of
spring, plants have more diverse phenology (standard deviation
10 days) and the wetland community lags the others by approximately
two weeks. MODIS GCC and EVI phenology of the study area are both
within 3 days of the mean phenology of all communities from UAV
photography at the end of spring. However while MODIS GCC is also
close to the mean of deciduous grid cells (2 days difference), MODIS
EVI is 8 days later. This is a key point since MODIS EVI is often assumed
to represent deciduous trees in modeling of mixed forest ecosystem
function (e.g. Medvigy et al., 2009). In terms of carbon uptake, a phe-
nological bias of a week later spring transition corresponds to a sub-
stantial decrease in net ecosystem productivity of approximately 28 g C
per m2 (Richardson et al., 2010).

Our results show that UAV photography is an effective tool for
understanding how divergent phenological behaviors of plant commu-
nities relate to aggregate landscape phenology. We also note that UAV
imagery provides a more accurate representation of heterogeneous
landscape phenology around point measurements of ecosystem-scale
processes (e.g. carbon fluxes) than tower-mounted instruments such as
PhenoCams. This information could be useful for calibrating models
and interpreting measurements of ecological processes that depend on
plant phenology, such as canopy scale photosynthesis.

Fig. 5. A, B: Relation between standard deviation of phe-
nology dates (middle of spring and fall) and spatial resolution
in pixel size (m). Vertical bars indicate 95% confidence in-
tervals from bootstrap sampling, and the black line is a re-
gression using all the data, weighted by the inverse of con-
fidence interval width. Spring linear regression:
slope =−1.2, R2 = 0.76, p < 0.001. Fall linear regression:
slope =−2.1, R2 = 0.90, p < 0.001.

Table 3
RMSEs (days) of the comparison between ∼48 m pixels and summary statistics of the
16–12 m pixels they contain (n = 23, out of an attempted 25. Dates could not be esti-
mated for all grid cells as shown in Fig. 2).

Statistic Spring RMSE Fall RMSE

Mean 0.6 3.6
GCC amplitude-weighted mean 0.5 3.2
Median 0.7 2.1

S. Klosterman et al. Agricultural and Forest Meteorology 248 (2018) 397–407

404



4.2. Biological components of landscape variation

By combining UAV photography with a detailed species map and
land cover classification, we examine the biological correlates of fine-
scale variance in landscape phenology. We find that species composi-
tion and land cover explain most of the spatial variance in phenology in
spring (75%) and fall (56%). These results provide a spatially extensive
validation indicating that the practice of upscaling phenology based on
relative species abundance, an approach already used by some re-
searchers (Liang et al., 2011), accounts for the dominant factor in
phenological variability within deciduous forest communities.

From this analysis we also infer species-specific phenophase tran-
sition dates, and reference them to in situ observations of leaf phenology
events. Within the deciduous community, bud burst and leaf maturity
match the start and end of spring metrics from UAV photography, re-
spectively, while the colors of fall senescence reach their halfway point
at approximately the same time as the middle of fall dates calculated
from UAV photography (Fig. 3A–C). These findings are similar to an
earlier comparison of direct observations and transition dates derived
from tower-mounted PhenoCams (Keenan et al., 2014a), as well as a
recent study on budburst observations in comparison to GCC from UAV
photography (Berra et al., 2016). We also find a similar order of species
phenology events to a previous study at Harvard Forest (Richardson
and O’Keefe, 2009). Within species, we see that the nominal variability
of deciduous tree phenology observed in UAV photography is similar to
that revealed by direct observation (Table 2). However by accounting
for land cover and species fractions on a 10 m grid, in most cases we are
able to infer phenology dates of dominant species with more certainty
than from direct observation (Fig. 4A, B). This analysis demonstrates
the statistical power that can be gained from integrating the large
spatial coverage of UAV photography with species data on a fine spatial
scale.

4.3. Scaling from organisms to the landscape

Remote sensing is an essential research tool for global phenology
monitoring. However remote sensing platforms generally face a tra-
deoff where increased spatial resolution is associated with decreased
temporal resolution. In phenology studies, high spatial resolution is
needed to see differences between communities in heterogeneous eco-
systems such as mixed forests, while temporal resolution must be suf-
ficient to accurately capture rapid phenological changes such as bud-
burst (Pfeifer et al., 2012). Methods have been developed to leverage
multi-year records of high spatial resolution (i.e. 30 m) remote sensing
at a temporal resolution of weekly or longer, using annual deviations
from the long term mean (Melaas et al., 2013). However the combi-
nation of high temporal (i.e. daily), low spatial (250 m or larger) re-
solution is needed for reliable yearly satellite observations during times
of phenological change (Schaaf et al., 2002, 2011; Shuai et al., 2013;
Verger et al., 2016). This is because in some years, clouds may prevent
weekly satellite observations from imaging the earth’s surface during
the entire period of leaf-out, as we found with Landsat at Harvard
Forest in 2013. Since different resolutions of satellite remote sensing
are useful for different phenology research questions, it is important to
know how phenological information transfers across scales. We explore
the mathematical nature of this scaling process with UAV imagery.

Scaling laws are fundamental to ecology, starting with the species-
area relationship (Arrhenius, 1921). They receive continued attention
as spatial data from remote sensing become increasingly available
(Woodcock and Strahler, 1987). In the context of plant canopies, in-
vestigators have examined how ecological processes scale at an instant
in time, to give general guidance in statistical methods for translating
fine scale information to coarser scales (Rastetter et al., 1992), and to
determine the effect of preserving different statistical moments in the
upscaling process (Stoy et al., 2009). Spatial scaling of the temporal
aspect of canopy phenology has received relatively less attention.

We analyze the scaling of phenology transition dates at resolutions
from 10 m to 1 km, and find a linear relationship between logarithm of
pixel size and standard deviation in phenology transition dates (Fig. 5A,
B). These results are similar to the scaling of time-invariant snapshots of
ecological observations, such as the species-area law and the scaling of
canopy status as measured by the normalized difference vegetation
index (NDVI) (Stoy et al., 2009). Our findings indicate that significant
variability is lost in the transition to coarse scale observations. Since
most of the variability we observe in phenology is at finer scales than
the larger pixel sizes of remote sensing (Fig. 5A, B), our results suggest
that accurate models of ecosystem-scale phenology should consider
finer scale phenology variability than available from MODIS.

We also explore the statistical nature of the transfer from phenology
dates at fine spatial resolution to the dates of larger regions, using two
pixel sizes to analyze UAV photography (400 grid cells at ∼12 m re-
solution, aggregating to 25 grid cells at∼48 m resolution). We find that
in the relatively quick spring transition, phenology scales with the
mean, similar to results from a previous study that fused Landsat and
MODIS observations (Fisher and Mustard, 2007), and in agreement
with a community- and area-weighted mean upscaling approach using
individual tree observations (Liang et al., 2011). Our results advance
these studies by showing the same pattern in whole-ecosystem ob-
servations of all plants visible in UAV photography, at a spatial re-
solution on the scale of dominant tree crowns.

We also note that the median and GCC amplitude-weighted mean
describe upscaling with essentially the same accuracy as the mean in
spring. In the more gradual fall transition however, greater spatial
variance in phenology led to larger differences between scaling
methods. Here we found that the median of finer resolution dates was
closer to the coarser scale date than these other statistics. The ampli-
tude-weighted mean places more emphasis on areas with larger sea-
sonal change in GCC, which are likely to be “more deciduous” than areas
with smaller amplitude. Our results indicate that for autumn phenology
in our study area at Harvard Forest, transition dates at a coarser spatial
scale are not especially influenced by small areas that have greater
seasonal changes in greenness, or by particularly early or late transi-
tions that would affect the mean. These results advance the mathema-
tical understanding of how the phenology of larger pixel sizes relates to
the phenology of smaller pixels contained therein.

5. Conclusion

Understanding phenology’s role in earth system processes now and
in the future depends on accurate characterization of plants, as they
function at scales from the individual to the landscape. Going from
plants and forest stands, where phenology is most tangible to us as
observers, to the ecosystems which global observations and models use,
requires a quantitative understanding of how phenology scales (Potter
et al., 2013). To serve this need, we presented here the first observation
of forest phenology at the ecosystem scale, with spatial resolution on
the order of individuals, and found that three levels of organization
could be used to describe phenology at our study site:

• Diverse plant communities, such as wetlands, evergreens, and de-
ciduous trees

• Species diversity within communities

• Within-species variance, possibly due to microenvironments, ge-
netic variation, disturbance, or tree age

We combined coarse (250 m MODIS) and intermediate (30 m
Landsat) resolution remote sensing with UAV photography (10 m re-
solution) to examine the statistical features of scaling in phenology.
From this we found that the spatial standard deviation of phenophase
transition dates across the landscape increases in a linear fashion with
the logarithm of smaller pixel size. Most of the variability that can be
gained from observing smaller pixels occurs at finer scales than MODIS.
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Using a detailed species map, we determined that species and land
cover variability correlate with most of the fine-scale variance of phe-
nology in spring (75%) and fall (56%). Our results suggest that using a
species- and community-based scaling approach to modeling ecosystem
phenology would account for the dominant factors in spatial variability.

We demonstrate the potential of the large spatial coverage and fine
spatial and temporal resolutions of UAV photography for obtaining
phenology observations that could be used to validate ecosystem
models, and to interpret integrated measurements of heterogeneous
ecosystem processes like canopy photosynthesis. As UAV technology
continues to improve and become less costly, we advocate for wider use
of UAVs in phenology studies, to address research objectives that would
benefit from increased access to aerial survey data.
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