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A B S T R A C T

Long-term, continuous digital camera imagery and tower-based radiometric monitoring were conducted at a
representative hardwood forest site in the Northeastern United States, part of the AmeriFlux network. In this
study, the phenological metrics of the leaf area index (LAI), plant area index (PAI) and associated transition
dates (e.g., timing of the onset of leaf expansion and the cessation of leaf fall) were compared using 4-year of
data from Bartlett Experimental Forest. We used digital repeat photography (DRP) imagery collected using two
different methods (“canopy cover” and “phenocam” approaches), together with above- and below-canopy
measurements of photosynthetically active radiation (PAR). The growth-period LAI estimated from canopy cover
images (LAICANOPY) and the above and below canopy PAR measurements (LAIfPARt) were within approximately
the same range, in term of magnitude, as previous results for multiple comparative methods, although growing-
season LAICANOPY was slightly lower (3.11 m2 m−2 to 3.35 m2 m−2) than LAIfPARt (3.19 m2 m−2 to
3.67 m2 m−2). In addition, we derived phenological transition dates from PAICANOPY, PAIfPARt, and color-based
metrics calculated from the phenocam imagery (green (GCC) and red (RCC) chromatic coordinates). The tran-
sition dates in both spring and autumn differed somewhat according to method, presumably due to the vege-
tation status detection abilities of each vegetation metric. We found that LAI estimation from canopy cover
images may be influenced by automatic exposure settings, which limits the ability to detect subtle changes in
phenology during the transition phases in both spring and autumn. Particularly in autumn, the color-based
metrics calculated from the phenocam imagery are decoupled from leaf area dynamics and thus PAI. While
above and below canopy PAR measurements could yield the better indicators for estimating LAI, its seasonal
dynamics, and associated phenological transition dates in long-term monitoring, we argue that there are obvious
benefits to the multi-sensor approach used here.

1. Introduction

Plant phenology plays a fundamental role in regulating the seasonal
dynamics of ecosystem function and structure, and hence the biogeo-
chemical cycling of carbon and nutrients. Phenology also serves as an
important control on energy and carbon exchanges via atmo-
sphere–plant community interactions on local-to-global spatial scales
(Richardson et al., 2013a). Thus, phenology drives the biological
rhythms of the whole ecosystem under a given climate (Klosterman
et al., 2014).

While phenology is sensitive to climate change, it is unclear how it
will respond to future warming (Peñuelas et al., 2009). Several

researchers have demonstrated the effect of climate change on phe-
nology at an ecosystem scale over past decades and centuries (Ellwood
et al., 2013; Primack, 2014). A comparison of recent phenophase
measurements with phenology records, collected by hand at a small
pond in Northeastern United States more than 15 decades ago by the
American naturalist Henry D. Thoreau, revealed major interactive re-
lationships between plants and animals as a result of the occurrence of
phenological phases, such as earlier emergence of new leaves in spring
that animals preferentially feed on (Ellwood et al., 2013; Primack and
Gallinat, 2016). In contrast, several concerns have been raised re-
garding changes in phenology. For instance, what are the drivers of
phenology in different ecosystems? Moreover, if future climate change
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induces changes in phenology, will this impair existing functioning,
structure, and biogeochemical cycling in terrestrial ecosystems? A re-
cent report on the relationship between climate change and phenology
suggested that phenology might be less sensitive to increasing tem-
perature than previously expected (Fu et al., 2015). However, this issue
remains unresolved (Keenan, 2015).

Over the past decades, non-destructive optical or radiometric
techniques, so-called “near-surface and remotely-sensed” approaches,
have been used widely to evaluate plant phenology at various sites in
the AmeriFlux network (e.g., Jenkins et al., 2007; Richardson et al.,
2009; Ryu et al., 2010; Sonnentag et al., 2012). Instrument-based ap-
proaches can provide high-frequency, long-term data on phenology that
are not subject to the inherent uncertainties and subjectivity of human
observers (Richardson et al., 2013b). Several remote sensing ap-
proaches have been tested to monitor changes in phenological metrics
or events, such as bud burst, leaf emergence, color, senescence and
defoliation, in a range of terrestrial sites. Simple radiometric mea-
surements − e.g. to quantify the total amount of light absorbed by or
transmitted by the canopy− have been used to estimate the seasonality
of leaf or foliage area (Turner et al., 2003; Richardson et al., 2012).
Other approaches based on digital repeat photography (DRP) have also
been applied. Specifically, imagery from upward-looking cameras has
been used to quantify variation in canopy cover (Ryu et al., 2012),
while imagery from downward-looking cameras has been used to
quantify variation in canopy color (Richardson et al., 2007). Further-
more, advances in available satellite measurements have allowed us to
assess spatial variability in phenology over a wider geographic range
(Zhao et al., 2012; Klosterman et al., 2014).

While most instrument-based approaches are based on similar
principles (i.e., quantifying how light is processed by the canopy, and
how this changes seasonally), they each have individual advantages
that allow them to capture unique changes or fine differences in phe-
nology. Photosynthetically active radiation (PAR, 400–700 nm), is ab-
sorbed, scattered, and transmitted by plant foliage (as well as woody
stems and branches). Broadband radiometric measurements of PAR
permit optically-based estimates of leaf or foliage area using the frac-
tion of light transmitted through the canopy. Specifically, in forests
with spatially homogeneous foliage arrangement, the gap fraction
principle enables accurate assessment of leaf area from a single set of
above- and below-canopy measurements. However, more commonly,
especially in naturally regenerated or unmanaged forests, the ideal
spatial characteristics are rarely achived, The resulting heterogeneous
forest structure then requires the deployment of, multiple sensors
within the forest to mitigate the effects of spatially heterogeneous
below-canopy light environment on the evaluation of foliage area
(Jenkins et al., 2007).

Meanwhile, the DRP approach has been shown to be applicable in
various tower-flux operation sites across the world because of its user-
friendly and weatherproof features (ex., Ryu et al., 2010; Keenan et al.,
2014; Zhao et al., 2012; Ma et al., 2014; Toomey et al., 2015;
Linkosalmi et al., 2016 Moore et al., 2017). Software tools and methods
for processing imagery taken using DRP have been specifically designed
to track phenolgy (ex., Leblanc, 2004; Macfarlane et al., 2007;
Richardson et al., 2007; Ide and Oguma, 2010; Sonnnentag et al.,
2012). With upward-looking camera imagery (e.g., canopy cover pho-
tography), the extracted field of view is typically somewhat narrow,
and therefore the use of multiple cameras may be desirable to accu-
rately capture spatial heterogeneity (Ryu et al., 2010). For example, in
savanna ecosystems where sparsely distributed trees mix with grass,
there is a particularly high degree of spatial heterogeneity but longterm
canopy cover DRP measurements tracked successfully seasonal and
annual variability in vegetation indices such as leaf or foliage area in
these ecosystems (Ryu et al., 2012; Ma et al., 2014 Moore et al., 2017).
On the other hand, the application to the foliage area evaluation from
the corresponding DRP approach in the forests with dense canopy
closure has still remained under investigation (Ryu et al., 2012;

Macfarlane et al., 2014). In temperate deciduous forests, during the full-
leaf period, a scene from the canopy cover DRP approach gets darker
due to light occlusion by foliage above the dense canopy. To brighten
the image, a digital camera set to automatic exposure will then increase
the exposure time or the diameter of the aperture, similar to the process
performed for human eye (Macfarlane et al., 2014). It has been ac-
knowledged that as a result, many pixels, including small gaps between
leaves, twigs and small branches in dense canopy, might be masked by
these exposure effects, leading to underestimation of the maximum
foliage area from longterm DRP measurements with automatic ex-
posure setting.

To detect phenology using vegetation metrics of interest, the si-
multaneous application of multiple near-surface remote sensing ap-
proaches has been conducted (Zhao et al., 2011). Previous research has
mainly focused on leaf area index (LAI), because this is essential for
representing the overall function, structure, and resultant diversity of
ecosystems via their photosynthetic activity. However, what is actually
measured is plant area index (PAI), representing the aggregated leaf
and woody plant materials, such as stems, twigs, and fine branches
(Macfarlane et al., 2007; Zhao et al., 2011). The PAI is directly calcu-
lated from canopy cover images (PAICANOPY) and above- and below-
canopy PAR measurements by which the fractional PAR transmitted
through the canopy (fPARt) can be obtained (PAIfPARt). PAI can be also
converted into LAI in conjunction with direct sampling technique using
litter-trap observations. Another approach to convert PAI to LAI is to
subtract off the dormant-season PAI because this represents only woody
material. Therefore, PAI might be a beneficial metric when these dif-
ferent approaches are compared in the corresponding time series.

As an additional metric of interest, we focus on the phenological
transition dates. The transition dates indicate the phenologic timing
associated with specific leaf or foliage developmental phases.
Particularly, it is significant to obtain accurate evaluation of the annual
difference in these timings in spring and autumn periods for deciduous
forests as changes in the phenologic timing have a great potential to
alter the whole biological rhythm in the ecosystem over decadal time
scales in response to future climate change (Primack and Gallinat,
2016). For the purpose of evaluating the phenologic transition dates,
we used the time series data of PAICANOPY and PAIfPARt, and the green
and red chromatic coordinates derived from phenocam imagery (green
(GCC) and red (RCC) chromatic coordinates). The phenocam DRP ap-
proach captures an oblique view of the canopy from the digital camera
mounted on a viewpoint above the canopy, serving as valuable ground
truth validation data for satellite remote sensing phenology data pro-
ducts (Klosterman et al., 2014; Ma et al., 2014). The vegetation metrics
GCC and RCC from the phenocam DRP approach are calculated from the
ratio of green and red digital number (DN) within each image. Changes
in these metrics may reflect physiological (or functional) and physical
(or structural) characteristics of foliage. Accordingly, phenological
metrics derived based on canopy color variations may differ from those
based on the structural metric of PAI because canopy color depends on
both the amount of leaf area and the color of individual leaves (Keenan
et al., 2014).

In this study, we compare the phenologic metrics derived from
different near-surface remote-sensing approaches using four years of
data (2013–2016) from a temperate deciduous forest. We examine the
vegetation features detectable from these and we explore the potential
for individual methods to determine the same parameter of interest.
Specifically, we compare start- and end-of-season transition dates esti-
mated from light interception from fractional PAR measurements, fo-
liage cover from digital upward-pointing canopy cover images, and
greenness from oblique canopy view images.

2. Site information

Field observations were conducted in the Bartlett Experimental
Forest (44°3′52.7″N, 71°17′17.1″W, 270 m a.s.l), located in the lowlands
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of the White Mountains, New Hampshire, USA. The forest was mainly
composed of red maple (Acer rubrum, 28% of basal area), American
beech (Fagus grandifolia, 20%), and other hardwood species, such as
sugar maple (Acer saccharum), paper and yellow birch (Betula papyrifera
and B. alleghaniensis), and aspen (Populus grandidentata) (31%), and also
included the conifers eastern hemlock (Tsuga canadensis, 17%) and
eastern white pine (Pinus strobus, 4%). The central aim of the field
campaigns is to determine the interannual variability in energy and CO2

exchange between the atmosphere and forest ecosystem comprising the
representative tree species using a fast response eddy covariance tech-
nique system with a 26.5-m-high flux tower, which has been operated as
an AmeriFlux monitoring network site since 2004 (Jenkins et al., 2007).
In recent years, several extreme weather events have occurred in the
New England region surrounding the study site. For instance in 2010, an
unusually warm spring with temperatures 3 °C above normal was fol-
lowed by a severe frost event that damaged newly-emerged leaves
(Hufkens et al., 2012). Moreover, in the summer of 2016, July-Sep-
tember temperatures across the region were the second warmest on re-
cord, while precipitation was substantially below normal. This led to
moderate-to-severe drought conditions (http://droughtmonitor.unl.edu/
), which may have influenced canopy development and/or the amount of
foliage maintained during the summer months.

3. Database for deriving the PAI and phenological transition dates

3.1. Procedures to estimate PAI from canopy cover images

3.1.1. Camera setting and image selection
We collected fisheye images to investigate the overall phenological

dynamics of the forest canopy using a portable time lapse camera
(WCT01-00114; Wingscapes, Alabaster, AL, USA.), with fisheye con-
version lens (Gyorome 8; FIT, Fukuoka, Japan) to compensate for the
fact that the camera’s native field of view was slightly narrower than
typically used in digital cover photography applications (Zhao et al.,
2012). The camera was mounted with an upward-pointed lens at a
height of 1.5 m above the forest floor, about 20 m to the north of the
AmeriFlux tower. Every digital image was recorded in high–quality
(2592 × 1944 pixels) JPEG format. The camera’s focus was set to in-
finity, and aperture (F-value) was fixed as F/2.8. Accordingly, exposure
time for shooting changed automatically depending on the canopy
status. Exposure time was shortest (1/800 s) during the leafless period,
and longest (1/30 ∼ 1/40 s) during the summertime period of peak
PAI. Images were taken hourly from mid-March to the end of November
from 2013 to 2016. The camera used in this study had the advantages of
being inexpensive and weatherproof with a long battery life, allowing it
to record camera images continuously in a remote site that was difficult
to visit at regular intervals.

For image processing, we converted the standard fisheye images
into rectangular images by cropping the fisheye images to focus on
phenological variations in the intermediate and upper canopy layers in
the center of the images. Images were cropped to obtain the maximum
possible width and height from the center point beforehand using the
freeware image-processing computer program, GIMP 2.8 (GNU image
manipulation program; www.gimp.org), while removing any black
pixels in outer-edge of the original fisheye images. All images used in
the analysis were processed in the same manner (Fig. 1)

3.1.2. Image pixel classification
We applied a series of automated procedures for pixel classification

to identify foliage, between-crown small gaps, and large gaps in each
image using a MATLAB (The Mathworks Inc., MA, USA) algorithm
developed by Macfarlane (2011). Firstly, an attempt was made to
classify pixels of each image into either vegetation canopy or other sky
element by using the histogram of the blue band channel in the range
from 0 to 255 of digital number (DN) for all pixels of each image
(Leblanc et al., 2005), and the corner-detection method was applied to

identify two representatives of boundary for the vegetation and sky
elements (Macfarlane, 2011). There are found maxima in the lower and
higher channels for canopy (DNMAX,CANOPY) and sky (DNMAX,SKY) ele-
ments, respectively (Fig. 1), and these maximum DNs are in the range of
DNL1 <DN<DNL2 for canopy, and DNR1 <DN<DNR2 for sky,
where DNL1 = 5, DNL2 = 25, DNR1 = 200, and DNR2 = 250 were as-
sumed as an initial conditions.

As the numerical exploration of MATLAB algorithm used, the
maxima of DN for canopy and sky are determined if they satisfies the
following:

− ≥ − ≥DN DN orDN DN10 10L MAX CANOPY MAX SKY R2 , , 1 (1)

Fig. 1. A view of the upper canopy from canopy cover images taken on 22 July 2013
using an upward-pointed digital camera in the Bartlett Experimental Forest. The image is
converted into grey-scale binary images (middle part) using image analysis developed by
Macfarlane (2011). Additionally, image is separated into three parts: grey designates the
large gaps between crowns in the overstory trees, black designates the foliage, and white
designates the small gaps within the crown. The lower part indicates the frequency of
color histogram of the blue band channel in the image. The two green asterisks indicate
the maximum of canopy crown (left-hand side) and sky/cloud (right-hand side) pixels,
respectively. Black asterisks indicate the boundary of each of canopy crown and sky
elements determined using the modified corner detection method: the lower is right-sided
of the range of canopy crown, and higher is left-sided of the range of sky element. Red
asterisks indicate the final boundary of canopy and sky elements determined from the
dual binary method: the lower is right-sided of the range of canopy crown, and higher is
left-sided of the range of sky element. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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If not satisfied, further exploration are continued until these eva-
luation completed successfully using an alternative window of DN as
follows:

= + = −DN DN and orDN DN25 / 25L L R R2 2 1 1 (2)

The next step is to evaluate the right side edge of lower maximum
for vegetation canopy (DNLC) and the left side edge of higher maximum
for sky elements (DNUC) in the blue channel. These can be explored by
finding the point of maximum curvature on the L-shaped curves in the
histogram by fitting a straight line from the maxima bin for canopy and
sky to the last non-empty bin, respectively (Macfarlane, 2011). In the
process, Macfarlane (2011) modified the original corner detection
method proposed by Rosin (2001), in which the terminal of the straight
fitting line on the DNMAX for canopy and sky has been set to the mean
number of pixels per bin for the whole image so that the slope of
straight lines has been obtained, thereby DNLC and DNUC were de-
termined in this study (they represents black asterisks in the lowest part
in Fig. 1).

In addition, the pixels in the intermediate range between these
boundaries DNs (DNLC and DNUC) are referred to as mixed pixels
(Macfarlane, 2011). We used dual binary threshold that separates the
mixed pixels into either vegetation canopy or sky element un-
ambiguously using DNLC and DNUC obtained in the prior process fol-
lowing the same procedures as Macfarlane (2011). In this, pixels in
DN<DNLC were initially classified as foliage and gaps smaller than
0.01% of the image size. In addition, we assumed a 25% threshold to
minimize the loss of small gaps between-crown, which is given as DNLC

+ (DNUC − DNLC) x 0.25. While, a 75% threshold, which is given as
DNLC + (DNUC − DNLC) x 0.75, was applied to the remainder of the
image to minimize classifying foliage as sky in brighter ranges. Details
on the pixel classification process are described in Macfarlane (2011)
and Ryu et al. (2012).

We used additional procedures to identify high-quality canopy
cover images and to construct a time series of the estimated PAI. The
imagery was archived at 1 h interval from 4:00 a.m. to 21:00 p.m.
Underexposed images recorded before sunrise or after sunset were ex-
cluded. Furthermore, we selected images for the analysis by visually
examining all images and excluding those that, for example, included
intensive solar illumination in the cropped field of view, had dew or
raindrops on the plastic camera dome, or that appeared to have been
recorded under mixed sun/cloud conditions. Ultimately, 500 images
were selected from among the 4649 available images in 2013, 586 from
among 4085 in 2014, 548 from among 5050 in 2015, and 218 from
among 4302 in 2016. It should be noted that, for a variety of reasons
including low batteries, operator error, and system failure, the camera
did not record images for the following periods: 7 October–7 November
in 2015, and 19–29 April 2016, and 20 September onward in 2016.

3.1.3. PAI estimation from canopy cover images
Based on the pixel classifications described above, the PAI from a

canopy cover image (PAICANOPY) can be calculated by an inversion of
Beer’s law as follows:

= −PAI f ϕ kln( )/CANOPY c (3)

where fC is the fraction of crown cover as the fraction of the sum of
foliage (fF) and small gaps within crown. & x3D5; is the gap within the
crown envelopes, referred to as crown porosity (Kucharik et al., 1999;
Macfarlane et al., 2007; Pekin and Macfarlane, 2009). k (=G(θ)/cos(θ)
where G is the foliage projection function, and θ is a zenith angle) is the
light extinction coefficient; we assumed that k= 0.5 for all images,
which is a widely used assumption (e.g., Macfarlane et al., 2007), since
it is difficult to estimate k (Chianucci and Cutini, 2013) without addi-
tional measurements (Ryu et al., 2012). & x3D5; is given as follows:

= −ϕ
f
f

1 F

C (4)

Eq. (4) can be substituted using the fraction of the total gap (fG), the
fraction of the sum of small within-crown and large between-crown
gaps in the image to yield:

= −
−

ϕ
f

f
1

(1 )G

C (4)’

In this study, it is defined that the large gap is equivalent to a lump
of pixels> 1.3% of the total pixels in the image.

3.2. Estimation of PAI from multiple PAR measurements

PAI was also evaluated from a suite of quantum sensors (model
190SA; Li-Cor, Lincoln, NE, USA) (Jenkins et al., 2007). One PAR sensor
was mounted at a height of 25 m on the 26.5 m high flux tower to
capture the incident PAR (Q0). Four PAR sensors were placed 1-m
above the ground (and above the understory) in a circle (radius of
15 m) centered at the tower, to capture the representative transmitted
radiation component (Qt). Using the radiation components, the fraction
of PAR radiation transmitted through the canopy (fPARt) was calcu-
lated as follows (Richardson et al., 2013b):

=fPARt Q Q/t 0 (5)

where Qt is the mean of the four quantum sensor measurements. PAI
estimated from fPARt, (PAIfPARt), can be expressed as:

= −PAI ln fPARt k( )/ 'fPARt (6)

where k’ ( = G(θ’)/cos(θ’)) is the light extinction coefficient for the
corresponding approach, but with a particular solar zenith angle θ’. To
reduce the effects of seasonality in the solar elevation, only two fPARt
data points on the day when θ’ was closest to 57° were used, averaged
from the available continuous hourly PAR measurements, and con-
sidering that, when θ’= 57°, all leaf inclination distribution functions
converge and G (57) is identical to 0.5 (Richardson et al., 2013b;
Keenan et al., 2014). θ’ was calculated based on site longitude and la-
titude information, time of day, and day of year using the Solar Position
Calculator designed by NOAA Earth System Research Laboratory
(ESRL) (https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html).
Using data from a co-located sunshine sensor (model BF3; Delta-T De-
vices Ltd., Cambridge, UK), we further screened data to exclude ob-
servations where the PAR diffuse fraction (PARdiff/Q0) was <0.8.

3.3. Derivation of LAI from the estimated PAI

LAI is evaluated using the PAI measurements alone derived from the
optical devices, by subtracting the averaged PAI during leafless period
(an estimate of WAI, representing woody material) from the actually
measured PAI throughout a year (i.e., LAI = PAI-WAI). We did not
account for the reduced effects of woody materials overlapped by
leaves in the leafy period, by which the contribution of WAI might be
over-estimated during the growing season (Kucharik et al., 1998; Ryu
et al., 2012). We determined the winter duration by integrating the
following periods from 1 March to the start of leaf emergence in spring,
and the leaf fall completion in autumn to 30 November, where the
specific dates of the start of leaf emergence in spring and the leaf fall
completion in autumn were identical to SOS and EOA that are referred
in the section 3.5. During the 4-year studied period, there was no major
change in WAI. The winter period PAI was 0.52 ± 0.06 m2 m−2

(mean ± s.d.) for canopy cover images, and 0.98 ± 0.30 m2 m−2 for
radiometric PAR measurements, respectively (Note that the dates of
EOA in 2015 and 2016 from the DRP approach were not obtained be-
cause of the camera operation failure, and the last date during the plant
growth period in which the maximum PAI sustained was assigned).
Accordingly, we used these PAI values as the winter baseline to convert
PAI to LAI during leafy period. This processing does not affect the
timing of the phenophase transitions, and thus it does allow for more
direct comparison between LAIs derived from canopy cover images
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(LAICANOPY) and from radiometric PAR measurements (LAIfPARt).

3.4. Use of additional VIs and green and red chromatic coordinates

To complement the above estimates of PAI, we used data from a
networked digital camera (model 211; Axis Communications, Lund,
Sweden), mounted on the tower at a height of 26 m since 2005. This
phenocam is pointed north and angled downward at 20° below hor-
izontal, so as to obtain an oblique view of the canopy (See Richardson
et al. (2007, 2009) for phenocam images used in the current study).
Image processing consisted of defining a region of interest (here, trees
in the immediate foreground of the image, corresponding approxi-
mately to the field of view of the upward-looking hemispherical camera
used for PAICANOPY) and then calculating the mean intensity (digital
number, DN) for each color channel (i.e. RDN, GDN, and BDN, for red,
green and blue, respectively) across this region. From this we then
calculated two widely-used indices to characterize canopy color, the
green chromatic coordinate (GCC) and red chromatic coordinate (RCC)
(Sonnentag et al., 2012):

=
+ +

=
+ +

G G
R G B

R R
R G B

;CC
DN

DN DN DN
CC

DN

DN DN DN (7)

We used the 90th percentiles of GCC (GCC_90) and RCC (RCC_90) in 3-
day moving windows (Sonnentag et al., 2012; Toomey et al., 2015) to
minimize the impact of variation in lighting and weather conditions.

3.5. Derivation of the transition dates in spring and autumn

To explore the phenological transition dates in spring and autumn,
we applied a simple sigmoid function to the VI time series data
(Klosterman et al., 2014), described as follows:

=
+ +

+y t c
a bt

d( )
1 exp( ) (8)

where y(t) presents the estimated VI at time t. In this study, we used
PAICANOPY, PAIfPARt, and GCC as VIs to determine the transition dates in
spring. In addition to these three VIs, RCC was used to determine the
transition dates in autumn. a and b are fit parameters that control the
timing and rate of increase (or decrease) of the sigmoid curve, i.e. the
start of greening in spring (SOS) and senescence in autumn (SOA), the
end of the completion of leaf unfolding (EOS) and leaf falling (EOA),
and the length from onset to maturity of phenologic phase in spring and
autumn, respectively. c is the amplitude of VI, and d the baseline value;
therefore, the sum of c and d indicates the maximum VI value. These
optimum parameters are determined by fitting the observed VI using a
non-linear regression approach for both spring and autumn within a
year. Start and end of season transition dates were determined as the
maximum values of the rate of curvature of y(t), while the maximum
rate of change (corresponding to the minimum value of the rate of
curvature of y(t)) in VI is defined as the middle of the phenological
transition period in spring (MOS) and in autumn (MOA) (Zhang et al.,
2003). In contrast to the seasonal patterns of PAICANOPY, and PAIfPARt,
and GCC, which rise in spring, flatten off in summer, and decline in
autumn, the RCC signal rises to separate peaks in spring and autumn.
Here we focus on the autumn peak, which corresponds to the devel-
opment of autumn colors (predominantly reds and oranges), particu-
larly in red maple and sugar maple. Accordingly, we established MOA
as the date when the maximum RCC was obtained, and determined SOA
by fitting Eq. (8) in the period before MOA, and EOA in the period after
MOA. Alternatively, for estimating the EOA dates from RCC time series
data in autumn, Klosterman et al. (2014) used smoothing and inter-
polation method. In the processing, RCC data were first smoothed using
the local regression (loess) algorithm (they used loess algorithm in
MATLAB) that moderates any noise by estimating a particular local
regression to a second-order polynominal at each point in RCC data

Fig. 2. Seasonal variation in leaf area index (LAI) in
each of the four study years (a–d) 2013–2016. The
crosses denote the LAI detected from the digital ca-
nopy cover images (LAICANOPY), and the different
colors represent the image condition or quality based
on the digital image processing designed method of
Macfarlane (2011). Here, blue represents a fine
image, green represents an overexposed image, red
represents an image with many mixed pixels (com-
posed of both canopy crown and sky), and magenta
represents an image with ambiguous separation be-
tween canopy crown and sky elements. The solid
black line with triangles shows the LAI calculated
from above and below canopy photosynthetic active
radiation (PAR) measurements (LAIfPARt). (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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used. In this study, we applied the method for estimating EOA from
RCC_90 data using loess algorithm in the freeware program for statis-
tical computing and graphics, R (www.r-project.org), and all of RCC_90
data in autumn were used for the regression. In the processing, we set
the fraction of annual data (f) in the loess algorithm, which is indis-
pensable for giving beforehand to f= 0.15.

4. Results

4.1. Annual variations in LAI

The LAICANOPY was non-zero but nearly constant before leaf appear-
ance in spring and after all leaves fell in autumn, which was attributed to
the fact that most images were taken under appropriate exposure con-
ditions (see the blue-colored cross in Fig. 2). During foliage development,
LAICANOPY increased sharply in spring while during senescence LAICANOPY
similarly decreased sharply in autumn (see the red-colored cross in Fig. 2;
Table 1). During the growth period, the maximum values of LAICANOPY
(green-colored cross) varied within a narrow range among the four study
years (3.11 ± 0.24 m2 m−2 (mean ± s.d.) in 2013,
3.19 ± 0.19 m2 m−2 in 2014, 3.31 ± 0.20 m2 m−2 in 2015, and
3.35 ± 0.16 m2 m−2 in 2016). These values were averages of the
LAICANOPY time series data between EOS and SOA (Details on EOS and
SOA are given in section 4.2 and Table 1, please note that we used the
last date during the growing period instead of EOA in 2015 and 2016).
On the other hand, LAIfPARt was marginally more variable than
LAICANOPY during the dormant season. The maximum values of LAIfPARt
were greater than those of LAICANOPY, and had greater interday varia-
bility (Fig. 2), reflecting the dual effects of heterogeneous cloud dis-
tribution on the above-canopy PAR measurements, and of heterogeneous
canopy structure on the below canopy PAR measurements. The averaged
maximum LAIfPARt was 3.53 ± 0.33 m2 m−2 during the growing season
(3.65 ± 0.24 m2 m−2 in 2013, 3.60± 0.25 m2 m−2 in 2014,
3.67 ± 0.33 m2 m−2 in 2015 and 3.19 ± 0.22 m2 m−2 in 2016),
which was the average of the time series LAIfPARt data between EOS and
SOA. Therefore, the difference in LAICANOPY and LAIfPARt was found at
most 0.30 m2 m−2 on average. In 2016, LAICANOPY was comparable to
those from the other 3 years. Contrastingly, LAIfPARt in 2016 decreased
by 0.45 m2 m−2 on average compared to the other 3 years (P< 0.001).
Whether or not the decrease reflected the direct impact of abnormal
drought event during summer of 2016 on leaf area is unknown. Overall,

however, LAI from the two approaches was consistent to within
0.5 m2 m−2 across the 4 years of study.

4.2. Phenological transition dates

Figs. 3 and 4 show the transition dates in spring and autumn,
respectively. In this processing, the time series of PAICANOPY and
PAIfPARt derived from canopy cover images and radiometric PAR
measurements directly were used to identify the transition dates,
together with the additional VIs of GCC_90 in spring, and of GCC_90
and RCC_90 in autumn. These figures show the minimum and max-
imum rates of change in curvature, from which the transition dates
were determined without setting thresholds or using empirical con-
stants (Zhang et al., 2003). In addition, Table 1 lists the six de-
termined transition dates.

For PAICANOPY, PAIfPARt, and GCC_90, the dates of SOS were in rea-
sonably close agreement, and the interannual patterns were similar
(2013 was the earliest SOS and 2016 the latest) (Table 1). SOS from
GCC_90 occurred about a few days ahead of that from PAICANOPY on the
4-year average, which was almost the same as PAIfPARt. However, be-
cause the transition from SOS to EOS occurred much faster (≈1 week)
for PAICANOPY than either PAIfPARt (≈2 weeks) or GCC (≈2 weeks), EOS
dates were not in good agreement among any of the methods (Table 1),
and the patterns of interannual variability in EOS were less consistent
among methods. Overall, EOS from PAICANOPY occurred about 5 days
ahead of that from GCC_90 but 8 days ahead of that from PAIfPARt.

For the autumn phenology, the SOA dates from PAICANOPY were 1 or
2 weeks behind from PAIfPARt, whereas the SOA dates of GCC_90 and
RCC_90 occurred much earlier (≈DOY 250). Conversely, the EOA dates
from GCC_90 occurred much earlier than those from PAICANOPY and
PAIfPARt (≈2-3 weeks). The EOA dates from RCC_90 using the sigmoid
function of Eq. (8) were similar to PARfPARt in 2013 and 2014 (DOY 293
for 2013 and DOY = 299 for 2014), while the method failed to detect
EOA dates in 2015 and 2016. The advantage of use of sigmoid function
was to be capable of determining the transition date without setting
thresholds or using empirical constants. However, the failure for de-
tecting the EOA dates in 2015 and 2016 indicates potential limitations
to this approach (Fig. 4, Table 1). In contrast, an alternative approach
to estimate EOA in autumn, smoothing and interpolation method de-
tected the similar EOA dates compared to those from PAIfPARt from
2013 to 2015 (Fig. 4, Table 1). For all indices, the interannual patterns

Table 1
Summary of the phenological transition dates from 2013 to 2016 derived form the vegetation indices (VIs) of (a) PAI derived from digital canopy crown cover imagery (PAICANOPY), (b)
PAI derived from above and below canopy PAR measurements (PAIfPARt), (c) 90th percentile of greenness for a 3-day moving window processing window derived from digital landscape
imagery (GCC_90), and (d) the 90th percentile of redness for a 3-day moving processing window redness derived from digital landscape imagery (RCC_90). In the Table 1, the EOA dates
from RCC_90, which are enclosed in bracket, were estimated from the smoothing and interpolation approach using the loess algorithm in the free software R. The transition length
represents the difference in dates between EOS and SOS for the spring, and between EOA and SOA for the autumn phenological phases. Note that the dates used each denote day of year
(DOY).

Vegetation index Year SOS MOS EOS Transition period Year SOA MOA EOA Transition period

(a) Canopy cover imagery 2013 123 126 129 6 2013 287 293 298 11
2014 131 136 142 11 2014 287 291 295 8
2015 126 130 132 6 2015 – – – –
2016 132 137 142 10 2016 – – – –

(b) fPARt 2013 124 128 136 12 2013 273 290 303 30
2014 128 140 149 21 2014 271 287 303 32
2015 127 134 140 13 2015 279 293 314 35
2016 131 141 152 21 2016 279 291 306 27

(c) GCC_90 2013 119 131 140 21 2013 251 266 278 27
2014 128 137 143 15 2014 248 263 278 30
2015 125 131 137 12 2015 260 272 284 24
2016 131 137 146 15 2016 251 269 284 33

(d) RCC_90 2013 254 275 293 (299) 39 (45)
2014 254 272 299 (308) 45 (54)
2015 260 287 - (311) - (51)
2016 – 284 - (311) - (−)
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were mostly similar for SOA with the difference in about 5 days ahead
or behind at a maximum, with 2014 generally being the earliest au-
tumn, and 2015 the latest. As a consequence, the duration of the
transition from SOA to EOA was longest for RCC_90 (≈5-7 weeks), in-
termediate for GCC_90 and PAIfPARt (≈3-5 weeks), and shortest for
PAICANOPY (≈1-3 weeks) (Table 1).

5. Discussion

5.1. Uncertainty of LAI from canopy cover images (LAICANOPY)

We found the upward-looking camera-derived LAICANOPY showed
the similar seasonal track to the PAR-derived LAIfPARt throughout a year
in 4 years, although LAICANOPY was marginally lower than LAIfPARt
during the full-leaf period. In the Bartlett Experimental Forest, Zhao
et al. (2011) compared the representative maximum PAIs (i.e., effective
LAIs) in July during the plant growth season obtained based on several
observations: litter-trap, fisheye photography, LAI-2000 plant canopy
analyzer (Li-Cor, Inc.), and a narrow-band near-infrared LIDAR tech-
nique that characterized the vertical distribution of foliage. They de-
termined PAIs of 3.6–5.0 m2 m−2, and found that the PAIs obtained
from the litter trap and hemispherical fisheye images tended to be on
the lower end of this range, while that those from the LAI-2000 and
LIDAR tended to be on the upper end of this range. We calculated
summertime PAIs of ≈3.5–4 m2 m−2 using canopy cover images, and
≈4–5 m2 m−2 from fractional PAR measurements. Hence, the absolute
estimates of PAI, and the variation among approaches, as reported by
Zhao et al. (2011) are comparable to our results.

There are still unknown concerns about what caused the difference
in LAI between the different approaches. During the peak growing

season, both LAICANOPY and LAIfPARt varied from day-to-day by up to
about 1 m2 m−2. However, there were systematic differences between
the approaches in that in 2013, 2014 and 2015, LAICANOPY tended to be
about 0.5 m2 m−2 lower than LAIfPARt (in 2016 the difference was near-
zero). Obviously, given the heterogeneous canopy cover, differences in
the exact location at which instruments were installed is one explana-
tion.

But, several other sources of uncertainty for the LAICANOPY estimates
might also be considered. One potential uncertainty is the effect of the
automatic exposure setting on the calculated LAICANOPY. Most of the
canopy cover images taken during the full-leaf period were overexposed
as a consequence of canopy closure due to dense foliage. In such dense
canopy conditions, the DRP approach with automatic exposure gen-
erally yields lower PAI, and thus lower LAI compared to other methods.
Macfarlane et al. (2011) compared changes in frequency histograms of
blue channel in canopy images with the different photographic ex-
posures, and found that increase in exposures creates brighter images,
and the maximum frequency of sky pixels shifted further to the right,
increasing the mixed pixels in the histogram of blue channel. However,
the maximum frequency of canopy pixels was less affected by in-
creasing exposures. As a result, increasing exposure by one stop reduced
the calculated LAI by 9–12% (Macfarlane et al., 2011). As shown in 4.1,
in the present study, the difference in maximum LAICANOPY and LAIfPARt
averaged approximately 0.3 m2 m−2, indicating less than 10% of both
maximum LAICANOPY and LAIfPARt. Accordingly, this suggests that the
slight difference could have been reduced further with optimal camera
exposure settings: Macfarlane et al. (2014) recommend using un-
compressed, RAW format (rather than JPEG) files and underexposing
images by one stop, although this is not an option with the camera we
used.

Fig. 3. Phenological transition dates in spring derived from the vegetation indices (VIs) (a) PAICC (upper), (b) PAIfTPAR (middle), and (c) green chromatic coordinates (GCC_90) (lower)
from 2013 to 2016. Regarding the specific transition dates, the start of greening in spring (SOS) (blue line), middle of the phenological transition period in spring (MOS) (green line), and
end of the completion of leaf unfolding (EOS) (red line) represent the start, middle, and end of spring, respectively. The dotted line denotes the rate of change of curvature for each VI,
based on the method developed by Zhang et al. (2003), with transition dates (SOS, MOS, and EOS) determined based on curvature maxima/minima. The closed circle indicates the
intended VI, and the solid line is the fit based on a non-linear fitting approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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An additional concern may be associated with the threshold given in
the present algorithm, which is used to allocate the mixed pixels ex-
isting in the blue channel of each image into canopy or sky elements
(see Eqs. (1) and (2)). We changed the originally established 25%
threshold in Eq. (1) to 40%, and 60%, which produces large allocation
of the mixed pixels into the canopy elements, and examined the cal-
culations to assess the difference in LAICANOPY as affected by these
thresholds using the imagery data in 2013. The result yielded subtle
increase in LAICANOPY by 2% (2.95 ± 1.37 m2 m−2) for 40%
(P < 0.1), and 4% (3.01 ± 1.41 m2 m−2) for 60% (P < 0.001)
thresholds, respectively, representing less impact of the different
thresholds of mixed pixels on LAICANOPY estimates (data not shown)
because the frequency of histogram in the mixed pixels is relatively
smaller in each image (Fig. 1).

Other sources of uncertainty in optical LAI measurements have been
assessed by Richardson et al. (2011), who estimated, based on repeat
measurements at the same sampling points, that random uncertainty in
measured LAI using optical devices was 10% or less, while systematic
errors associated with instrument calibration and data processing might
be on the order of 10–20%. Sampling uncertainty itself was also esti-
mated to be small, provided that a sufficient number (n = 20 or more)
of measurement points was used. Here, we used only a single mea-
surement point for LAICANOPY, so sampling uncertainties alone are un-
doubtedly substantial.

5.2. Evaluations of LAI (LAIfPARt) from radiometric PAR measurements

In contrast to LAICANOPY, LAIfPARt uses simultaneous measurements
of incident (above-canopy) and transmitted (below-canopy) PAR. This
method appears to be highly sensitive to fine changes in canopy
structure, including leaf development (Fig. 2). However, a concern re-
mains regarding how well the spatial variability in the transmitted light
below the canopy can be observed. In this study, we assumed that the
stand was composed of a randomly distributed but spatially homo-
geneous arrangement of individual trees (with no large gaps that could
generate a large variance between PAR measurements from the four
equipped quantum sensors) and used the mean PAR of the four mea-
surements (Jenkins et al., 2007). Ideally, more sensors would be used to
capture the below-canopy light variability more precisely, given the
fact that at least n = 20 litter traps should be equipped at the target site
to obtain satisfactory total litter fall with an acceptable standard error
(e.g., Newbould, 1967; Proctor et al., 1983). Indeed, the advantage of
the measuring leaf area with portable instruments such as the LAI-2000
canopy analyzer, or LIDAR equipment, is that it is possible to sample in
one day a large number points distributed throughout the forest, en-
abling more accurate evaluation of LAI at the stand level. However,
repeating this sampling to obtain detailed phenological information is
challenging. Thus while a limited number of instruments deployed in
fixed locations, as with the quantum sensors used for PAIfPARt together
with the digital camera used for PAICANOPY, may not produce accurate
estimates of the absolute amount of leaf area, they greatly facilitate
tracking of phenology at a fine temporal scale.

Fig. 4. Phenological transition dates in autumn derived from the VIs (a) PAICC (upper), (b) PAIfTPAR (upper-middle), (c) GCC_90 (lower-middle), and red chromatic coordinates (RCC_90)
(lower) from 2013 to 2016. Regarding the specific transition dates, SOA, MOA and EOA represents the start, middle, and end of autumn, respectively. The dashed line denotes the rate of
change of curvature for each VI, based on the method developed by Zhang et al. (2003), with transition dates determined based on curvature maxima/minima. The closed circle indicates
the intended vegetation index, and the black solid line is the fit based on a non-linear fitting approach. For (d), the solid line is likewise used to estimate SOA and EOA, whereas, for
estimating EOA, the magenta solid line is the fit based on the smoothing and interpolation method using the local regression approach. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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5.3. Comparison of transition dates among the different metrics

From the comparison of the PAI time series between the different
approaches together with the additional vegetation indexes of GCC_90
and RCC_90, PAIfPARt showed smooth increase in PAI during the tran-
sition phase in spring until the maximum PAI, and also smooth decrease
from the maximum PAI in autumn, respectively (Fig. 2). For PAICANOPY,
the transition phases in spring and autumn occurred during a shorter
time interval compared to the time courses of PAIfPARt, and GCC_90, and
RCC_90 (Figs. 3 and 4, Table 1). This suggests that the canopy cover DRP
approach might have failed to track subtle change in PAI, or might have
saturated at relatively low amounts of leaf area, because of the camera’s
autoexposure setting. The timing of SOS from PAICANOPY was consistent
with those of PAIfPARt and GCC_90, while, for the timing of EOA,
PAICANOPY was closer to PAIfPARt compared to GCC_90. We believe that
PAICANOPY is most sensitive to changes in canopy structure when PAI is
low, e.g. the dynamics associated with the onset of leaf opening, or the
completion of leaf fall. Therefore, the canopy cover images appro-
priately capture the foliage timings with regard to these events. By
comparison, PAICANOPY is relatively insensitive to changes in canopy
structure when PAI is high, and thus it is more difficult to track the
actual progression of green-up in spring or senescence in autumn, and
so EOS and SOA derived from PAICANOPY may be less useful than the
corresponding dates obtained using either the PAIfPARt or GCC_90.

An additional VI, GCC_90 yielded similar transition dates and length
in spring compared to the above and below canopy PAR measurements,
capturing fine and gradual dynamics in colors due to spring bud break
and leaf opening. However, in previous studies, it has been pointed out
that because of the viewing geometry, the phenocam imagery tends to
emphasize vegetation that is closest to the camera, and suggested that
because of the oblique view, the effective leaf area is enhanced (Keenan
et al., 2014). This may result in a failure to track fine and gradual
dynamics in greenness, in turn yielding a faster transitional phase. For
instance, Yang et al. (2013) suggested that spring peak of GCC was
earlier than the peak of total chlorophyll concentration in leaf. How-
ever, the consistency of transition dates between GCC_90 and PAIfPARt
suggests that both metrics are similarly responsive to pronounced
structural changes in the canopy that are associated with budburst and
leaf expansion.

In contrast to the spring transitions, the extended period of autumn
transitions can be attributed to the gradual coloration and senescence of
the canopy. In this study, SOA from RCC_90 was consistent with that
from GCC_90, while MOA from RCC_90 roughly lined up with EOA from
GCC_90 (Figs. 2 and 3; Table 1). Sonnentag et al. (2012) noted that
RCC_90 was a better indicator than GCC_90 for identifying the timing,
intensity and duration of autumn colors in forests dominated by de-
ciduous species. However, because GCC and RCC are the product of both
the amount of leaf area and the color of individual leaves, phenologic
metrics derived from these vegetation indices are bound to differ from
those, such as PAICANOPY or PAIfPARt, that are not sensitive to leaf col-
or—especially in autumn. This means that in autumn GCC and RCC are
unable to serve as direct measures of leaf area, and explains why the
transition dates derived from these indices differed from those derived
from the canopy cover images and PAR measurements that were sen-
sitive to structural changes in the canopy.

6. Concluding remarks

The estimated phenological metrics of the PAI and transition dates
were compared using the 4 years’ worth of data and several VIs ob-
tained continuously, using optical methods, from a representative
hardwood forest in Northeastern United States. Based on the results, the
growth-period LAI derived from canopy cover images and above and
below canopy radiometric PAR measurements were in the same range
as previous results obtained using various methods (Jenkins et al.,
2007; Zhao et al., 2011). However, the VIs applied in this study

produced slightly different transition dates. In particular, the evaluated
transition dates and lengths in autumn exhibited large differences
among the VIs of PAICANOPY, GCC, RCC and PAIfPARt. These differences
are presumably attributable to the specific vegetation statuses detected
by each VI. Thus the most appropriate indicator clearly depends on the
specific phenological parameter of interest.

We found that LAI estimated from simultaneous above and below
canopy PAR measurements provided better representation of the sea-
sonal dynamics of leaf area than LAI estimated from canopy cover
imagery, which suffered from the effects of automatic exposure.
Likewise, vegetation indices that were sensitive to leaf color, i.e. GCC

and RCC, did not represent the trajectory of leaf area in autumn. Thus
we conclude that the PAR measurements provide better overall in-
dicator of LAI and phenological transition date estimations obtained
from long-term monitoring measurements in the cool-temperate hard-
wood forest. However, the drawbacks we found with canopy cover
imagery might be rectified with a different model of camera and dif-
ferent camera settings (Macfarlane et al., 2014). Because canopy cover
imagery provides a permanent visual record of the state of the canopy,
there is certainly merit in pairing this approach with radiometric
measurements.

In conclusion, long-term overall operations from a multi-sensor
approach, integrating with above and below canopy PAR measure-
ments, will result in reduced uncertainty in estimates of phenological
transition dates and the trajectory of canopy development and senes-
cence, and will thus contribute to improved understanding of the bio-
logical controls on forest-atmosphere exchanges of energy, water, and
carbon.
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