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Abstract. Understanding how population-level dynamics contribute to ecosystem-level processes is a
primary focus of ecological research and has led to important breakthroughs in the ecology of macroscopic
organisms. However, the inability to measure population-specific rates, such as growth, for microbial taxa
within natural assemblages has limited ecologists’ understanding of how microbial populations interact to
regulate ecosystem processes. Here, we use isotope incorporation within DNA molecules to model taxon-
specific population growth in the presence of 18O-labeled water. By applying this model to phylogenetic
marker sequencing data collected from stable-isotope probing studies, we estimate rates of growth, mortal-
ity, and turnover for individual microbial populations within soil assemblages. When summed across the
entire bacterial community, our taxon-specific estimates are within the range of other whole-assemblage
measurements of bacterial turnover. Because it can be applied to environmental samples, the approach we
present is broadly applicable to measuring population growth, mortality, and associated biogeochemical
process rates of microbial taxa for a wide range of ecosystems and can help reveal how individual
microbial populations drive biogeochemical fluxes.
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INTRODUCTION

Ecological theory is built upon observations of
organisms and their interactions with the biotic
and abiotic environment; quantifying the dynam-
ics of species has advanced our understanding of
how ecosystems work (Huffaker 1958, Paine 1966,
Connell 1978, Carpenter et al. 1987, Vitousek and
Walker 1989, Strayer et al. 1999). For example,

ecologists have used population growth rates of
individual species to predict outcomes of compe-
tition (Tilman 1977), trajectories of succession
(Chapin et al. 1994), cycling of nutrients (Elser
et al. 1996), and probabilities of local and global
extinction (Morris and Doak 2002). Furthermore,
population growth and mortality rates of individ-
ual species ultimately drive ecosystem processes
such as primary production (Caraco et al. 1997),
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decomposition (Allison and Vitousek 2004), and
nutrient transformation (Lovett et al. 2006). How-
ever, the synthesis of population and ecosystem
ecology in recent decades has predominantly
focused on macroscopic organisms (e.g., plants
and animals) and has largely ignored the popula-
tion biology of microbes. Although it is widely
accepted that microbes are dominant drivers of
energy and material fluxes in ecosystems, rela-
tively little is known about how their species-
specific dynamics shape those fluxes.

A major limitation in linking the dynamics of
individual microbial taxa to ecosystem-level pro-
cesses in natural settings is the paucity of tools for
identifying and observing individual microbial
populations in intact ecosystems. The advent
of high-throughput amplicon sequencing has
enabled microbial ecologists to begin cataloging
an extraordinary diversity of bacterial, archaeal,
and fungal taxa in a wide range of ecosystems
(Chu et al. 2010, Caporaso et al. 2011, Harris et al.
2013, Maestre et al. 2015). This advance has
sparked a new era for microbial ecology by
enabling powerful tests and refinements of eco-
logical concepts originally derived from data on
macroscopic organisms (Prosser et al. 2007). How-
ever, microbial ecologists still lack the basic ability
to resolve population-level vital rates of individ-
ual taxa in natural and engineered environments.

Existing approaches for measuring microbial
population growth have a number of shortcom-
ings that limit their utility for integrating popula-
tion- and ecosystem-level processes. Microbial
growth is traditionally measured in pure culture
for individual populations or at the community
level in situ by counting cells or tracing the
fate of isotopically labeled substrates. Although
culture-based methods can yield estimates of
taxon-specific growth rates under laboratory
conditions, they lack the realism and complexity
of most ecosystems, and the growth rates mea-
sured in such studies are unlikely to apply to nat-
ural populations. In addition, most bacteria and
archaea have never been cultured (Pham and
Kim 2012, Stewart 2012). Radiolabeled leucine or
thymidine tracers can provide an index of bacte-
rial growth in aggregate (Ducklow et al. 2000,
Rousk and B�a�ath 2011), but cannot differentiate
growth rates of co-occurring taxa. Similarly, 14C
incorporation into ergosterol is used for measur-
ing fungal-specific production (Newell and

Fallon 1991, Weyers and Suberkropp 1996), but
is incapable of finer taxonomic resolution.
Other recent techniques show greater promise

in estimating taxon-specific growth rates of
microbes in complex assemblages. Korem et al.
(2015) used coverage patterns of metagenomic
sequencing reads to derive indices of growth for
several human commensals and pathogens. While
this approach could be applied to non-clinical
settings, it is limited to fully sequenced bacterial
strains with single circular chromosomes and
therefore excludes the vast majority of microbial
diversity. This technique was recently extended to
taxa for which draft-quality genomes can be
constructed via genome-resolved metagenomics
(Brown et al. 2016). Nonetheless, this method is
applicable only to true metagenomic data, and
not to amplicon data.
Another possible means to measure taxon-

specific growth rates is stable-isotope probing
(SIP)—a technique that uses isotopically enriched
water or organic substrates and density gradient
centrifugation of extracted DNA to separate
actively growing microbial taxa from inactive
taxa (Radajewski et al. 2000, Schwartz 2007,
Coyotzi et al. 2016). Stable-isotope probing
applications typically yield categorical indices of
growth and may have a bias against detecting
activity in microbes with low guanine and cytosine
(GC) content (Schwartz et al. 2016). However, a
recent improvement to the SIP method, termed
quantitative stable-isotope probing (qSIP), uses
sequencing and a model of isotope incorporation
into DNA to estimate isotopic enrichment for all
bacterial and archaeal taxa within natural or
engineered assemblages (Hungate et al. 2015).
Quantitatively assessing microbial activity with
this technique has already expanded our ability to
answer important ecological questions. For
instance, Morrissey et al. (2016) used qSIP to
demonstrate how evolutionary history influences
bacterial activity and carbon assimilation.
Here, we extend the qSIP approach toward the

integration of population- and ecosystem-level
processes by calculating taxon-specific population
growth and mortality rates (d�1) for all detectable
bacterial and archaeal taxa following rewetting of
a seasonally dried semiarid grassland soil. We then
combine those growth and mortality rates with
measurements of taxon-specific abundance to
derive an estimate of assemblage-wide prokaryotic
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turnover that is directly comparable to those deter-
mined by bulk radiolabeling experiments, isotope
dilution studies, and other techniques. By estimat-
ing taxon-specific rates of microbial growth and
turnover, we highlight the potential for linking
population dynamics of microbial taxa to ecosys-
tem-level processes within highly diverse natural
or engineered assemblages.

METHODS

Overview
To illustrate how qSIP can be applied to a

microbial assemblage to estimate growth rates for
individual bacterial and archaeal taxa, we used
semiarid grassland soils subjected to a rewetting
event after a seasonal drought (McHugh et al.
2014). Such rewetting of dry soils is a widespread
phenomenon in arid and semiarid ecosystems
worldwide, where seasonal rain events provide a
substantial portion of annual precipitation and
influence the productivity of macro- and microor-
ganisms. Our approach consisted of incubating
soils with 18O-labeled water and using density
gradient centrifugation of extracted DNA, fol-
lowed by quantitative PCR (qPCR) and sequenc-
ing of the 16S rRNA gene in the resulting density
fractions to estimate—for each bacterial taxon—
the magnitude of density shift resulting from
incorporation of 18O into DNA of newly formed
cells. Using additional measurements of 16S
rRNA gene abundance at the beginning of the
incubation, we fit a model of bacterial growth and
estimated parameters describing population
growth, mortality, and turnover rates for all taxa
present throughout the incubation.

Soil collection, incubation, and DNA extraction
On 2 July 2013, during the dry season preceding

monsoon rains, soil was collected from a semiarid
grassland located on the C. Hart Merriam Eleva-
tion Gradient in northern Arizona (35.57° N,
111.57° W; Blankinship et al. 2010, McHugh et al.
2014). Five replicate soil cores (5 cm depth and
diameter) were taken at random from bare soil
between plant patches. Soils were sieved (2 mm
mesh) and subsampled to determine gravimetric
water content (105°C). Amounts of 1 g were added
to 15-mL Falcon tubes, along with either 200 lL of
water at natural abundance d18O (referred to below
as the 16O treatment) or 18O-enriched water (atom

fraction 97%). Time 0 samples (n = 5) received no
additional water and were immediately frozen at
�40°C until further processing. Samples with
added water (n = 10 in total) were incubated in the
dark for 10 d and then stored at �40°C until fur-
ther processing.
Total genomic DNAwas extracted from 0.5 g of

soil in each sample using PowerLyzer PowerSoil
DNA Isolation Kit according to the manufacturer’s
instructions, with an initial 10-min incubation at
70°C followed by bead beating for 90 s (MO BIO
Laboratories, Carlsbad, California, USA). DNA
was quantified with a Qubit Fluorometer (Life
Technologies, Carlsbad, California, USA).

CsCl density gradient centrifugation and
fractionation
To separate DNA by density, 1 lg of DNA

from each sample was added to approximately
2.6 mL of a saturated CsCl and gradient buffer
(200 mmol/L Tris, 200 mmol/L KCl, 2 mmol/L
EDTA) solution in a 3.3-mL OptiSeal ultracen-
trifuge tube (Beckman Coulter, Fullerton, Califor-
nia, USA). The samples were spun in an Optima
Max benchtop ultracentrifuge (Beckman Coulter)
using a Beckman TLN-100 rotor at 127,000 9 g
for 72 h at 18°C. After centrifugation, each den-
sity gradient was divided into 15 fractions of
150–200 lL. The density of each fraction was
measured with a Reichert AR200 digital refrac-
tometer (Reichert Analytical Instruments,
Depew, New York, USA). Fractions with density
<1.65 g/mL were excluded from analysis due to
contamination with the displacement medium.
DNA was then separated from the CsCl solution
using isopropanol precipitation and resuspended
in 50 lL sterile deionized water.

Quantitative PCR
We used qPCR to determine the total numbers of

bacterial 16S rRNA gene copies in each density frac-
tion and in whole-tube extracts for the time 0 sam-
ples. Standard curves were generated using 10-fold
serial dilutions of 16S rRNA gene amplicons,
which were prepared using soil DNA and pri-
mers 515F (50-GTGCCAGCMGCCGCGGTAA-30)
and 806R (50-GGACTACVSGGGTATCTAAT-30;
Caporaso et al. 2012) containing Illumina sequence
adaptors P5 (50-AATGATACGGCGACCACCGA)
and P7 (50-CAAGCAGAAGACGGCATACGA) at
the 50 end of each primer to prevent decreased
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primer efficiency due to amplicon degradation
(Dhanasekaran et al. 2010). Triplicate 10-lL reac-
tions included 1 lL of template and 9 lL of reac-
tion mixture with 0.2 mmol/L of each primer,
0.01 U/lL Phusion Hot Start II Polymerase
(Thermo Fisher Scientific, Waltham, Massachusetts,
USA), 19 Phusion HF buffer (Thermo Fisher Scien-
tific), 3.0 mmol/L MgCl2, 6% glycerol, and
200 lmol/L dNTPs. The assays were performed on
an Eppendorf Mastercycler ep Realplex system
(Eppendorf, Westbury, New York, USA), using a
program of 95°C for 1 min followed by 44 cycles
of 95°C for 30 s, 64.5°C for 30 s, and 72°C for
1 min. Bacterial gene copy numbers were calcu-
lated using a regression equation for each assay,
relating the cycle threshold value to the known
number of copies in the standards.

16S rRNA gene sequencing
High-throughput sequencing of the 16S rRNA

gene was performed on individual density frac-
tions for samples incubated with water, and on
the pooled density fractions for time 0 samples.
DNA extracts were quantified by PicoGreen
(Molecular Probes, Eugene, Oregon, USA) fluo-
rescence and normalized to 1 ng/lL before
amplification. Two PCR steps were used to pro-
cess the samples (Berry et al. 2011). Each sample
was first amplified using primers 515F and 806R,
which target the hypervariable V4 region (Bates
et al. 2011). Amplification was performed in trip-
licate 8-lL reactions containing 1 mmol/L of each
primer, 0.02 U/lL Phusion Hot Start II Poly-
merase (Thermo Fisher Scientific), 19 Phusion
HF buffer (Thermo Fisher Scientific), 3.0 mmol/L
MgCl2, 6% glycerol, and 200 lmol/L dNTPs.
PCR conditions were 95°C for 2 min, followed
by 15 cycles of 95°C for 30 s, 55°C for 30 s, and
60°C for 4 min. Initial PCR products were
checked on a 1% agarose gel. Triplicates were
then pooled, diluted 10-fold, and used as tem-
plate in the subsequent tailing reaction with
region-specific primers that included the Illu-
mina flowcell adapter sequences and a 12-
nucleotide Golay barcode (15 cycles identical to
initial amplification conditions). Products of the
tailing reaction were purified with carboxylated
Sera-Mag SpeedBeads (Sigma-Aldrich, St. Louis,
Missouri, USA) at a 1:1 v/v ratio as described in
Rohland and Reich (2012), and quantified by
PicoGreen fluorescence. Equal quantities of the

reaction products were then pooled. Subse-
quently, the library was bead-purified once more
(1:1 ratio) and quantified by qPCR using the
Library Quantification Kit for Illumina (Kapa
Biosciences, Woburn, Massachusetts, USA). The
amplicon library was denatured and loaded at
11 pmol/L (including a 30% PhiX control) onto
an Illumina MiSeq instrument (San Diego, Cali-
fornia, USA) using 2 9 150 paired-end read
chemistry at Northern Arizona University’s Envi-
ronmental Genetics and Genomics Laboratory,
returning 14.2 million reads passing filter.
Sequence data were deposited in MG-Rast under
project ID 21659.

Sequence processing
The forward and reverse reads were stitched

using fastq-join (Aronesty 2011) and demulti-
plexed with the software package Quantitative
Insights into Microbial Ecology v1.7 (QIIME;
Caporaso et al. 2010b). Sequences were quality-fil-
tered with a Phred score cutoff value of 30 and
checked for chimeras using USEARCH (Edgar
2010). Open reference operational taxonomic unit
(OTU) picking was performed at 97% identity
using UCLUST (Edgar 2010). The most abundant
sequence for each OTU was aligned with PyNAST
(Caporaso et al. 2010a) against the Greengenes
v13_5 database (DeSantis et al. 2006), and taxon-
omy was assigned using the Ribosomal Data Pro-
ject classifier (Wang et al. 2007). We discarded any
OTUs that accounted for <0.005% of the total
sequences (Bokulich et al. 2013). Sequence pro-
cessing resulted in 6.2 million reads clustering
into 2119 OTUs that were used for subsequent
analysis at the genus level (364 genera).
To ensure robust taxon-specific population

growth estimates, we imposed two additional fil-
tering criteria. First, some density fractions within
replicates failed to yield adequate sequencing
data; therefore, we calculated the proportion of
total DNA contained in the failed fractions and
excluded replicates with ≥10% of total DNA in
the failed fractions. This step removed one of five
replicates of the 16O treatment and two of five
replicates of the 18O treatment from subsequent
analyses. Second, to ensure that taxa occurred in a
sufficient number of replicates to reliably calculate
growth rates and uncertainty, we imposed the
condition that taxa must occur in all three remain-
ing 18O replicates, in at least three of the four
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remaining 16O replicates, and in at least three of
the five initial “time 0” replicates. This final qual-
ity-filtering step removed only 0.6% of sequence
reads and excluded 38 taxa at the genus level,
resulting in 326 genera for which we estimated
population growth and mortality.

Modeling taxon-specific population growth and
mortality rates

To estimate taxon-specific bacterial growth
and mortality rates from these data, we extended
the model of 18O isotope substitution in DNA
presented by Hungate et al. (2015) to include an
exponential model of population growth. We
used a mixing model of DNA molecular weight
to estimate abundances of unlabeled and labeled
DNA fragments containing copies of 16S rRNA
genes. The full set of equations describing the
model builds upon those presented in Hungate
et al. (2015) and is summarized here.

For each bacterial taxon (i), we assumed that
the abundance of cells at time t was proportional
to the abundance of 16S rRNA gene copies
(NTOTALi, with units of 16S rRNA gene copies/
g soil). We further assumed that changes in bac-
terial abundances followed an exponential
growth model over the 10-d incubation period,
with the net rate of population growth (ri)
expressed in units of d�1:

NTOTALit ¼ NTOTALi0 � erit (1)

We note that alternative growth models could
also be used (e.g., linear, logistic). At time 0, the
total abundance of 16S rRNA gene copies
(NTOTALi0) was equivalent to the abundance of
unlabeled 16S rRNA gene copies at the begin-
ning of the incubation (NLIGHTi0), but by the end
of the incubation period, both unlabeled and
labeled 16S rRNA gene copies may have been
present such that:

NTOTALit ¼ NLIGHTit þNHEAVYit (2)

Taxon-specific abundances of 16S rRNA gene
copies at the beginning (NTOTALi0 = NLIGHTi0)
and the end of the incubation (NTOTALit) were cal-
culated as the products of the total abundance of
16S rRNA gene copies across all taxa, deter-
mined by qPCR, and the relative abundance of
16S rRNA gene copies associated with taxon i,
determined by sequencing. We used a linear

mixing model of DNA molecular weights to esti-
mate the abundance of labeled 16S rRNA gene
copies at the end of the incubation (NHEAVYit),
and by difference, the abundance of unlabeled
16S rRNA gene copies at the end of the incuba-
tion (NLIGHTit):

NLIGHTit ¼ NTOTALit � MHEAVYi �MLABi

MHEAVYi �MLIGHTi

� �
(3)

where for each taxon (i), NTOTALit is the total
(labeled + unlabeled) abundance of 16S rRNA
gene copies at the end of the incubation, MHEAVYi

is the molecular weight of 18O-labeled DNA,
MLIGHTi is the molecular weight of unlabeled
DNA, and MLABi is the average molecular weight
of DNA (labeled + unlabeled) at the end of the
18O–H2O incubation. Following the procedure
outlined by Hungate et al. (2015), we calculated
the molecular weights of DNA at the end of the
18O–H2O incubation (MLABi) for each taxon (i),
along with corresponding values for unla-
beled (MLIGHTi) and maximally labeled DNA
(MHEAVYMAXi). We also calculated excess atom
fraction 18O values for all taxa. The theoretical
maximum (MHEAVYMAXi) assumes 100% replace-
ment of oxygen atoms in DNA by 18O (an
increase of 12.07747 g/mol; Hungate et al. 2015).
However, as oxygen in DNA is derived from
both water and organic sources, we also esti-
mated the maximum molecular weight of DNA
that could result from assimilation of 18O–water
(MHEAVYi). This enables a more accurate estimate
of growth, by accounting for the proportion of
oxygen atoms in newly synthesized DNA derived
from the labeled environmental water (U):

MHEAVYi ¼ 12:07747U þMLIGHTi (4)

U was estimated via sensitivity analysis, with
logical lower and upper bounds. Values of U
were rejected as too low if they resulted in a
value for fully labeled DNA that was less than
the molecular weight of labeled DNA observed
in the 18O treatment (MHEAVYi < MLABi), and val-
ues of U were rejected as too high if they resulted
in estimates of unlabeled 16S rRNA gene copies
at the end of the incubation that exceeded the
measured abundance at the beginning of the
incubation (NLIGHTit > NLIGHTi0), a violation of
the assumption that all newly formed DNA in
the 18O treatment was isotopically labeled. For
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all taxa, we tested values of U from 0.01 to 1.00
in 0.01 increments. In this way, we constrained U
by finding the maximum range of possible val-
ues common to all taxa (0.54–0.66); we used the
mean of this range (U = 0.60) as the consensus
value for all taxa.

The steps described above provided taxon-spe-
cific estimates of the total and unlabeled abun-
dances of 16S rRNA gene copies at the beginning
and end of the 18O–water incubation and enabled
fitting the exponential growth model (Eq. 1) sep-
arately for unlabeled 16S rRNA gene copies per
mass of soil and for total 16S rRNA gene copies
per mass of soil. With the resulting parameter
estimates, we decomposed the net population
growth rate of bacterial cells into the component
processes of reproduction (bi) and death (di):

ri ¼ bi þ di (5)

For each taxon, we assumed that unlabeled
and labeled 16S rRNA gene copies were lost to
cell death at the same rate during incubation
with 18O-labeled water and that all newly
formed 16S rRNA gene copies were labeled (i.e.,
bi = 0 for unlabeled 16S copies). We therefore
estimated the death rate (di) of each taxon (i) as:

di ¼ ln
NLIGHTit

NLIGHTi0

� �
� 1

t
(6)

where NLIGHTit is estimated by Eq. 3, NLIGHTi0 is
measured directly as NTOTALi0, and t is the length
of the incubation (10 d). By substituting Eqs. 5, 6
into Eq. 1, we estimated the rate of reproduction
(bi) as:

bi ¼ ln
NTOTALit

NLIGHTit

� �
� 1

t
(7)

For all calculations, we used bootstrap resam-
pling (1000 iterations) of replicates within each
treatment to propagate uncertainty, and we esti-
mated taxon-specific 90% confidence intervals
(CI) for reproduction rate, mortality, and net
population growth rate. Calculations were per-
formed in R (R Core Team 2015); computer code
is publicly available at https://bitbucket.org/Qua
ntitativeSIP/qsip_repo.

We used linear regression to examine relation-
ships between growth rate parameters and
abundance. To verify the accuracy of the qSIP-
generated population growth estimates, we com-
bined the mortality rates and abundances of all

taxa to estimate assemblage-level turnover and
compared that value with empirical estimates
from the literature of bulk bacterial assemblage
turnover derived from radioactively labeled thy-
midine and leucine soil incubations, isotope dilu-
tion experiments, modeling studies, and direct
cell counts. We calculated assemblage-level turn-
over as the sum over all taxa of the mortality rate
multiplied by the proportional abundance at the
beginning of the incubation.

RESULTS

Our analysis yielded population growth and
mortality rates for 326 bacterial and archaeal taxa
distinguished at the level of genus, representing
at least 22 different phyla. Nearly three-quarters
(74%) of all soil taxa became enriched with 18O,
as determined by the 90% CIs for excess atom
fraction exceeding zero (Fig. 1). The CIs for
excess atom fraction 18O overlapped zero for
26% of taxa. No taxon had negative 18O enrich-
ment. This pattern of isotopic enrichment indi-
cates that (1) the qSIP method of quantifying
isotopic incorporation was sufficiently robust to
avoid falsely detecting a decrease in 18O enrich-
ment and (2) most taxa incorporated 18O atoms
into newly synthesized DNA, supporting the
conclusion that these taxa produced new cells
during the incubation.
Although most taxa produced new cells, the

assemblage-level total abundance of 16S rRNA
gene copies declined by an order of magnitude
over the course of the 10-d soil incubation,
indicating substantial cell mortality in response
to rewetting (day 0 bootstrapped median:
3.0 9 1010 16S rRNA gene copies/g soil, 90% CI:
1.9 9 1010–4.2 9 1010 16S rRNA gene copies/
g soil; day 10 bootstrapped median: 4.2 9 109

16S rRNA gene copies/g soil, 90% CI: 2.9 9 109–
5.1 9 109 16S rRNA gene copies/g soil). Abun-
dances of 16S rRNA gene copies were distributed
lognormally among taxa by the end of the rewet-
ting incubation (Fig. 2A).
In contrast, population growth and mortality

rates followed a normal distribution across taxa,
with a majority of genera (77%) showing nega-
tive rates of net population growth (Fig. 2B). An
overwhelming majority of taxa (86%) had detect-
able mortality (i.e., di < 0; by convention, mortal-
ity is indicated by values of d below zero), while
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14% showed mortality rates indistinguishable
from zero (Fig. 2B). Only one genus (Sporocy-
tophaga, phylum Bacteroidetes) exhibited signifi-
cant positive net population growth at the end of
the incubation. Gross reproduction rates mir-
rored the pattern of isotopic enrichment, with
74% of taxa having positive reproduction rates
and 26% of taxa showing no detectable reproduc-
tion (Fig. 2B). Together, the non-zero mortality
and reproduction rates suggest that cell turnover
was substantial during the incubation, with new
cells produced more slowly than the rate at
which they were lost to death for most bacterial
populations.

Across all taxa, rates of new cell production
were weakly related to the abundance of 16S
rRNA gene copies at the end of the rewetting
incubation and were highly variable among

genera (Fig. 3A). The positive slope suggests
that taxa responding to rewetting with rapid
growth became more abundant in the microbial
assemblage, but the weak relationship indicates
that the rate of new cell production over the 10-d
period was only a partial determinant of domi-
nance. Rates of new cell production (b) and mor-
tality (d) were unrelated (b = 0.034–0.026 9 d;
n = 326, R2 = 0.003, P = 0.312), indicating that
rapidly growing taxa did not have especially
low or high rates of mortality. Mortality rates
were density-dependent; abundant taxa at the
beginning of the incubation experienced the
greatest mortality in response to soil rewetting
(Fig. 3B).
By combining the mortality rates and abun-

dance of all 326 bacterial and archaeal genera,
we calculated an assemblage-level estimate of

Acidobacteria Actinobacteria

Armatimonadetes

Bacteroidetes

BRC1

Chlorobi

Chloroflexi
Crenarchaeota

Cyanobacteria

Elusimicrobia

FBP

Firmicutes
Fusobacteria

Gemmatimonadetes
Nitrospirae

OD1

Other

Planctomycetes

Proteobacteria SR1
Verrucomicrobia

WS2

Genus

−0.2

0.0

0.2

0.4

0.6

E
xc

es
s 

at
om

 fr
ac

tio
n 

18
O

 

Fig. 1. A majority (74%) of the 326 prokaryotic genera present in the rewetted soil became enriched in 18O by
the end of the 10-d incubation. The remaining 26% had excess atom fraction 18O values indistinguishable from
zero and none had significantly negative values, indicating that the quantitative stable-isotope probing method
of estimating taxon-specific isotopic enrichment was robust against detecting false deviations from zero. Points
are bootstrapped medians; bars are 90% confidence intervals. Colors denote different phyla, and genera are
ordered from highest enrichment to lowest enrichment within each phylum.
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turnover that was within the range of published
soil bacterial assemblage turnover rates for dif-
ferent ecosystems estimated from bulk radiola-
beling experiments and other methods (Fig. 4).
Whole-assemblage turnover estimated via qSIP
using the isotope substitution and growth model
presented here had an average value of
0.287 d�1 (90% CI: 0.212–0.377 d�1). The median
estimate of soil bacterial turnover across 14 stud-
ies from the literature was 0.197 d�1, with the

full range of estimates spanning 0.003–1.14 d�1

(Fig. 4).

DISCUSSION

Our results show how taxon-specific population
growth and mortality rates can be derived by
incubating microbial communities with a stable-
isotope tracer that is universally incorporated
into the DNA of new cells. This technique is

Ranked genus

0

50

100

150

200

250

300

A
bu

nd
an

ce
 (

10
6  1

6S
 c

op
ie

s 
/g

 s
oi

l)

A

gross
net
death

Ranked genus

−0.6

−0.4

−0.2

0.0

0.2

0.4

r
 (

da
y−1

)

B

Fig. 2. (A) Taxon-specific abundances of 16S rRNA gene copies at the end of the rewetting incubation (day 10)
were approximately lognormally distributed, whereas (B) population growth rates (r) followed a normal distri-
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generalizable to microbial assemblages in many
ecosystems and distinguishes among taxa with the
same resolution achieved by high-throughput
amplicon sequencing. Accordingly, the qSIP
approach for estimating taxon-specific microbial
population dynamics complements existing tools
for assessing the diversity and abundance of
microbes in natural environments and enables more
robust tests of ecological theorywithmicrobial data.
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Fig. 3. (A) Rates of reproduction (b) varied widely
among prokaryotic genera and marginally increased
with genus-level abundance of 16S rRNA gene copies at
the end of the rewetting incubation (y = 0.009 + 0.005 9

log10[x]; n = 326, R2 = 0.011, P = 0.064). Thus, there was
a weak trend that those prokaryotic taxa that grew
rapidly in response to rewetting became dominant
assemblage members over time. (B) Mortality rates (d)
were greatest (more negative) for taxa with high initial
abundances of 16S rRNA genes (y = 0.022 � 0.032 9

log10[x]; n = 326, R2 = 0.121, P < 0.0001), indicating
that initially dominant prokaryotes died rapidly with
soil rewetting.
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Fig. 4. The quantitative stable-isotope probing-esti-
mated assemblage-level turnover rate of soil bacteria
and archaea in this study—calculated by combining
taxon-specific turnover rates across all 326 genera—is
within the range of published soil bulk bacterial
assemblage turnover rates measured via radiolabeled
thymidine or leucine, bulk isotope dilution experi-
ments, direct cell counts, and respiration-based model-
ing studies. The value from this study (open circle) is
the median of 1000 bootstrap estimates; error bars
indicate 90% confidence intervals (CI). Literature
values (filled circles) are medians and 90% CIs
corresponding to the normal distribution defined by
the mean and standard deviation reported in each
study. Sources of the literature values are Hunt et al.
(1987), B�a�ath (1990, 1992), Bloem et al. (1992), B�a�ath
(1994a, b), Harris and Paul (1994), Tibbles and Harris
(1996), B�a�ath (1998), Kouno et al. (2002), Uhl�ı�rov�a and
�Santr�u�ckov�a (2003), Perelo and Munch (2005), Cheng
(2009), and Spohn et al. (2016).
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The ability to estimate taxon-specific population
dynamics within microbial assemblages has
important implications for ecology. Resolving pop-
ulation growth rates for co-occurring microbes
enables more precise inferences of species interac-
tions like competition and predation, the outcomes
of which depend strongly on vital rates (Tilman
1977). For example, microbial interaction networks
constructed from relative abundance data alone
may not accurately reflect species interactions
(Berry and Widder 2014). Incorporating additional
information on growth, mortality, and turnover
rates—estimated via qSIP—could enable detecting
the fingerprints of species interactions. Specific
interactions among organisms—mutualism, amen-
salism, competition, and predation—produce
specific expectations about vital rates of ostensibly
interacting taxa, and in this way, likely interactions
can be discerned from spurious correlations.
Because the qSIP approach can inform our under-
standing of such microbial interactions, it has the
potential to vastly extend the size spectrum of
organisms included in food web analyses (Schmid-
Araya et al. 2002).

Measuring taxon-specific growth and mortality
can also facilitate confronting existing community
and ecosystem models with highly resolved popu-
lation data from microbial communities. Such tests
would improve our understanding of the role of
microbes in ecosystems and advance ecological the-
ory (Prosser et al. 2007). For example, by applying
qSIP to derive time series of abundance, growth,
and mortality, classical theories of succession
(Odum 1960, Connell and Slatyer 1977, Tilman
1985) and community assembly (Post and Pimm
1983, Moyle and Light 1996, Tilman 1999) could be
tested for microbial assemblages, something only
rarely possible for macroscopic organisms. Further-
more, the ability to link population dynamics of
individual microbial taxa to biogeochemical pro-
cesses might illuminate whether a handful of
hyper-abundant foundation taxa (Ellison et al.
2005) drive element fluxes, or whether they are
instead regulated by rare keystone taxa (Power
et al. 1996). Applications of qSIP in this vein have
already revealed that microbial activity varies with
phylogeny (Morrissey et al. 2016) and that the enig-
matic phenomenon of priming—in which pulses of
new organic matter enhance the decomposition of
older organic matter—is mediated by taxa across
the phylogenetic spectrum (Morrissey et al. 2017).

Estimating microbial population growth also
paves the way for making taxon-specific esti-
mates of prokaryotic production. For example,
by applying to our data the simplifying assump-
tions that all prokaryotic taxa contain six 16S
rRNA gene copies per cell (despite the known
variability; Crosby and Criddle 2003, Acinas
et al. 2004, Case et al. 2007) and that an average
cell contains 0.1 pg carbon (C; B€olter et al. 2002),
then assemblage-level prokaryotic production
was 2.76 lg C�[g soil]�1�d�1 and assemblage-
level loss of C to cell death was 22 times higher.
The dominant taxon in terms of production com-
prised unidentified members of the order RB41
(phylum Acidobacteria), which was extremely
abundant but grew at a relatively modest rate.
Conversely, members of the order Sphingobacte-
riales (phylum Bacteroidetes) were not particu-
larly abundant, but had high productivity owing
to their rapid growth rates. Future applications
of qSIP to estimate taxon-specific production
could be improved by accounting for taxonomic
variation in the number of 16S rRNA gene copies
per cell, which typically range from 2 to 15
(Markowitz et al. 2012, Langille et al. 2013).
However, even with that additional information,
absolute abundances would still be approximate,
due to the challenges of quantitatively extracting
DNA from free-living cells (Martin-Laurent et al.
2001), as well as amplification and sequencing
biases (Kanagawa 2003, Kozarewa et al. 2009,
Tedersoo et al. 2010). The inability to measure
absolute abundance and cell size of microbes
remains a constraint on our ability to link
taxon-specific fluxes to biogeochemical pro-
cesses. Nevertheless, developing tools for even
coarse estimates of taxon-specific production will
advance our ability to connect biogeochemical
fluxes in ecosystems with their population- and
community-level drivers (Hutchinson 1942,
Lindeman 1942).
A high level of phylogenetic resolution in pop-

ulation dynamics and element fluxes opens the
door to a more intricate understanding of micro-
bial natural history (Lazcano 2011). In the same
way that detailed natural history knowledge has
informed the ecology of macroscopic organisms
(Tewksbury et al. 2014), uncovering the unique
responses of different bacteria to environmental
conditions can lead to better predictions for how
ecosystems respond to environmental change.
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For example, Blazewicz et al. (2014) found high
bacterial and fungal mortality and population
turnover following rewetting of a northern Cali-
fornia grassland soil. Despite those changes in
dynamics, population abundances remained rela-
tively stable. Although we observed net decreases
in population abundances, our data similarly sug-
gest that such high mortality and turnover are
shared by most of the bacterial taxa present in
rewetted soil. Only one genus, Sporocytophaga
(phylum Bacteroidetes), had a net positive rate of
reproduction in response to rewetting. Sporocy-
tophaga is adapted to dry conditions and readily
forms microcysts in desiccated soils (Grace 1951,
Reichenbach 2006). Our observations that this
genus also had low mortality and relatively high
rates of new growth following soil rewetting sug-
gest that it may be able to take advantage of
rapidly increasing soil moisture and the accompa-
nying massive cell death of other taxa. In contrast
to Sporocytophaga, we found that all members of
the class Clostridia (phylum Firmicutes) had rates
of new growth indistinguishable from zero, indi-
cating that this group may respond more slowly
to increases in soil moisture, possibly as oxygen
becomes depleted.

Our estimate of aggregate bacterial assemblage
turnover was within the range of those previously
published, though that range is quite large, from
0.003 to 1.14 d�1 (Fig. 4). Some methods of esti-
mating bulk turnover rely on isotope tracer addi-
tions (B�a�ath 1990) and involve disturbing the soils,
through sieving, mixing, and altering the water
content. Such disturbances are known to increase
microbial metabolism (Franzluebbers 1999) and
may well increase estimates of turnover compared
to those modeled based on microbial respiration
and biomass in more intact soils (Cheng 2009). As
applied here, our method also involved soil distur-
bance, so our aggregate estimate of turnover
(0.287 d�1) may also be elevated compared to
what occurs in undisturbed conditions. Addition-
ally, the qSIP technique with 18O–H2O involves
adding water, so estimates may most closely
approximate those following rainfall, which are
likely elevated compared to dry soils (Blazewicz
et al. 2014). It may be possible to minimize distur-
bance in future applications of qSIP, for example,
by applying the 18O–H2O tracer to a structurally
intact soil. While the estimates presented here may
not reflect field conditions, this qSIP-based

approach has the advantage of resolving rates of
growth and mortality for individual taxa.
Comparing the results of the qSIP approach to

other techniques also indicates that the precision
of qSIP growth estimates was moderate and that
nucleotide recycling during the incubation was
low. The uncertainty of the qSIP growth esti-
mates was within the range of precision of other
methods for quantifying bacterial growth
(Fig. 4), with the coefficient of variation in boot-
strapped growth rates averaging 0.27 across all
326 taxa. Improved methods of fractionating and
measuring the density of the CsCl solution after
ultracentrifugation would improve the precision
of qSIP-derived excess atom fraction and growth
estimates. Furthermore, using qSIP to estimate
growth relies on utilization of oxygen from water
to synthesize new DNA, and such an approach
might underestimate growth rates if nucleotide
recycling occurs, if newly formed cells incorpo-
rated pre-existing, unlabeled nucleotides or recy-
cled labeled ones. Our aggregate estimates of
turnover were within the range of those previ-
ously reported based on radiolabeling experi-
ments measuring bulk bacterial incorporation of
thymidine or leucine (B�a�ath 1990, 1992, 1994a, b),
suggesting that nucleotide recycling was low.
The qSIP approach for estimating taxon-specific

population growth and mortality is generalizable
to other taxa and ecosystems. Although we tar-
geted the V4 region of the 16S rRNA gene to char-
acterize population dynamics of bacteria and
archaea, the technique could conceivably be applied
to any conserved region of interest, or even to the
full metagenome. For example, the internal tran-
scribed spacer region of rRNA genes could be used
to assess taxon-specific fungal growth rates, and
universal mitochondrial and nuclear markers (cy-
tochrome oxidase; 18S and 28S rRNA genes) may
provide a means to estimate growth rates of other
eukaryotic microorganisms. Furthermore, although
our example focused on soil, the approach could be
adapted to a number of other microbial communi-
ties including those associated with freshwater and
marine planktonic and sediment environments,
plant and animal microbiomes, and assemblages of
decomposers. One constraint of the method is that
it requires the addition of water, which may limit
its applicability under certain environmental condi-
tions. However, we note that qSIP has also been
successfully applied to freshwater microbial
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assemblages associated with decomposing leaves
by replacing a portion of environmental water with
18O-labeled water (Hayer et al. 2016).

Knowledge of the rate processes of individual
populations of macroscopic organisms within
diverse species assemblages has strengthened
scientists’ ability to manage ecosystems, conserve
species, and predict the consequences of environ-
mental change. That knowledge can be equally
powerful at the microbial scale and is likely to
also have fruitful application beyond ecology in
industry and in medicine. Accordingly, the
growth and mortality rates revealed by qSIP
provide powerful new measures of how microor-
ganisms interact in complex ecosystems.
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