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Abstract. Soil carbon sequestration in agroecosystems could play a key role in climate
change mitigation but will require accurate predictions of soil organic carbon (SOC) stocks
over spatial scales relevant to land management. Spatial variation in underlying drivers of
SOC, such as plant productivity and soil mineralogy, complicates these predictions. Recent
advances in the availability of remotely sensed data make it practical to generate multidecadal
time series of vegetation indices with high spatial resolution and coverage. However, the utility
of such data largely is unknown, only having been tested with shorter (e.g., 1–2 yr) data sum-
maries. Across a 2,000 ha subtropical grassland, we found that a long time series (28 yr) of a
vegetation index (Enhanced Vegetation Index; EVI) derived from the Landsat 5 satellite signif-
icantly enhanced prediction of spatially varying SOC pools, while a short summary (2 yr) was
an ineffective predictor. EVI was the best predictor for surface SOC (0–5 cm depth) and total
measured SOC stocks (0–15 cm). The optimum models for SOC in the upper soil layer com-
bined EVI records with elevation and calcium concentration, while deeper SOC was more
strongly associated with calcium availability. We demonstrate how data from the open access
Landsat archive can predict SOC stocks, a key ecosystem metric, and illustrate the rich variety
of analytical approaches that can be applied to long time series of remotely sensed greenness.
Overall, our results showed that SOC pools were closely coupled to EVI in this ecosystem,
demonstrating that maintenance of higher average green leaf area is correlated with higher
SOC. The strong associations of vegetation greenness and calcium concentration with SOC
suggest that the ability to sequester additional SOC likely will rely on strategic management of
pasture vegetation and soil fertility.

Key words: enhanced vegetation index; Google Earth Engine; Landsat time series; remote sensing; soil
carbon sequestration; soil organic carbon; subtropical grasslands.

INTRODUCTION

Soil carbon sequestration (SCS) is a promising strategy
for mitigating global climate change (Lal 2004, 2010,
Stockmann et al. 2013), particularly in managed ecosys-
tems that have suffered soil organic carbon (SOC) losses
due to agricultural conversion, land degradation, or over-
grazing (Conant et al. 2001, Conant and Paustian 2002a,
DeGryze et al. 2004, Rees et al. 2005). However, it is dif-
ficult to manage for SCS at meaningful scales because
predicting and quantifying SOC outside of experimental
plots remains a considerable challenge (Eigenbrod et al.
2010, Vasques et al. 2010, O’Rourke et al. 2015). This
difficulty is due in part to the natural heterogeneity in
underlying drivers of SOC, especially soil and vegetation
properties. Moreover, we have limited knowledge of how

these drivers interact at the scale of individual land
management units, which is necessary to quantify and
incentivize ecosystem services (hereafter “management-
relevant spatial scale”; Saby et al. 2008, Power 2010,
Swain et al. 2013, O’Rourke et al. 2015). Although recent
work has emphasized the potential utility of simple mea-
sures of plant traits for improving SOC predictions across
diverse ecosystems at national scales (Yang et al. 2008,
Manning et al. 2015), such work has not explored
whether continuous variations in vegetation properties
(e.g., green leaf area) improve SOC predictions across
more homogeneous management units (e.g., pastures or
forest stands). This gap in our current knowledge is criti-
cal because efforts by ecosystem scientists and land man-
agers to promote SCS ultimately rely on development of
cost effective and efficient methods for predicting and
quantifying SOC at management-relevant scales.
Across the largest spatial scales (i.e., bioregions or conti-

nents), climatic factors, especially mean annual tempera-
ture (MAT) and mean annual precipitation (MAP), are
assumed to dominate SOC dynamics through their
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combined effects on vegetation productivity, microbial
metabolism, and rates of soil weathering (Jenny 1961,
Chapin et al. 2012). Landscape-scale variations in soil
properties, such as clay content, mineralogy, and pH, also
exert control over plant composition, microbial activity,
and the potential for stabilization of carbon (Burke et al.
1989, Conant and Paustian 2002b, Cotrufo et al. 2013).
These mechanisms are reflected in basic ecosystem process
models (e.g., CENTURY; Parton et al. 1993, Bolker et al.
1998, Evans et al. 2011) that are used to predict SOC
across regional or continental gradients (Burke et al.
1989, Schimel et al. 1994). For agricultural land managers
seeking to enhance SCS as part of a portfolio of ecosystem
services (Chapin F.S. 2009), understanding factors leading
to variations in SOC stocks at the scale of their working
landscapes is vital for designing proper monitoring proto-
cols and to spatially target interventions. At management-
relevant scales, ranging from tens to thousands of hec-
tares, climatic variables such as MAT and MAP are essen-
tially constant, so variations in SOC are largely due to the
interaction of vegetative (e.g., productivity and composi-
tion; Conant et al. 2001), topographic and edaphic (e.g.,
soil texture, soil moisture, and pH; Kemmitt et al. 2006)
factors. In general, predicting SOC within homogenous
landscapes should be more difficult than predicting SOC
across heterogeneous areas with significant variation in
edaphic and climatic factors. Thus, the best predictive
models for SOC at management-relevant scales should
emerge by combining two types of information: (1) soil
properties that predict variations in soil capacity to stabi-
lize carbon and constrain microbial decomposition
(Davidson and Janssens 2006) and (2) vegetation data on
plant productivity and composition within and across
management units (i.e., pastures, forest stands).
Remotely sensed vegetation indices may be an efficient

method for providing data to improve SOC predictions
at management-relevant scales. Recent advances in the
accessibility of pre-processed remote sensing data (e.g.,
Google Earth Engine; Moore and Hansen 2011) have
greatly increased the practicality of extracting long time
series of vegetation data for specific sites. These multi-
decadal time series of remotely sensed vegetation data
include well-validated greenness indices, such as the
Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI), which reflect the
biomass and productivity of vegetation (Hill et al. 2004,
Cook and Pau 2013, Gu et al. 2013). In an Australian
pastureland, Hill et al. (2004) utilized satellite-derived
NDVI to parameterize simple light-use-efficiency mod-
els that accurately predicted pasture growth rate
(R2 ~ 0.7). However, thus far the use of EVI and NDVI
to predict SOC has been limited to simple data sum-
maries over brief time periods of only one or two years
(e.g., Yang et al. 2008, Vasques et al. 2010), which is far
too short for any plant-driven biophysical process to
substantially alter total SOC stocks (Smith 2004). Thus,
any predictive power from snapshot summaries must
derive from one of two sources: (1) discriminating coarse

variations in vegetation composition such as grassland
from forest or (2) autocorrelation originating from a
process whereby higher SOC consistently leads to higher
greenness. By contrast, scientists and land managers
seeking to understand and predict SOC within manage-
ment units characterized by relatively homogeneous veg-
etation cover need to know (1) whether variations in
vegetative greenness correlate with variations in underly-
ing SOC and (2) whether any correlation between green-
ness and SOC is stable and consistent across time or if
there is significant interannual variability. Analyzing
multi-decadal time series of vegetation indices is an ideal
way to disentangle these possibilities.
To test the utility of remote sensing derived vegetation

indices for predicting SOC, we posed three specific ques-
tions: (1) What is the explanatory power of a two-year
summary of EVI data relative to a multi-decadal time ser-
ies for predicting SOC? (2) What is the importance of EVI
data for predicting SOC relative to edaphic factors? (3)
How does the predictive value of EVI change at different
soil depths? We hypothesized that average EVI would be
positively correlated with measured SOC pools, and that
this association would be stronger when averaged over
longer time periods. Moreover, in line with the mounting
evidence that SOC storage is controlled by different fac-
tors at different depths (Silveira et al. 2014) and because
above and belowground plant inputs are concentrated
near the surface, we hypothesized that the relative impor-
tance of plant productivity (hence EVI) as a driver of
SOC variability would be greater at shallower soil depth.

METHODS

Study site

Our study site was a 4,300 ha-commercial cattle opera-
tion, Buck Island Ranch (BIR), located in Lake Placid,
Florida, USA just north of Lake Okeechobee. Pasture-
land and native rangeland are dominant land uses in the
northern Everglades watershed, provide numerous
ecosystem services, including livestock production, wild-
life habitat conservation, and maintaining cultural legacy,
and represent relatively benign, low-input agricultural
management (Swain et al. 2007). Like most commercial
cattle ranches in the watershed, BIR maintains both
planted (“improved”) pasture, dominated by Paspalum
notatum Fluegge (Bahiagrass), and “semi-native” pasture,
consisting of a mixture of native warm-season wet and
dry prairie species and some introduced pasture grasses.
Improved pasture is utilized far more intensively for live-
stock grazing than semi-native pasture, supplying several
times more usable forage on a per area basis, and accord-
ingly is fertilized (at a low rate) and limed regularly to
improve the quantity and quality of forage (Silveira et al.
2011). The soil series at BIR are mostly from Spodosol
and Entisol orders, and are uniformly coarse-textured
with the clay and silt fraction accounting for 2–3% of
total mineral mass and a range of sand grades accounting
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for the remainder (Silveira et al. 2014). There is no signif-
icant stone content. Here we focused on SOC in improved
pastures given their agronomic relevance (i.e., there is
~1 million ha of planted “improved” pasture in Florida;
Bohlen et al. 2009), thus our scope of inference is limited
to this particular land-use type.

Soil organic carbon sampling

In July 2014, we sampled 57 plots distributed across
2,000 ha of improved pasture at BIR (Fig. 1). Our focus
was on SOC sequestration in improved pasture, thus we
focused our sampling on upland pasture and specifically
avoided wetlands and tree hammocks. Plots were identified
with stratified random sampling in GIS software (ESRI
2009, ArcGIS Desktop 9.3.1, Environmental Systems
Research Institute, Redlands, California, USA) with a mini-
mum spacing of 150 m. To quantify SOC concentration
and soil bulk density, we collected one 0–15 cm soil
sample from each plot using a hammer core (AMS, Inc.
American Falls, ID, 5.08 cm 9 15.24 cm Signature SCS
Complete/354.26) and computed SOC stock for 0–15 cm.
To separately analyze SOC concentration from 0–5 cm and
5–15 cm depth fractions, while also averaging over fine-
scale variability in soil properties, 12 subsamples were col-
lected from a circle of 5 m radius using a narrow gauge soil
auger (AMS, Inc. American Falls, ID, Soil Step Probe
83 cm/401.4), and divided into 0–5 cm and 5–15 cm depth

fractions. The 12 subsamples for each depth fraction were
bulked together in the field.
Soils were oven-dried at 60°C prior to being passed

through a 2-mm sieve to remove plant litter. Essentially no
stones were found. A subsample from each soil sample
was prepared for %C/%N analysis by grinding for 15 min
in a Spex SamplePrep Mill, SPEX SamplePrep. Metuchen,
NJ, and was then sent to the University of Florida’s (UF)
Light Stable Isotopes Lab for analysis on a Carlo Erba
NA150.0 CNS Elemental Analyzer (EA), Carlo Erba Stru-
mentazione. Milan, Italy. Separate subsamples were sent to
the UF IFAS Analytical Laboratories for measurements
of pH, and Mehlich III extractable Ca, K, Mg, and P.
For the 0–15 cm soil sample, we converted the SOC

concentration from the EA to a measure of SOC mass
by using the bulk density measured from each core. We
then standardized the resulting SOC stock estimate to
units of kg/m2, according to the following formula:

SOC Stock ¼ SOC
g

100 g

� �
� BD

g
cm3

� �

� 1002
cm2

m2 � 15 cm
� �

� 1 kg
1000 g

� �

Acquisition of GIS data

To obtain LiDAR surface elevation data, BIRwas flown
on 13 April 2006, with 36 flight lines covering 72 km2.
Each flight line was 10.55 km long. Data was collected
using an Optech 1233 Airborne Laser Terrain Mapper
(Teledyne Optech, Toronto, Canada) mounted on a twin-
engine Cessna 337. The LiDAR data were used to produce
a DEM (digital elevation map), which we used for topo-
graphic measurements (more detail in Appendix S1).
To gain insight into variations in pasture productivity

and biomass, for each sampled point (n = 57), we
extracted time series of EVI, a widely used vegetation
index, on a 32-d interval at 30-m pixel resolution from 1
January 1984 to 31 December 2011. Each time series was
composed of cloud and shadow masked, atmospherically
corrected surface reflectance data processed by the USGS
using the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (Masek et al. 2006) from Landsat 5’s TM
multi-spectral sensor using Google Earth Engine (see Han-
sen et al. 2013 [discussion in supplementary information]).
The open-access Landsat archive has a global extent and
images dating back to 1972 (Wulder et al. 2016). Earth
Engine is a cloud computing platform designed for rapid
processing of large remote sensing data sets through a dis-
tributed computing architecture. The EVI data points were
calculated as follows (following Huete et al. 2002):

EVI ¼ 2:5� B4� B3
B4þ 6� B3� 7:5� B1þ 1

Here, B4 corresponds to the near infrared band, B3 repre-
sents the red band, and B1 represents the blue band. EVI

FIG. 1. Map showing spatial layout of soil sampling plots.
Dot sizes are proportional to observed size of measured soil
organic carbon (SOC) stock (in units of kg C/m2 in 0–15 cm
depth fraction), ranging from 1.78 kg C/m2 to 6.34 kg C/m2.
Background map contains mean Enhanced Vegetation Index
(EVI), with lighter yellow colors indicating higher EVI, and
darker blue colors indicating lower EVI (ranging from 0.34 to
0.42). Note that the distinct patches of dark blue represent
either wetlands or tree hammocks, both of which we deliber-
ately avoided in our soil sampling where we focused on planted
pasture. [Color figure can be viewed at wileyonlinelibrary.com]
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values are therefore dimensionless quantities constrained
to be between 0 and 1 in practice. Whereas the better-
known NDVI exhibits a non-linear saturating response
with increased leaf area index (LAI) above 2–3, the EVI
index greatly reduces the saturating response present in
NDVI so that more information can be retrieved from
high biomass or high LAI vegetation (Huete et al. 2002).
For instance, EVI was found to correlate linearly with
pasture LAI/biomass up to LAI ~ 5 (the entire tested
range) by Houborg and Soegaard (2004).

Statistical analysis

To fully leverage the information contained in the EVI
time series’, we first decomposed each time series record
(n = 57) into two components: a linear temporal trend
from 1984 to 2012, which represents whether the EVI was
trending higher or lower, and a periodic component rep-
resenting the amplitude of the seasonal phenology, using
a simplified form of Fourier analysis based on Bradley
et al. (2007; further details in Appendix S2). However,
analysis showed that only the linear components of the
EVI time series were useful in predicting SOC, and only
when the intercept (starting value) and trend were taken
in combination, which is a formulation that is mathemati-
cally similar to simply taking the mean of the entire time
series. In particular, there was no benefit to knowing the
particular trend per se; the average value sustained was
critical, not whether EVI increased or decreased over
time. Thus, for subsequent analyses we only used the sim-
ple arithmetic mean of the entire time series record.
To isolate the predictive value of summarizing a long

time-series of EVI data compared to using only the most
recent two years, we first compared the model fit (using
R2) between these two predictors. Then, since we had
previously ruled out temporal trends, seasonal phenol-
ogy or variance per se as important aspects of our long
EVI time series, we investigated whether all dates in the
time series contributed equally to predictive power, or if
there was significant variation in contribution among
dates. To accomplish this task, we performed a simple
exploratory analysis where we plotted R2 from a univari-
ate regression model predicting surface SOC concentra-
tions (0–5 cm; n = 57) with mean EVI (n = 57) derived
by taking the mean for each year in the time series
(n = 28). To estimate whether high R2 observations
within any given year were likely to arise from chance
sampling variation, we performed a simple Monte Carlo
analysis to randomly generate 105 vectors of n = 57 EVI
observations within the range of EVI we observed in this
study system, fitted univariate least squares regression
models between the random vectors and our observed
SOC stock, and plotted resulting sampling distribution
of R2 values (see Appendix S3).
Next, we compared the relative importance of EVI

to the other environmental covariates in the context of
a multivariate regression across all responses. Other
environmental predictors included elevation (from

LiDAR-derived DEM), soil pH, and Mehlich III extrac-
table P, K, Ca, and Mg. Note that silt and clay content,
as noted above in Study site, is uniformly low across our
sampled points (n = 57), and thus we did not include
data on soil mineralogy. To simplify comparison among
factors, we combined the information contained in the
Mehlich III soil audit by taking the arithmetic mean of
the standardized values for each element (Appendix S4),
but we also analyzed calcium separately due to its poten-
tial role in SOC stabilization processes (i.e., due to cation
bridging; Stockmann et al. 2013). Thus, our candidate
predictors included mean EVI, elevation, soil pH, Ca,
and soil fertility index. Prior to analysis, we standardized
all predictor variables by dividing by two standard devi-
ations and centering around the mean so that we could
interpret coefficients on the same scale (Gelman 2008).
Each coefficient was read as the impact on the response
variable of moving from a typical low to a typical high
value for that predictor. By contrast, response variables
were standardized to have mean zero and unit standard
deviation, and therefore each regression coefficient could
be interpreted as the effect size of that predictor in units
of standard deviations of the response. The purpose of
standardizing both predictor and response variables was
to enable relative importance comparisons of each
predictor both within models (i.e., compared to other
predictors) and across models where the original scale of
responses could differ. We present the results of these
models in the form of coefficient plots, which show the
point estimate from least squares regression surrounded
by 50% and 95% CIs. Additionally, each coefficient
plot also displays the constrained point estimate from
LASSO regression, and we provide R2 model fit
summaries from both the unconstrained (least squares)
and constrained (LASSO) models, with the latter com-
puted based on out-of-sample predictions that correct
for over-fitting.
To perform predictive model selection among these

candidate variables, we implemented LASSO (least
absolute shrinkage and selection operator) regression
(Tibshirani 2011). LASSO constrains the sum of coeffi-
cients in a linear regression to be less than or equal to a
constant tuning parameter, a form of penalization that
reduces estimates of small and/or noisy effects, some-
times all the way to zero (thus eliminating that covariate;
Tibshirani 1996). We used cross-validation to set the
tuning parameter for our LASSO regression models
using the R package “glmnet” (Friedman et al. 2010).
We overlaid the LASSO point estimates onto the unpe-
nalized least squares coefficient plots. Next, we validated
the predictive contribution of our time series EVI mea-
sure by performing LASSO regression on models with
and without the EVI predictor and comparing the out-
of-sample predictive performance using leave-one-out
cross-validation (LOOCV). Specifically, we iteratively
refit a LASSO regression model, each time holding out a
single data point to predict with the refitted model
(N = 57), and then computed a LOOCV R2 metric for
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each model. In this way, we validated the predictive
value of multi-decadal time series EVI on SOC stock
estimation and compare its contribution to quantifying
surface SOC vs. SOC contained in lower horizons.

RESULTS

Observed SOC stock (0–15 cm) ranged widely from
1.78 kg C/m2 to 6.34 kg C/m2, with a mean value of
4.27 kg C/m2 (sample CV = 27%; Fig. 1). Surface SOC
concentrations (0–5 cm) were even more variable, rang-
ing from 1.04% to 6.34%, while deeper SOC concentra-
tions (5–15 cm) were between 0.63% and 2.55%.
Averaging across the N = 57 sampled plots, the EVI

data captured fluctuations in seasonal phenology
between 0.14 and 0.71 (Fig. 2a). Across the 1984 to 2011
time series, plots varied substantially in both estimated
intercepts and slopes, indicating variations in temporal
trends (Fig. 2b), and also differed in the amplitude of
seasonal EVI (Fig. 2c). However, only the combination
of linear terms was statistically significant for predicting
SOC, and was equivalent to simply taking the arithmetic
mean of the entire time series (Appendix S1). Overall,
mean EVI across the 28-yr record varied between 0.35
and 0.44. Measured soil fertility parameters varied
widely among the sampled points; for instance, in the
0–15 cm cores pH was between 4.08 and 6.70 and P was
between 4.13 and 38.57 ppm.

In univariate regressions with soil carbon as a
response variable, R2 values of models with mean EVI
from a short time interval (two most recent years) were
uniformly low, with R2 values of 0.03 (0–15 cm SOC
stock), 0.04 (0–5 cm SOC concentration), and 0.04
(5–15 cm SOC concentration). In contrast, for mean
EVI derived from the whole 28-yr time series, R2 varied
between 0.24 (0–5 cm SOC concentration) and 0.31
(0–15 cm SOC stock, with P < 0.0001 for all models;
Fig. 3a, c, e vs. b, d, f).
Relative importance of different dates in the EVI time

series varied dramatically (Fig. 4a, b). One year showed
an R2 of 0.35, comparable to the mean of the entire
record, while several other years were very low (practi-
cally zero), and many were in between (Fig. 4). However,
exclusion of the high R2 year did not significantly impact
predictive value of the rest of the time series (i.e., mean
EVI was still a strong predictor). Moreover, our multiple
observations of years with R2 > 0.1 are extremely unli-
kely to have resulted by chance variation (i.e.,
P � 0.00001, Appendix S3). Comparing EVI (mean of
28-yr period) to our suite of other environmental covari-
ates for predicting soil C revealed differences across
responses (i.e., between 0 and 15 cm SOC stock, 0–5 cm
SOC concentration and 5–15 cm SOC concentration).
For explaining variations in the SOC stock (0–15 cm,
Fig. 5a), EVI and calcium availability were both
significant positive predictors and appeared to be of
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FIG. 2. (a) Spatial average of EVI for all 57 plots across the time series. (b) Linear temporal trends for each plot and (c) esti-
mated seasonal phenology for each point from first order Fourier Series expansion. [Color figure can be viewed at wileyonlinelibrar-
y.com]
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similar importance (i.e., coefficient estimates were
similar at around 0.9 as were 95% CI coverage), while
the other predictors were ambiguous (95% CI crossed
zero), and LASSO shrunk their coefficients to zero.
Thus, moving from a low to a high value for both EVI
and Ca corresponded to a positive effect of about 0.9
standard deviations in SOC stock. For surface SOC con-
centration (Fig. 5b), EVI, elevation, and calcium, and
soil fertility were all retained by LASSO, and EVI was
clearly most important. Higher values of EVI, Ca, and
fertility positively correlated to greater SOC concentra-
tion, while higher elevations corresponded to lower SOC

concentration. By contrast, in the 5–15 cm depth frac-
tion (Fig. 5c), EVI was still statistically significant but
had a smaller estimated effect size (0.5) than Ca avail-
ability (1.35) and was similar to pH in importance. In
that model, LASSO shrunk pH to zero but retained both
EVI and Ca.
Comparing cross-validated R2 among our selected

models with and without EVI, we found that inclusion
of EVI enhanced the (out-of-sample) model fit for both
the SOC stock (0–15 cm), and the surface SOC concen-
tration by 17% and 7% of variance explained, respec-
tively (Fig. 6a–d). These improvements corresponded to
relative improvements of 74% and 21% in R2, respec-
tively. By comparison, inclusion of EVI alongside pH
and Ca in the 5–15 cm model only marginally increased
out-of-sample model performance (Fig. 6e, f). Overall,
our LASSO models explained between 40% and 46% of
variance under leave-one-out cross-validation.

DISCUSSION

Across grazed subtropical pastures, we found that a
long time series of vegetation greenness data signifi-
cantly enhanced predictions of SOC stocks. EVI was a
crucial predictor for total SOC stocks because its addi-
tion to our model improved the out-of-sample predictive
fit by 74% relative to a model containing only elevation
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and edaphic factors. Moreover, EVI was more important
than elevation and edaphic factors in explaining surface
SOC concentrations (0–5 cm), and played a greater role
in improving the out-of-sample predictive fit for surface
SOC compared to deeper SOC (5–15 cm). In contrast, a
short time interval of EVI (2-yr mean) failed to deliver
any discernable predictive power (contrary to Yang et al.
[2008] but consistent with Vasques et al. [2010]). The sig-
nificant improvements in predictive power arising from
the use of a long time-series of remote sensing data
demonstrates that across a relatively homogeneous land-
scape significant spatial variation in SOC stocks can be
related to variations in long term vegetation greenness.
Finally, when we quantified the relative predictive value
of different dates across the entire time series, we found
that the coupling of EVI and SOC stocks was highly
stochastic across time. In total, our results demonstrate
the value of leveraging recent computational advances
to acquire and process long time series remote sensing
data for the purposes of improving ecosystem SOC
predictions.

As we hypothesized, EVI was a stronger predictor of
surface SOC than deeper SOC, and a different suite of
factors best predicted surface compared to deeper SOC.
A stronger coupling between pasture EVI and surface
SOC concentrations could arise for at least two, non-
exclusive reasons: (1) higher EVI implying a greater rate
of plant litter inputs, which concentrate in the upper
5 cm of soil or (2) upper 5 cm SOC/SON stocks being
more significant for predicting nutrient mineralization
and hence grass production than deeper stocks. More-
over, both processes could be reinforced in a positive feed-
back cycle. Targeted experimental fieldwork clearly would
be necessary to disentangle these causal pathways. For
instance, ion-exchange resin membranes (Dur�an et al.
2013) could be deployed across the landscape to assess
whether net mineralization of N and P related to total
SOC stocks or pasture production and consequent spec-
tral properties. Despite less predictive power with greater
depth, mean EVI was equivalent to calcium as the most
important predictor of total measured SOC stocks in the
0–15 cm fraction, suggesting great potential utility in
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FIG. 5. Coefficient plot from multiple regression models comparing the relative importance of weighted mean EVI (0–28 yr) to
our other landscape (elevation), and edaphic (soil pH, P, K, Ca, and Mg) variables for SOC stock 0–15 cm (a), SOC concentration
0–5 cm (b), and SOC concentration 5–15 cm (c). Predictors were all standardized to same scale prior to analysis, and coefficients
represent estimates of effect size in units of standard deviation of the response variable. We report point estimates with a black dot
surrounded by 50% (solid lines) and 95% (dashed lines) confidence intervals resulting from ordinary least squares regression. Coef-
ficients with 95% CI that do not overlap zero can be considered statistically significant. In addition, we overlay red squares to indi-
cate the point estimates obtained by using the LASSO to shrink the estimates for covariates with limited predictive power. Finally,
we report both adjusted R2 from our multiple regression models estimated via least squares (upper left corner) and out-of-sample
R2 from the LASSO regression, which corrects for over-fitting rampant with unconstrained least squares regression. [Color figure
can be viewed at wileyonlinelibrary.com]
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estimating variations in SOC across management relevant
scales (tens to thousands of hectares).
Aside from EVI, the best predictors for surface SOC

pools were elevation and calcium, while for deeper SOC
pools, calcium availability appeared to be of over-riding
importance. The importance of elevation at shallow but
not deeper depths is likely related to soil water distribu-
tion given that we observed development of a muck hori-
zon in low-lying wet pastures. By contrast, at depth,
higher pH values predicted lower SOC (although LASSO
shrunk the pH coefficient to zero), whereas higher cal-
cium was positively associated with SOC at both depths,
a contrast that is somewhat counter-intuitive. Soil pH has
many well-known effects on microbial activity and func-
tion, and lower pH can inhibit microbial decomposition
of SOC (Kemmitt et al. 2006). The consistent and strong
importance of calcium for all responses, but particularly
for 5–15 cm SOC, is striking. Since this relationship only
existed for calcium and not for any other of the cations or
for phosphorous, autocorrelation between SOC stocks

and cation/anion-exchange capacity alone seems unlikely
to drive the observed relationship. Rather, it may be that
calcium plays an underappreciated role in stabilizing SOC
in these soils through mineral-organic complexation
(Fornara et al. 2010, Clarholm et al. 2015, Keiluweit
et al. 2015), a possibility that deserves to be tested experi-
mentally.
In this ecosystem, we found evidence of significant

interannual variability in the coupling of vegetation phe-
nology and SOC pools. EVI from some years in isolation
delivered almost the same predictive power as the time
series as a whole, whereas EVI from others years had
almost no correlation. A primary utility of long time ser-
ies is to smooth out any sampling effects that could arise
from using only a single or few years of data as a com-
posite measure. For instance, if we had averaged over an
arbitrary 4-yr time window with, for example, years
11–14 of the time series, our predictive power would be
extremely low, whereas years 21–24 would deliver excel-
lent predictions. The source of interannual variability in
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this system is unknown, but perhaps relates to climatic
factors (e.g., duration and intensity of drought) or com-
plex interactions of climate with landscape processes
such as grazing and fire. Future work should investigate
the generality of patterns within and across land uses in
grazing landscapes. In the meantime, given the stochas-
ticity in EVI-SOC relationships, we encourage further
research to develop and analyze multi-decadal time ser-
ies as a best practice. Fortunately, the advent of Google
Earth Engine and cloud computing make the difference
in difficulty between acquiring, for example, 5 yr and
30 yr of data, essentially trivial.
The correlation between EVI and SOC stocks could

be due to higher primary productivity (indexed by EVI)
driving higher SOC stocks, or higher SOC stocks driving
greater productivity, or both. The high predictive power
of certain individual years in our EVI time series (e.g.,
years 11–14) favors the latter possibility. Although the
survey design of the present study precludes definitive
disentanglement of these causal pathways, note that for
the purpose of predicting SOC, both causal pathways
should strengthen a positive association between EVI
and SOC. Another major challenge in using satellite-
derived vegetation indices to link vegetation and SOC
pools is that recent empirical and theoretical work sug-
gests that SOC may primarily originate from root system
production and turnover (Rasse et al. 2005). However,
the relationship between green leaf area and root pro-
duction in grazed grasslands is complex, especially over
short timescales where defoliation due to grazing or hay-
ing temporarily removes green leaf area and potentially
alters root : shoot allocation patterns (Briske and
Richards 1995, Dawson et al. 2000). Thus, future work
will require more extensive experimentation to under-
stand how vegetation indices may relate to variations in
above- and belowground allocation patterns.
Leave-one-out cross-validation verified that a long

time series of EVI is a powerful predictor of total SOC
stock and surface SOC pools in this ecosystem. Like-
wise, penalized regression via LASSO (Tibshirani 1996,
Friedman et al. 2010) retained EVI as a predictor across
all depths. We suggest that these findings have at least
two practical implications for predicting SOC at man-
agement relevant scales. Most obviously, future work
with geostatistical models (e.g., Vasques et al. 2010)
should acquire the longest time-series possible for EVI
and/or NDVI for use as a spatial covariate, rather than
continue to utilize only short time interval summaries of
1 or 2 yr. However, in assessing the overall (out-of-sam-
ple) fit of our best model it was clear that some signifi-
cant sources of variation were unexplained. While there
are no meaningful variations in climate or clay and silt
content across our study site, it is worth noting that our
best proxy of soil moisture (LiDAR elevation) is not per-
fect, in large part because ranch water management (i.e.,
drainage and sub-surface irrigation; Swain et al. 2013)
can occasionally over-ride elevation in determining soil
moisture at this site. More importantly, just as previous

work has incorporated remote sensing derived vegeta-
tion indices into models of plant and pasture production
(e.g., Hill et al. 2004), we suggest that future work could
improve estimates of SOC by utilizing these unprece-
dented data sets to parameterize ecosystem carbon mod-
els (e.g., CENTURY Parton et al. 1993, or a more
modern microbially driven model such as MIMICS;
Wieder et al. 2014) to estimate variability in SOC across
space and evaluate differential spatiotemporal trends.
For example, given a model and field data linking EVI/
NDVI to plant productivity, a spatially explicit process-
based SOC model could be run using 40 yr of variable
input rates (i.e., net primary production) across the
study site(s) of interest as predicted by the EVI/produc-
tivity model in each individual Landsat pixel. A spatially
resolved hydrological model also could be included to
better constrain variable rates of decomposition across
the landscape. We argue that integration of spectral data
into process models is a promising path toward generat-
ing more accurate predictive surfaces of SOC at manage-
ment-relevant spatial scales.
Based on our results, we encourage greater integration

of vegetation spectral data into ranch management.
First, given the robust link between greenness metrics
and pasture productivity (e.g., Hill et al. 2004), EVI
maps such as we present in Fig. 1 could provide insight
into spatial patterns of productivity across large man-
agement operations. Understanding spatial variations in
EVI could enable managers of pastoral systems to target
grazing in more productive areas and apply appropriate
management to areas with less production, an applica-
tion of “precision agriculture” concepts that are more
often deployed in higher-value commodity production
(e.g., Lee and Ehsani 2015). Second, as ecosystem scien-
tists improve our mechanistic understanding of the link-
ages between productivity and SOC stocks in these
systems, similar spatially explicit renderings of EVI
data could prove useful for monitoring and predicting
future SOC. If confirmed by subsequent experimental
investigation, our finding that calcium availability is an
independent driver of SOC suggests that increased fertil-
ization with this element (e.g., via lime or gypsum appli-
cations) may be a cost-effective approach to enhancing
SCS in addition to providing other agronomic benefits
(e.g., pH amelioration). Although the observational
design of our present work precludes strict estimation of
causal effects, we note that the soils in the upper ranges
of Ca availability were associated with 0.75 standard
deviation higher SOC stocks, representing an additional
10 Mg C/ha.
Overall, we found strong evidence that remote sensing

of long-term vegetation EVI can be critical for predict-
ing SOC. In contrast to previous work, these data did
not enhance predictive power by discriminating coarse
vegetation types (as in large landscape transects such as
Yang et al. 2008), but instead reflect deeper relationships
between pasture green leaf area and SOC. The relation-
ship between EVI and SOC appears to have a high
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degree of interannual variability, a finding that calls for
investigation. Nevertheless, remote sensing of vegetation
can help scale predictions of SOC from plots to manage-
ment-relevant units. Accordingly, we call for deeper and
more extensive testing of the utility of long time series of
remotely sensed vegetation indices for predicting SOC
stocks across various ecosystems. These improvements
in efficient SOC estimation may help promote adaptive
management of grazing lands to optimize SCS in paral-
lel with other ecosystem services such as biodiversity
maintenance and livestock production.
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