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Abstract The concentration detection threshold (CDT) is the concentration of parti-
cles in solution beyond which a (serial dilution) assay detects particle presence. By our
account, CDTs typically are not estimated but are fixed at some value. Setting a CDT
to zero (d = 0) implies perfect detection, a common assumption, and setting d > 0
gives results that are “denominated” in units of d, i.e., are relative to the choice of d.
Using multiple, different serial dilution assays, each with its own CDT, we choose a
“reference assay,” to which we assign a fixed CDT value, to obtain relative estimates
of the remaining assays’ CDTs and the underlying particle concentration. We present
the CDTs as a novel way to account for or to compare different serial dilution assays,
“sensitivities”. We apply our methodology to data from four assays of the presence
of bacterial (B. abortus) antibodies in the serum of elk in the Greater Yellowstone
Ecosystem, where transmission of brucellosis—the disease ensuing from infection—
to commercial livestock is managed by the Wyoming Game and Fish Department to
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avoid the primary symptom of abnormal fetal abortion. Results agree qualitatively
with the more traditional notion of sensitivity as the true positive rate.

Keywords Brucellosis · CDT · Concentration detection threshold ·
Particle concentration · Sensitivity · Serial dilution assay

1 Introduction

1.1 Motivating problem: brucellosis

Brucellosis is an infectious bacterial disease caused by Brucella abortus and causes
reproductive failure primarily in cattle, elk, and bison as well as undulant fever in
humans. The U.S. government initiated an aggressive eradication campaign in the
1930s to eliminate this disease from the nation’s cattle population (Ragan 2002).
Although it took over 70 years for this program to be successful in cattle, this disease
remains endemic in the elk (Cervus elaphus) and bison (Bison bison) of the Greater
Yellowstone Ecosystem (GYE), encompassing portions of Wyoming, Idaho, and Mon-
tana, USA (Thorne et al. 1997; Cheville et al. 1998). Transmission most commonly
occurs by oral contact with aborted fetuses and associated birthing tissues and fluids
(Thorne 2001).

In an effort to limit the spread of brucellosis from elk and bison to domestic cattle, the
Wyoming Game and Fish Department (WGFD) operates 22 elk winter feedgrounds
in western Wyoming, USA, while the US Fish and Wildlife Service oversees the
National Elk Refuge, which provides supplemental feed to both elk and bison near
Jackson, Wyoming, USA (Smith 2001). The main function of the feedground program
is to provide spatial separation of elk and bison from cattle, and to prevent damage
to agricultural resources. On the downside, feedgrounds perpetuate brucellosis by
congregating animals during the period of peak brucellosis transmission from February
through June (Roffe et al. 2004; Cross et al. 2007).

To determine if an animal has been exposed to B. abortus, WGFD uses a number of
assays to test for the presence of B. abortus antibodies in blood serum. We use data from
four federally approved serological assays of elk serum as implemented by the WGFD:
card test (CARD), manual complement fixation test (CF), rivanol precipitation-plate
agglutination (RIV) and standard plate agglutination test (SPT). The data used here
were originally collected by the WGFD to assess assay sensitivities—in the traditional,
true positive sense—(Morton et al. 1981); all infections were confirmed by B. abortus
cultures from lymph node or blood extractions using methods described by Thorne et
al. (1978).

Our longer-term goal, beyond the scope of this paper, is to combine other, similar
assay results, as they become available from the ongoing WGFD disease manage-
ment efforts, to predict underlying relative concentrations of B. abortus antibodies in
serum as a function of spatial, temporal and other risk factors while accounting for
different assay sensitivities—such accounting being our current focus. Ultimately, we
envision mapping “hot spots” of relative B. abortus antibody concentration to serve
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WGFD management and vaccination efforts and to inform the ecology of brucellosis in
elk.

Our current data allow partial progress toward this goal. Moreover, our data motivate
us to develop a model for relative concentration of particles in solution (e.g., serum
antibodies) that has general applicability to multiple serial dilution assays of parti-
cles in solution. In particular, our model combines data from multiple serial dilution
assays to allow comparison of assay “sensitivities” via particle concentration detection
thresholds (CDTs) as we discuss below, a different notion than the traditional “true
positive” sensitivity. Henceforth, we use “threshold sensitivity” to distinguish, when
necessary, these two notions of sensitivity, and we note that a smaller CDT indicates a
more (threshold) sensitive assay, which is opposite to interpreting a larger proportion
of true positives to indicate a more sensitive assay.

1.2 Statistical background

The assumption that particles follow a homogeneous Poisson process(HPP)—
equivalently, that any given number of particles is distributed uniformly in solution—
has a relatively long history of application to serial dilution assays. Early accounts
include McCrady (1915), Fisher (1922) and Cochran (1950). See also McCullagh and
Nelder (1989, Sec.1.2.4), who use Fisher’s (1922) account to introduce generalized
linear models.

In addition to the HPP assumption, particles are often assumed to be detected
perfectly (Finney 1978; Ridout 2005)—the presence of a single particle (or more)
results in a positive response. This so-called “one-hit” Poisson model (Mehrabi and
Matthews 1998) may be a tenable assumption in cases where, for example, a sin-
gle bacterium divides to produce visible colonies over time; the “multi-hit” model
of dose-response studies (Cornfield 1954; Cornfield and Mantel 1977) embodies the
notion that more than one particle may be required for detection to occur. Below,
we develop a model in terms of the concentration above which particles in solution
are detected in a serial dilution assay. We refer to this concentration as the concen-
tration detection threshold (CDT), d > 0, which serves as our basis for comparing
and accounting for different threshold sensitivity of assays to detect particles in solu-
tion.

To establish concepts and notation, consider the relatively simple problem of detect-
ing particles using a single assay that results in an indicator of the presence of particles
in a “batch” of solution, e.g., antibodies in serum, with concentration λ0 > 0. If Z is
the number of particles in a volume, v, of solution then Z ∼ Poisson(λ0v), assuming
particles are completely spatially random (CSR)—i.e., particles follow an HPP. If Y
is a binary indicator of the presence of one or more particles, then a “positive” event,
{Y = 1}, corresponds to {Z > 0}, and the probability of particle presence follows as
[Y = 1] = [Z > 0] ≡ Pr(Z > 0)—the probability of (perfect) detection. While we
refer to Y as a “binary” variable here, it may be better for subsequent development
to emphasize Y as a categorical variable whose values indicate the highest dilution
level—trivially one in this example—at which particles are detected, zero indicating
that particles are not detected at any dilution level.
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More generally, we may allow for imperfect detection with {Y = 1} = {Z > c},
for some particle count c ≥ 0. Reparameterizing with c = dv, we express particle
detection as {Y = 1} = {Z > dv}, where d ≥ 0 is the aforementioned CDT, so
that [Y = 1] = [Z > dv] ≡ Pr(Z > dv) is the probability of possibly imperfect
detection, and [Y = 0] = [Z ≤ dv] is probability of non-detection, 1 − [Y =
1]. Below, we develop the estimation of the concentration, d, while accounting for
measurement uncertainty in volume, v.

As suggested by previous work (Lee and Whitmore 1999) using a single assay,
wherein d has been fixed, we cannot identify d from λ0. To see this, choose values
d = d1 and λ0 = λ01 (with fixed v) so that p = Pr(Z > d1v). Then, for a different
value, d = d2, we can generally choose a different value, λ0 = λ02, to obtain the same
result, p = Pr(Z > d2v). Thus, different combinations of d and λ0 result in the same
probability of detection, hence they cannot be identified from one another. With data
from multiple assays, however, one assay serves as a reference assay, with fixed CDT,
which allows inference about remaining assay CDTs and the common concentration,
λ0.

In their presentation of statistical summaries for grouped serial dilution assay data,
Hamilton and Rinaldi (1988) discuss “threshold concentration” as the “...concentration
of the test material just sufficient to cause a response,” where “response” again indi-
cates presence or absence of a substance in solution. However, they do not appear to
account for imperfect detection of particles. Lee and Whitmore (1999) discuss detec-
tion thresholds greater than one, but they ultimately fix d = 1 in their analysis so that
their concentrations are “denominated in units of d.” In other words, by fixing d = 1,
they effectively assume perfect detection of a “d unit” of concentration. We follow a
similar route by fixing one of our four assay CDTs to 1, creating our aforementioned
reference assay CDT.

If the CDT of an assay is known, which is implied by, for example, the assumption
of perfect detection, or if we could calibrate measurements against a known standard
concentration, then, in principle, we could estimate true concentration. For example,
continuing the ideas of Giltinan and Davidian (1994), Dellaportas and Stephens (1995)
and Davidian and Giltinan (1995, Chap. 10), Gelman et al. (2004) use the concentration
of a known standard in a Bayesian framework to calibrate concentrations obtained from
serial dilution assays. In addition, Block and Chavance (1998) use count data arising
at each dilution level from repeated application of the same assay, along with the
assumption of perfect detection, to estimate concentration in the context of comparing
treatment effects on viral load. Without the assumption of perfect detection or known
detection concentration, without a known, calibrating concentration, or without other
assumptions, estimates of particle concentration are relative. Ridout (2005) gives an
overview of serial dilution assays, including point estimation, bias correction, interval
estimation, and design.

Features of our approach include the following: (i) assay procedures are compared
via explicitly specified assay-specific CDTs, or threshold sensitivities; (ii) standards of
known concentration are not required to compare assay sensitivities; (iii) information
from multiple observations from multiple (different) assays are used simultaneously
to inform the comparison of assay-specific threshold sensitivities; (iv) the models
are a conceptually straightforward extension of statistical notions underlying existing
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studies on serial dilution assays; and (v) the models are easily implemented in a
Bayesian framework using freely available software.

Section 2 continues the basic statistical ideas presented here to develop models
that combine and compare observations from multiple, different serial dilution assays
of the presence of particles in solution. We illustrate our models using simulated
data in Sect. 3, then apply the models to data from multiple assays of seropositivity
of the B. abortus antibody in elk of the Greater Yellowstone Ecosystem (GYE) of
Wyoming. We conclude with a discussion of our methodology and application in
Sect. 4.

2 Models

Generally, we consider J serial dilution assay procedures where assay j ∈
{1, 2, . . . , J } has K j dilution levels. It seems natural to envision a procedure whereby
particle detection is assessed and recorded for each dilution level of an assay. How-
ever, it is important to note, for subsequent model development, that the recorded data
available to us indicate only the last dilution level at which particles were detected.
Thus, we are assured that particles were not detected at subsequent dilution levels but
cannot say whether or not particles were detected at previous dilution levels. For our
data, J = 4 and, using the assay abbreviations introduced in Sect. 1.1, {1, 2, 3, 4}
corresponds to {CARD, CF, RIV, SPT}.

Following our remarks on Y and Z in Sect. 1.2, we let Yi j indicate the highest dilu-
tion number k at which particles are detected by assay j for sample i ∈ {1, 2, . . . , N }
obtained from a batch of solution of concentration λ0; Yi j = 0 indicates non-
detection at all dilution levels. Thus, Yi j is a categorical random variable with support
{0, 1, . . . , K j }, j = 1, . . . , J—{0, 1} ( j = 1), {0, 1, . . . , 7} ( j = 2), {0, 1, 2, 3, 4}
( j = 3) and {0, 1, 2, 3, 4} ( j = 4).

Continuing with our simple model in Sect. 1.2, we associate Yi j with Zi jk ∼
Poisson(μi jk), where μi jk = m jkλ0vi jk is the mean, and m jk is a known dilution
fraction for dilution k of assay j , relative to undiluted solution; thus, m jk is an addi-
tive offset in the (log) linear predictor of the mean that adjusts initial concentration,
λ0, to reflect dilution. Often m jk = m−k

j , where m j is a known, constant dilution
ratio for assay j . For example, if m j = 2, then the solution concentration is halved
from one dilution to the next. In our experience, a dilution procedure typically does
not vary by sample, and we omit the i subscript from m. For us, nominal solution
volumes, v∗

jk , do not change across i , but, to account for uncertain volume measure-
ments, we use a Berkson specification (Dellaportas and Stephens 1995) so that “true”
volume, vi jk , varies about nominal volume; see below. Table 1 summarizes the num-
ber of dilutions, K j , the dilution fractions, mi j , and nominal volumes, v∗

jk , for our
data.

If the Zi jk are obtained from disjoint volumes, as for our data, then the Zi jk

are conditionally independent given their means, hence the Yi j are conditionally
independent—given, additionally, the CDTs and volumes—and the probabilities
[Yi j = k] follow from the product rule applied to the Poisson probabilities of the
following events:

123



166 Environ Ecol Stat (2015) 22:161–177

Table 1 Summary of assay
procedures

Assay
j

Number of
dilutions K j

Dilution fraction relative to
undiluted solution m jk

Nominal volume
(μl) v∗

jk

1 1 1/2 60

2 7 1/20, 1/40, 1/80, 1/160, 50, 50, 50, 50,

1/320, 1/640, 1/1280 50, 50, 50

3 4 8/11, 4/7, 2/5, 1/4 110, 70, 50, 40

4 4 4/11, 2/7, 1/5, 1/8 110, 70, 50, 40

K j⋂

k=1
{Zi jk ≤ d jvi jk} ≡ {Yi j = 0}

{
Zi jk′ > d jvi jk′

}⋂
{

K j⋂

k=k′+1
{Zi jk ≤d jvi jk}

}

≡ {Yi j = k′} k′ ∈ {1, . . . , K j − 1}.
{Zi j K j > d jvi j K j } ≡ {Yi j = K j }

(1)

The first line in (1) depicts the event that none of the particle counts exceed their
corresponding threshold counts at any dilution, the last line depicts the event that the
last dilution count exceeds its threshold, and the middle line indicates the event that
dilution k′ is the last dilution at which a count exceeds its threshold, with counts of all
subsequent dilutions falling at or below their thresholds but with counts of previous
dilutions unconstrained. Note that expression (1) embodies the description of our data
given at the beginning of this section. That is, our data tell us that no exceedances occur
beyond the last observed exceedance, of course, but, moreover, our data do not tell
us about exceedances or (likely rare) non-exceedances at previous dilutions. Also, it
explains our remark, in Sect. 1.2, that refers to Y as “categorical” rather than “binary”.

To draw a connection to the common assumption of perfect detection, mentioned
above but not used in this article, the probability of not (perfectly) detecting particles

at any dilution is [Yi j = 0] = exp(−∑K j
k=1 μi jk), which implies that particles do

not exist in solution volumes at or beyond the first measured dilution level, k = 1
(which may or may not be diluted). The probability of (perfectly) detecting particles

at all dilution levels is [Yi j = K j ] = ∏K j
k=1(1 − exp(−μi jk)), and the probability

that dilution k′ is the last dilution at which particles are (perfectly) detected is [Yi j =
k′] = (1−exp(−μi jk′)) exp(−∑K j

k=k′+1 μi jk). Of course, if some assays, in actuality,
do not have perfect detections or, more generally, if assays have different detection
thresholds, then the assumption of perfect detection gives incorrect probabilities, hence
would lead to incorrect inference of particle concentration. Intuitively, for example,
if we assume perfect detection, but, in actuality, detection is imperfect, then a perfect
detection model would tend to underestimate concentration in a downward adjustment
from the true, higher concentration required to generate particle counts above non-zero
thresholds.

Finally, collecting the Yi j and d j into vectors Y and d, respectively, we write the
likelihood as
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[Y | d, λ0] ≡
∏

i j

[Yi j | d j , λ0].

Introducing priors, [d] and [λ0], we write the posterior distribution as

[d, λ0 | Y] ∝ [Y | d, λ0][d][λ0]. (2)

We refer to model (2) as the “constant effect model” for the constant concentration,
λ0. We notationally suppress the volumes, vi jk , here and in much of the remainder of
our presentation because the volume measurement error is not informed by our data—
posteriors (not shown) are indistinguishable from priors—and this error appears to
have practically no discernible impact on inferences, but we do want a more complete
accounting of uncertainty.

In our application (Sect. 3), we do not have a well-defined batch, but, instead, have
a serum sample from each of N elk, which lived among a population of elk in the
GYE, and we view λ0 as a population-level serum antibody concentration. And, we
extend the model to allow concentration to vary by subject (elk) i . More precisely, we
specify independent subject random effects

λi ∼ [λi | σ1] ≡ log-normal(0, σ 2
1 ) (3)

given λ0 and the (log scale) variance component, σ 2
1 ; we use the 1 subscript to dis-

tinguish from additional effects and their variance component in a subsequent model.
Thus, μi jk = λ0λi m jkvi jk , in which we see multiplicative elk effects modifying
the overall effect, λ0. Letting λ1 be the vector with i th component λi , we write
[λ1 | σ1] ≡ ∏

i [λi | σ1], and re-write the likelihood and posterior, respectively, as

[Y | d, λ0,λ1] ≡
∏

i j

[Yi j | λ0, λi , d j ],

and
[d, λ0,λ1, σ1 | Y] ∝ [Y | d, λ0,λ1][d][λ0][λ1 | σ1][σ1]. (4)

We refer to model (4) as the “elk effects model”.
Results (Sect. 3; Table 4) from fitting (4) to our data suggest that our observed

Yi j values exhibit more variability than can be accounted for by this model, so we
extend the model to include decomposition of variability into further effects, λi j , i =
1, . . . , N , j = 1, . . . , J , which we may interpret as (additive) “elk–assay” interaction
effects (on the log scale). We speculate on the sources of these effects and offer related
discussion in Sect. 4. In this article, we are mainly interested in comparing assays
via the d j CDTs, and to a lesser extent, in λ0, λi , and λi j , and seek to separate these
effects from the aforementioned effects, regardless of their source. With additional
data, e.g., spatial location, accounting for such heterogeneity may help to better infer
λi as a function of unidentified spatial risk factors (Elliott et al. 2000), a brief point of
discussion in Sect. 4.
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Thus, we specify independently

λi j ∼ [λi j | σ2] ≡ log-normal(0, σ 2
2 ), (5)

where σ 2
2 is a (log scale) variance component. Thus, μi jk = λ0λiλi j m jkvi jk . To

revise the likelihood, let λ2 be the vector that collects the λi j and define [λ2 | σ2] ≡∏
i j [λi j | σ2]. Now, we denote the likelihood as

[Y | d, λ0,λ1,λ2] ≡
∏

i j

[Yi j | d, λ0,λ1,λ2],

and posterior as

[d, λ0,λ1,λ2, σ1, σ2 | Y] ∝ [Y | d, λ0,λ1,λ2][d][λ0] × [λ1 | σ1][λ2 | σ2][σ1][σ2].
(6)

We refer to model (6) as the “elk–assay effects model”. We do not include assay
effects, say λ j , in the linear predictor of the mean, μi jk , because we cannot identify
these effects from the d j .

Finally, for lack of information, we specify independently, relatively vague pri-
ors, λ0 ∼ log-normal(0, 1000) and σp ∼ uniform(0, 20), p = 1, 2. For the CDTs
in our example, we set d2 = 1, making the CF assay the reference assay, which
our experience and results indicate to be the smallest CDT, hence CF is the most
threshold sensitive assay. Without this constraint or other constraint, e.g., sum to
zero on the log scale, we cannot identify the overall mean level of the d j from λ0,
which is presumably the reason for fixing d in previous work (Lee and Whitmore
1999), and which is more generally akin to placing constraints on linear predic-
tor effects to achieve estimability or identifiability. The remaining d j are indepen-
dently distributed vaguely as log-normal(0, 1000). Finally, we specify independently,
vi jk ∼ log-normal(ln(v∗

jk), ln(0.0052 +1)) to incorporate volume measurement error
about nominal values, v∗

jk (Table 1), with 0.5 % coefficient of variation, according to
WGFD experience.

3 Applications to simulated and observed data

We explored our models and implementations using simulated data before apply-
ing them to our observed data. For Markov chain Monte Carlo (MCMC) poste-
rior samples, we used JAGS (Plummer 2003), and for ML, we used the algo-
rithm by Nelder and Mead (1965) as implemented in the optim function in R
(R Core Team 2012). More details of the MCMC procedure accompany the pre-
sentation of the analysis of the observed data, after that of the simulated data.
Preliminary runs, as well as results from simulated data (Sect. 3.1) suggested no
discernable differences in results arising from the use of the Anscombe normal
approximation (Anscombe 1948) to the Poisson, and the approximation required
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roughly half the model run time. All reported results are based on this approxima-
tion.

3.1 Simulated data

We used the elk–assay effects model (6) to simulate N = 72 responses from each
of J = 4 fictitious assays having the same characteristics as those used to obtain
our observed data (Table 1). Then, we used these simulated data to obtain posterior
distributions to assess the model before moving on to our real data. We chose values
of ln(d1) = 4 (fictitious “CARD” assay), ln(d2) = 0 (“CF”), ln(d3) = 4 (“RIV”),
ln(d4) = 5 (“SPT”), λ0 = 6, σ 2

1 = 0.8 and σ 2
2 = 0.8. (We chose these to be

comparable to values obtained from preliminary, exploratory analyses (not shown)
of our observed data; see Sect. 3.2, below.) Thus, for our simulation, assay j = 2 is
the most threshold sensitive because it has the lowest CDT value, and assay j = 4
is least sensitive. Given σ 2

1 = 0.8, we generated N random effects, λi , according to
(3). Similarly, with σ 2

2 = 0.8, we generated N × J random effects, λi j , according to
(5). The Yi j were then generated according to Poisson—not the Anscombe normal—
probabilities that follow from equivalent events in expression (1), where the vi jk were
generated according to our volume error model (Sect. 2).

As noted above, we expect non-identifiability between the overall effect, λ0, and
the overall level of the CDTs, d j . Preliminary attempts to fit the elk–assay effects
model (6) to its simulated data indicated lack of convergence consistent with this
lack of identifiability. Thus, we fixed d2 = 1, so that assay 2 (CF) is our “reference”
assay, and proceeded to infer remaining model parameters now relative to this fixed
reference.

The values used to simulate random effects and data are captured within 95 %
credible intervals (Table 2). Also, the coverage rate for random effects is comparable
to the nominal 95 % intervals shown in Fig. 1: λi , 65/72 = 0.90; λi1, 69/72 = 0.96;
λi2, 64/72 = 0.89; λi3, 64/72 = 0.89; λi4, 69/72 = 0.96; all random effects,
331/(5∗72) = 0.92. Differences between posterior medians and corresponding means
are too small to appreciate visibly in Fig. 1, but seem to add clutter, so we omit medians
from the figure.

Encouraged by these results, we next applied our models to our observed data.

Table 2 Posterior summary for the elk–assay effects model (6) fit to simulated data

Parameter Mean 2.5 % 25 % 50 % 75 % 97.5 %

ln(λ0) 5.98 5.72 5.89 5.98 6.07 6.23

ln(d1) 4.12 3.70 3.99 4.13 4.26 4.52

ln(d3) 3.70 3.38 3.60 3.70 3.81 4.00

ln(d4) 4.97 4.70 4.88 4.97 5.06 5.27

σ1 0.82 0.62 0.74 0.81 0.89 1.06

σ2 0.76 0.65 0.72 0.76 0.80 0.90

d2 = 1 is the reference CDT. Corresponding true values: ln(d1) = 4 (“CARD”), ln(d2) = 0 (“CF”),
ln(d3) = 4 (“RIV”), ln(d4) = 5 (“SPT”), ln(λ0) = 6, σ1 = 0.8, σ2 = 0.8. See also Fig. 1
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Fig. 1 Posterior summary of effects, ln(λi ) and ln(λi j ), for the elk–assay effects model (6) fit to simulated
data, Yi j , shown for comparison. Observation i is made to follow the ascending order of corresponding
posterior means of ln(λi ) (top). See also Table 2

3.2 Brucellosis in GYE elk

While MCMC mixing and convergence for the elk effects model (4) fit to our observed
data was good (with the reference constraint, d2 = 1), the model was not flexible
enough to replicate the data well, as we explain more below. So, we implemented
the elk–assay effects model (6) to account for the apparent heterogeneity beyond that
captured by the elk effects, λi , alone.

Maximum likelihood (ML) values from the constant effect model (2) were used to
start five MCMC chains for the elk–assay effects model (6) with reference constraint
d2 = 1; starting values were dispersed from the ML values. We dispersed starting
values for σ1 and σ2 near 1, and used JAGS’ default procedure to randomly generate
the starting values for the random effects, λi and λi j . Dilution volumes, vi jk , were
started at their nominal values, v∗

jk (Table 1).
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Fig. 2 Marginal posteriors of all pairwise differences of CDTs for the elk–assay effects model (6) fit to
observed data

After using JAGS’ default adaption procedure for 10,000 iterations and after omit-
ting several hundred thousand subsequent iterations before visually assessing conver-
gence (not shown), we retained a subsequent 200,000 iterations for each of the five
chains, each thinned by 40 (for storage reduction and speed of summary procedures),
for a total MCMC sample size of 25,000. All of the upper 95 % credible bounds for the
potential scale reduction factors (psrf) of all stochastic quantities in model (6) were
less than 1.02, and the multivariate psrf was 1.07 (Brooks and Gelman 1998).

A summary of marginal posteriors is given in Table 3. The reference assay CDT
(d2 = 1) is clearly the smallest, hence the CF assay is the most threshold sensitive
assay. Relative threshold sensitivities among assays may be more easily seen by the
posteriors of the pairwise differences of CDTs (ln scale) in Fig. 2, which reveals,
roughly, d2 < d3 < d1 < d4 (“CF < RIV < CARD < SPT”), so that SPT is the least
threshold sensitive assay, and RIV and CARD are intermediate.

For comparison, Fig. 3 shows traditional sensitivities—probabilities of a true posi-
tive; recall that our data are from elk that are known to have brucellosis by B. abortus
culture methods (Thorne et al. 1978). Typically, the WGFD computes such traditional
sensitivities directly from the data as the proportion of an assay’s “positive” results
out of N . In particular, they compute

∑N
i=1 I(Yi1 ≥ k j )/N , where k1 = 1, k2 = 2,

k3 = 1 and k4 = 3 are their chosen dilution levels at or beyond which antibody
presence must be observed to declare a “positive” result for assay j of serum sample
i . Thus, the WGFD would obtain empirical estimates of Pr(Yi j = 1): 66/72 = 0.92
( j = 1); 52/53 = 0.98 ( j = 2, omitting 19 missing observations); 68/72 = 0.94
( j = 3); 57/72 = 0.79 ( j = 4). (see Fig. 4 for the data used to compute these val-
ues.) Figure 3 shows the posterior predictive distributions of

∑N
i=1 I(Y rep

i1 ≥ k j )/N ,
j = 1, . . . , J , where the Y rep

i j are replicated values of the observations, Yi j , along
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Fig. 3 Marginal posteriors of the probability of a true positive for the elk–assay effects model (6) fit to
observed data. Values atop density estimates indicate assay j . Dotted vertical lines indicate corresponding
empirical estimates, each of which occurs closest to its corresponding marginal posterior, as expected. See
text for “positive” criteria

with the corresponding empirical estimates indicated by vertical dotted lines. We
see that the posterior and empirical estimates are in good agreement. And, we see
that, from the traditional perspective, sensitivities are ordered in the same way as our
threshold sensitivities, above (Table 3; Fig. 2): CF ( j = 2) is most sensitive, SPT
( j = 4) is least sensitive, and RIV ( j = 1) and CARD ( j = 3) sensitivities are
intermediate.

The WGFD also computes an overall, or composite, traditional sensitivity as the
proportion of observations for which ({Yi1 = 1}∩{Yi3 ≥ 1}∩{Yi4 ≥ 3})∪{Yi2 ≥ 2} is
true: 71/71; despite 19 missing CF ( j = 2) values out of N = 72, we can still evaluate
this empirical expression for all but one of the missing cases because a “positive”
can be declared for 18 of the cases that give (positive ∪ missing) = positive, while
one case gives (negative ∪ missing) = missing. The posterior predictive mean of∑N

i=1 I(({Y rep
i1 = 1} ∩ {Y rep

i3 ≥ 1} ∩ {Y rep
i4 ≥ 3}) ∪ {Y rep

i2 ≥ 2})/N is 0.9959, and the
posterior predictive standard deviation is 0.00016, practically perfect sensitivity and
too precise to display well with the individual assay sensitivities shown in Fig. 3.

The summaries of random effect standard deviations (Table 3) indicate that hetero-
geneity due to elk (σ1) and to elk–assay “interaction” (σ2) are comparable. Posterior
summaries of the effects, λi and λi j , associated with these standard deviations, are
shown in Fig. 4 along with the data, Yi j , and maximum a posteriori (MAP) values
of 19 missing values of the CF ( j = 2) assay. Table 4 shows the clearly improved
predictive performance of model (6) over model (4) for observed assay j = 3; results
for the remaining assays revealed similarly improved performance (not shown).

Looking at the posterior means of the λi in Fig. 4, we see that the relative concen-
trations for elk range roughly from exp(−2) = 0.14 to exp(1) = 2.7 times the overall
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Fig. 4 Posterior summary of effects, λi j , in the elk–assay effects model (6) fit to observed data. Observation
i is made to follow the ascending order of corresponding posterior means of ln(λi ) (top). Observed data
shown for comparison; light grey values indicate MAP values of missing CF data

Table 3 Posterior summary of elk–assay effects model (6) fit to observed data

Parameter Mean 2.5 % 25 % 50 % 75 % 97.5 %

ln(λ0) 6.25 5.90 6.13 6.25 6.37 6.60

ln(d1) 3.85 3.19 3.65 3.87 4.06 4.41

ln(d3) 3.44 2.97 3.29 3.45 3.59 3.86

ln(d4) 4.34 3.91 4.20 4.35 4.48 4.75

σ1 0.78 0.54 0.69 0.77 0.87 1.08

σ2 0.92 0.75 0.85 0.91 0.98 1.13

d2 = 1 is the reference CDT. See also Fig. 4

relative concentration, λ0. And, λ0 is modified further by the λi j , whose magnitudes
are comparable to the elk effects, λi . We offer possible explanations of the source of
variability of the λi j in the Discussion (Sect. 4).
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Table 4 Summary of predicted data values, Y rep
i3 , versus observed data values, Yi3, for assay j = 3

Predicted Y rep
i3 Observed Yi3

Model (4) 0 1 2 3 4

0 53.7 6.2 1.4 0.1 1.8

1 21.8 22.8 7.8 1.1 3.1

2 16.4 37.9 27.6 8.5 6.1

3 6.0 23.5 38.0 30.6 10.7

4 2.1 9.6 25.2 59.8 78.3

Model (6) 0 1 2 3 4

0 98.8 3.5 0.0 0.0 0.0

1 1.2 90.6 2.9 0.0 0.0

2 0.0 5.9 92.5 2.4 0.0

3 0.0 0.0 4.6 93.4 0.6

4 0.0 0.0 0.0 4.2 99.4

Observed column k shows the posterior distribution (as percentages) of the average,
∑N

i=1[Y rep
i3 | Yi3 =

k]/N , k = 0, 1, 2, 3, 4

4 Discussion

We have presented models to combine data from multiple serial dilution assays for
detecting the presence of particles in solution. We have introduced a novel notion of
assay sensitivity—threshold sensitivity—in the form of the concentration detection
threshold (CDT), the particle concentration above which an assay detects particle
presence; the smaller an assay’s CDT, the more sensitive we say the assay is. In our
application, the CDTs agree qualitatively with the more traditional notion of sensitivity
as the probability of a true positive. We suggest that our model may be more generally
useful where multiple serial dilution assays are available and the intent is to compare
or to account for assay sensitivities while inferring relative concentration.

We applied our models to data from four serial dilution assays of the presence
of B. abortus antibodies in the blood serum of N = 72 elk having lived in the
Greater Yellowstone Ecosystem (GYE) wherein the Wyoming Game and Fish Depart-
ment (WGFD) has collected such data for the purpose of managing the transmis-
sion of the disease to commercial livestock. Sensitivities, as measured by CDTs
or the proportion of true positives, show the CF assay to be most sensitive, the
SPT assay to be least sensitive, and the RIV and CARD assays to be intermediate,
which is consistent with the experience of the WGFD and previously reported results
(Morton et al. 1981).

Elk–assay effects, λi j , accounted for a level of heterogeneity comparable to that
of elk effects, λi , and we speculate that the former effects may reflect the processing
of elk serum samples and assay procedures, may reflect the clumping into antibody–
antigen complexes where the degree of clumping differs from elk to elk and depends
on the assay, or may reflect errors in reading the dilution levels at which a positive
response is observed.
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Though our data provided little information for volume measurement error, we
attempt a more full accounting of error through our prior distribution on volume
error. In principle, we could have chosen to account for error, instead, in the dilution
fractions, but this seems to us to be a less natural specification, especially given that our
information presents itself via volume measurement error. Also, we can see by μi jk ,
after expression (5), that volume error can be seen as a multiplicative adjustment to the
dilution fractions. To specify both errors seems redundant given that error in volume
measurements induces errors in dilution fractions by definition. For more on modeling
volume and dilution errors in serial dilution assays, see Chase and Hoel (1975), who
derive an approximate specification for dilution errors based on a multiplicative volume
error model.

We anticipate the availability of future data, similar to those used here, to inform
model extensions. We expect future data to include, in particular, spatial and temporal
coordinates, among other potential risk factors of interest to the WGFD brucellosis
management effort and to wildlife disease ecologists. These forthcoming data may
include assay results for which the true status of B. abortus infection and antibody
presence is not known as for the data used here. For such results, we will explore
zero-inflation as a way to accommodate elk with no B. abortus antibodies, perhaps
modeling the probability of having no serum antibodies as a function of available risk
factors. Also, our model will account for differing assay sensitivities, as treated here,
while exploring further modeling of elk effects, λi , as a function of other risk factors.
In particular, we envision a disease map (Elliott et al. 2000) to help identify “hot spots”
of unmeasured spatial or temporal risk factors of brucellosis in aid of future brucellosis
management of in the GYE.

Finally, the results shown here are based on the Anscombe normal approximation
to the Poisson (Anscombe 1948), which showed no discernable differences with the
Poisson results (not shown), with roughly half the computation time. The appropri-
ateness of the approximation in our application is illustrated by its ability to capture
known values in our simulated data presentation of Sect. 3.1. (Data were simulated
using the Poisson model described herein.) While the reduction in computation time
may be modest here, computation may become more burdensome with anticipated,
future model extensions, and justification, beyond verification with simulated data,
may be appropriate.
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