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Abstract Nonsteady state chambers are often employed to measure soil CO2 fluxes. CO2 concentrations
(C) in the headspace are sampled at different times (t), and fluxes (f) are calculated from regressions of C
versus t based on a limited number of observations. Variability in the data can lead to poor fits and unreliable
f estimates; groups with too few observations or poor fits are often discarded, resulting in “missing” f values.
We solve these problems by fitting linear (steady state) and nonlinear (nonsteady state, diffusion based)
models of C versus t, within a hierarchical Bayesian framework. Data are from the Prairie Heating and CO2

Enrichment study that manipulated atmospheric CO2, temperature, soil moisture, and vegetation. CO2 was
collected from static chambers biweekly during five growing seasons, resulting in >12,000 samples and
>3100 groups and associated fluxes. We compare f estimates based on nonhierarchical and hierarchical
Bayesian (B versus HB) versions of the linear and diffusion-based (L versus D) models, resulting in four
different models (BL, BD, HBL, and HBD). Three models fit the data exceptionally well (R2 ≥ 0.98), but the BD
model was inferior (R2 = 0.87). The nonhierarchical models (BL and BD) produced highly uncertain f estimates
(wide 95% credible intervals), whereas the hierarchical models (HBL and HBD) produced very precise
estimates. Of the hierarchical versions, the linear model (HBL) underestimated f by ~33% relative to the
nonsteady state model (HBD). The hierarchical models offer improvements upon traditional nonhierarchical
approaches to estimating f, and we provide example code for the models.

1. Introduction

Soils are primary sources or sinks of radiatively active “greenhouse” gases such as carbon dioxide (CO2),
and quantifying CO2 fluxes has been the subject of intense research for the last few decades [e.g., Raich
and Schlesinger, 1992]. CO2 and other trace gas fluxes are typically measured by inserting a small cham-
ber into or on top of the soil and collecting gas samples at predetermined time intervals after closure
to follow the change in concentration in the chamber headspace as the gas accumulates or is drawn
down due to soil production or consumption, respectively. The gas concentrations may be analyzed
in the field, such as by an in-line infrared gas analyzer (IRGA) [e.g., Davidson et al., 2002], or brought
back to the lab and analyzed via an IRGA or gas chromatography [e.g., Venterea et al., 2009]. If the gas
concentration (C) changes approximately linearly with time (t) since closure, then the trace gas fluxes
are typically estimated from linear, or sometimes nonlinear, regressions of C versus t for each independent
chamber session.

The typical regression approach, however, potentially suffers from three primary issues. First, CO2 concentra-
tions collected while the chamber is closed may deviate from linearity due to time-dependent feedback
between soil air and chamber headspace [Livingston et al., 2005]. For instance, such feedback can reduce
the diffusion gradient as CO2 builds up in the chamber and diffuses out laterally, leading to underestimation
of CO2 fluxes by up to 25% [Livingston et al., 2005]. This problem can be addressed by fitting a nonlinear
model to the C versus t data, such as an exponential decay function [Hutchinson and Mosier, 1981], quadratic
function [Wagner et al., 1997] or, less commonly, models inspired by diffusion theory [Livingston et al., 2006;
Pedersen et al., 2001]. Second, missing or highly variable observations can lead to poor regression fits (i.e., low
R2 value) for particular chamber sessions, for both linear and nonlinear models. This problem can be
addressed by collecting more data points in each chamber session [e.g., Davidson et al., 2002], by grouping
similar chamber sessions, or by discarding data for problematic chamber sessions [Hart, 2006; Pihlatie et al.,
2007]. Third, uncertainty estimates associated with each flux value are typically ignored, or if reported, they
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still are not accounted for in subsequent analysis or modeling of the flux estimates, which are treated like
data. This issue can be addressed using statistical methods that quantify precision and propagate uncertainty
such as Monte Carlo analysis [Venterea et al., 2009], but such approaches are rarely utilized.

We overcome these three issues by developing a hierarchical Bayesian approach coupled with a nonlinear,
nonsteady state flux model that is derived from fundamental diffusion theory [Livingston et al., 2006]. We
demonstrate how the hierarchical approach addresses the missing or “bad” data problem, propagates uncer-
tainties in the individual flux estimates, and can easily accommodate a diffusion-based model to account for
nonsteady state conditions. We illustrate our modeling approach by applying it to data on C versus t that
were obtained from the Prairie Heating And CO2 Enrichment (PHACE) study conducted in a semiarid grass-
land in Wyoming. PHACE was a global change experiment involving manipulations of atmospheric [CO2],
temperature, soil moisture, and vegetation status, resulting in 12 different treatment combinations, with 5
plots (replicates) per treatment level. We focus on the CO2 data to illustrate our modeling approach because
it is an important greenhouse gas, and understanding controls on soil respiration is paramount to under-
standing the global carbon cycle [Bond-Lamberty and Thomson, 2010]. Moreover, because the soil acts as a
source of CO2 (C accumulates in the chamber), we can draw upon existing, concise analytical solutions to
the standard diffusion equation [Livingston et al., 2006].

The objective of this study is to describe and illustrate a more robust method for estimating CO2 fluxes from
data generated from static chambers. First, we draw upon on a nonsteady state flux model that explicitly
accounts for time-dependent artifacts such as soil-chamber feedback [Davidson et al., 2002; Livingston
et al., 2006]. Second, we employ a hierarchical statistical model that accommodates the nested and crossed
design of the PHACE experiment by assuming that the session-level flux terms (parameters in the linear and
nonsteady state models) vary around treatment by sampling date fluxes. The hierarchical approach results in
“borrowing of strength” or “partial pooling” [Gelman and Hill, 2007; Gelman et al., 2012] among chamber
sessions such that sessions associated with problematic data are informed by sessions with clean data. The
Bayesian framework allows the uncertainty in the flux estimates to be easily propagated to subsequent
analyses, which can be simultaneously implemented within the Bayesian flux model; we illustrate this by
conducting a simple postanalysis to evaluate the effects of the global change treatments on soil CO2 fluxes.

2. Field Methods
2.1. Field Experiment

Data were obtained as part of the Prairie Heating And CO2 Enrichment (PHACE) experiment that was
conducted in a semiarid mixed prairie in southeastern Wyoming, USA (41°11′N, 104°54′W). The vegetation
is dominated by a mixture of C4 and C3 grasses, including Bouteloua gracilis (C4), Pascopyrum smithii (C3),
and Hesperostipa comata (C3). The soil is a fine loamy, mixed, mesic Aridic Argiustolls. The mean monthly
air temperatures range from �2.5°C in January to 17.5°C in July, and the mean annual precipitation is
384mm (based on 132 years of weather records). Chamber CO2 data were collected during the growing
seasons (April–October) of 2007 through 2011 (5 years). The average air temperature during these growing
seasons ranged from 12.5°C (2009) to 17.4°C (2007), and the total precipitation received during each growing
season ranged from 300mm (2010) to 425mm (2009). The site conditions and climate during the study
period are described in greater detail in Dijkstra et al. [2013] and Zelikova et al. [2015].

The PHACE study was established in 2005, at which time 20 plots (3.4m diameter) were assigned to 1 of 4
treatment combinations (5 plots per treatment): ambient CO2 and temperature (denoted ct), ambient CO2

and elevated temperature (cT), elevated CO2 and ambient temperature (Ct), and both elevated CO2 and tem-
perature (CT). Free Air CO2 Enrichment (FACE) technology was used to raise the atmospheric [CO2] to
~600 ppm (�40 ppm) in the elevated CO2 plots (Ct and CT). Ceramic infrared heaters were used to raise
the canopy temperature by about 1.5°C and 3°C above the ambient temperature during the day and night,
respectively, in the elevated temperature plots (cT and CT). The CO2 and warming treatments were initiated
in April 2006 and April 2007, respectively. An additional 10 plots were established in 2007 and assigned to 1 of
2 irrigation treatments that experienced ambient CO2 and temperatures (5 plots each): shallow irrigation (cts;
3–5 irrigation events during the growing season to maintain soil water content similar to that in elevated CO2

plots) or deep irrigation (ctd; 2 irrigation events at the start and end of the growing season, annual amount
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equal to that in cts treatment). Additional details about the PHACE experiment and associated treatment
methodologies are provided in Dijkstra et al. [2010] and LeCain et al. [2015].

In 2008, a 0.4m2 subplot was established in each of the ct, cT, Ct, and CT plots. The subplots were isolated
from the surrounding plot by ametal sheet that was buried 30 cm into the soil, and vegetation in the subplots
was killed by application of a broad spectrum systematic herbicide (glyphosate). Seedlings that emerged
after herbicide application were manually removed. See Dijkstra et al. [2013] for details about the
herbicide treatment.

2.2. Chamber CO2 Measurements

We used static, closed chambers [Hutchinson and Mosier, 1981] to measure CO2 fluxes approximately every
other week during the growing season, resulting in 12–16 measurements each year, for 5 years (2007–
2011). In each plot, chamber anchors (diameter 20 cm and height 10 cm) were inserted 8 cm into the soil
1month prior to the first measurements. One anchor was placed in the area with intact vegetation and
one anchor in the subplots where vegetation was removed. Measurements were taken between 10:00 A.
M. and 1:00 P.M. local time, separated into 3 periods, with each period lasting 1 h to measure 10 plots simul-
taneously. Treatments were blocked within each period to minimize biases caused by diurnal effects on trace
gas fluxes.

Chambers were placed on the anchors and sealed with a rubber band (made from a tire inner tube).
Headspace gas samples (20mL) were taken immediately after placing the chambers on the anchors (time
t=0) and after t=15, 30, and 45min (for the first three measurements dates in 2007, gas samples were not
taken at 45min) and injected into 12mL evacuated Exetainers (Labco Limited, Lampeter, UK). Gas samples
were analyzed for CO2 on a gas chromatograph (Varian 3800, Varian Inc., Palo Alto, CA, USA) usually within
2 days after sampling (CO2 wasmeasured with a thermal conductivity detector). Theminimum detection limit
for CO2 calculated according to Parkin and Venterea [2010] was 0.1mgCO2-Cm

�2 h�1. Data were available for
3139 chamber sessions, yielding 12,240 pairs of (C, t) observations.

2.3. Environmental Data

Continuous, plot-level measurements of soil temperature and water content were made throughout the
PHACE experiment. Custom-built type T thermocouples were used to monitor soil temperature at a
depth of 3 cm within ~1m of each chamber and logged on an hourly basis on Campbell CR-1000 data log-
gers (Campbell Scientific, Logan, UT, USA); soil temperatures recorded at the time of each chamber session
were used for this study. Volumetric soil water content was monitored in each plot at multiple depths using
EnviroSMART sensors (Sentek Sensor Technologies, Stepney, Australia); for this study, we used the 5–15 cm
data. Soil water data were missing for approximately 6% of the days, primarily due to instrument failure.
We gap-filled missing values using data from a nearby plot belonging to the same experimental treatment
or using cubic spline interpolation on days when data were missing across all or most plots of the same
treatment [see Ryan et al., 2015]. In this study, we used daily averages of the hourly soil water content
values.

3. Estimating Soil CO2 Fluxes

We evaluated two different process models and two different statistical modeling approaches to estimat-
ing soil CO2 fluxes based on the aforementioned data (sections 2.2 and 2.3). One process model is based
on a simple linear model of C versus t, and the other represents a nonlinear, nonsteady state model. For the
statistical approaches, we fit the process models to all data in a nonhierarchical framework that treats each
chamber session as an independent data set (akin to traditional approaches). We also fit the models to the
data in a hierarchical statistical framework that views the chamber sessions as samples from a population
of sessions, thus allowing for borrowing of strength [Gelman et al., 2012] among chamber sessions. We
begin with a description of the process models (linear followed by the nonsteady state diffusion model),
and then we describe the statistical (nonhierarchical followed by hierarchical) approaches to fitting the
process models to the chamber C and t data. All four model combinations are implemented in a
Bayesian framework, which we will refer to as the BL (nonhierarchical Bayesian linear), HBL (hierarchical
Bayesian linear), BD (nonhierarchical Bayesian nonsteady state diffusion), and HBD (hierarchical Bayesian
nonsteady state diffusion) models.
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3.1. Linear Model

This model assumes a linear relationship between CO2 concentration (C; μmolm�3) and time since chamber
closure (t; s):

Ct ¼ C0 þ f
A
V
t (1)

where C0 (μmolm�3) is the initial [CO2] in the chamber at time t= 0, f (μmolm�2 s�1) is the flux density across
the soil-atmosphere interface at time t= 0, A (m2) is the soil surface area over which the chamber is deployed,
and V (m3) is the air volume of the chamber. This model assumes that the surface flux is in steady state such
that it does not change during the chamber closure period.

3.2. Nonsteady State Diffusion Model

We also explored a nonlinear model based on nonsteady state diffusion theory that accounts for feedback
associated with accumulation of CO2 in a closed chamber. The model that we use is based on the analytical
solution to a partial differential equation (PDE) of soil [CO2] dynamics that assumes the soil acts as a source of
CO2 (e.g., CO2 is produced by microbial decomposition and root respiration). The model (PDE solution) is
given in Livingston et al. [2006] as

Ct ¼ C0 þ f τ
A
V

� �
2ffiffiffi
π

p
ffiffiffiffiffiffi
t=τ

p
þ exp t=τð Þerfc

ffiffiffiffiffiffi
t=τ

p� �
� 1

� �
(2)

C0, f, A, and V are defined analogous to the corresponding terms in equation (1) and τ (s) is a “time constant”
given by τ = (V/A)2(ϕ Dc)

�1, which is a dynamic quantity that varies with soil water content via its dependence
on ϕ and Dc, where ϕ (m3 airm�3 soil) is the soil air-filled porosity and Dc (m

2 s�1) is the soil gas diffusion
coefficient. In equation (2), erfc is the complimentary error function, which is related to the standard normal
cumulative distribution function (ϕ):

erfc
ffiffiffiffiffiffi
t=τ

p� �
¼ 2 1� Φ

ffiffiffiffiffiffiffiffiffi
2t=τ

p� �h i
(3)

Equation (2) assumes that horizontal transport of CO2 within the soil is minimal, which is reasonable given the
relatively short duration of our chamber sessions (30–45min) [Davidson et al., 2002] and the relatively deep
insertion (8 cm) of our chambers into the soil.

Air-filled porosity, ϕ, is computed from measured volumetric soil water content (θ; m3m�3) as

ϕ ¼ 1� BD
PD

� θ (4)

where BD (gm�3) is the soil bulk density and PD (gm�3) is the soil particle density. The diffusion coefficient,
Dc, is allowed to vary in response to soil physical characteristics representative of the PHACE site [Morgan
et al., 2011], based on Moldrup et al. [2000]:

Dc ¼ D0 2ϕ3
100 þ 0:04ϕ100

	 
 ϕ
ϕ100

� �2þ3=b

(5)

D0 (m2 s�1) is the gas diffusion coefficient in free air given the measured soil temperature (Tsoil; K) and

atmospheric pressure (P; atm), whereD0 ¼ Dstp
T soil
T0

	 
1:75 P0
Pð Þ, assuming Dstp = 0.0000139m2 s�1 is the gas diffu-

sion coefficient in free air at standard temperature (T0 = 273.2 K) and pressure (P0 = 0.99 atm) [Massman,
1998]. In equation (5), ϕ100 (m3 airm�3 soil) is the soil air-filled porosity at a soil water potential of
�100 cm H2O and b (unitless) is a parameter describing the soil water retention curve [Campbell and
Norman, 1998]:

Ψ ¼ Ψ e
θ
θsat

� ��b
(6)

Ψ (cm H2O) is soil water potential,Ψe (cm H2O) is the air-entry potential, and θsat (m
3m�3) is the saturated soil

water content. ϕ100 is computed by evaluating equation (4) at θ = θ100, where θ100 is obtained by solving
equation (6) for θ as a function of Ψ and subsequently evaluating the solution at Ψ=�100 cm H2O. Again,
θ was measured in each plot (see section 2.3), and we propagate uncertainty in the water retention
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parameters associated with equations (5) and (6) based on site-level results reported in Morgan et al. [2011]
(for more detail, see the supporting information).

3.3. Nonhierarchical Statistical Model

We fit the above linear (equation (1)) and nonsteady state diffusion (equations (2)–(6)) models to the
observed chamber C versus t data via a nonhierarchical Bayesian framework, resulting in the BL and BDmod-
els, respectively. For the BD model, we also simultaneously accounted for uncertainty in the soil water reten-
tion parameters (b, Ψe, and θsat; see the online supporting information). The nonhierarchical framework is
somewhat analogous to more traditional approaches—that employ least squares, maximum likelihood, or
other optimization algorithms—that estimate C0 and f independently for each chamber session. That is,
we treat each chamber session independently such that they do not share any common parameters. Thus,
for chamber session i (i=1, 2, …, 3139) and time t (t= 0, 900, and 1800 s for 191 sessions or t= 0, 900,
1800, and 2700 s for 2948 sessions), we assume that the observed CO2 concentration, C

obs (μmolmol�1), is
normally distributed around the predicted (mean) concentration:

Cobs
t;i e Normal Ct;i

RTlab
1000Plab

; σ2i

� �
(7)

where C (μmolm�3) is based on equation (1) or (2) for the BL or BD model, respectively. R is the gas constant
(0.08205 L atmmol�1 K�1), and Tlab (293.15 K) and Plab (0.74 atm) are the laboratory temperature and pres-
sure, respectively, under which the gas samples were analyzed. C is indexed by t because it is a function of
time and by i since each chamber session is associated with its own set of parameters (i.e., f, C0, and the obser-
vation variance σ2) and physical drivers (i.e., θ, Tsoil, and P).

Within the Bayesian framework, we specified priors for the unknown parameters. To align with traditional
approaches, we assumed independent, relatively noninformative (vague) priors for each session-specific
parameter such that

C0i; f i e Normal 0; Bð Þ
σ i e Uniform 0;Uð Þ (8)

where the values of the prior variances (B) and the upper limit of the uniform (U) were selected to be very
large (approximately 1 × 105–1 × 107). Since C0 should reflect the background [CO2] in the treatment plots,
the prior for C0 was also truncated such that values <300 or >4500μmolmol�1 were assigned prior prob-
abilities of zero.

The goal of this analysis is to obtain the joint posterior distribution of the model parameters, which is propor-
tional to the likelihood multiplied by the priors. Using the bracket notation [X] and [X|Y] to indicate the mar-
ginal and conditional (on Y) probability or probability density of X [Gelfand and Smith, 1990], respectively, the
posterior is given by

C0; f; σjCobs� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
posterior

∝ CobsjC0; f; σ
� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

likelihood

C0½ � f½ � σ½ �|fflfflfflfflffl{zfflfflfflfflffl}
priors

(9)

where Cobs is the matrix of observed chamber [CO2] and C0, f, and σ are the vectors of the session-level C0i, fi,
and σi parameters, respectively. The likelihood is given by equation (7), which is linked to equation (1) for the
BL model or to equations (2)–(6) for the BD model via the mean or predicted [CO2] (Ct,i), and the priors are
given by equation (8).

3.4. Hierarchical Statistical Model

Regardless of the fitting method (e.g., least squares or Bayesian), traditional analyses may suffer from the fact
that relatively few measurements (e.g., 3–4) are made per session, and some sessions can lead to poor fits.
Traditional approaches often employ an R2 (coefficient of determination) cutoff such that sessions yielding
“low” R2 are discarded [e.g., Hart, 2006; Pihlatie et al., 2007], and thus, estimates of the associated flux (i.e.,
f) are missing for these sessions. Our hierarchical specification allows the sessions to potentially borrow
strength from each other—the degree to which they borrow strength depends on the magnitude of the
among session variance [Gelman et al., 2012]—so sessions associated with “poor” or highly variable data will
be partly informed by data obtained from “good” sessions, providing estimates of the fluxes for all sessions.
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We employ three assumptions to allow sessions to borrow strength from each other. First, we assume that
the sessions share some common parameters. For example, we modify the likelihood in equation (7) such
that the observation variance (σ2) is assumed to vary at the level of treatment k (k=1, 2, …, 6 levels). That
is, we assume that σ2 is similar for each session within a given treatment (thus, σ2 is indexed by k), but that
the treatments may be associated with different variances.

Second, we assume a hierarchical model for the session-specific initial or background [CO2] (C0i) and flux (fi)
parameters such that they are nested in treatments, vegetation types, and dates. That is, for treatment k
(k=1, 2,…, 6 for ct, cT, Ct, CT, cts, and ctd), CO2 treatment level k′ (k′= 1 [ambient] or 2 [elevated]), vegetation
type v (v=1 [vegetated] or 2 [vegetation removed]), and date d (d= 1, 2, … 72):

C0i e Normal Ĉ0k;v;d; σ̂2
k′

	 

f i e Normal ef k;v;d;eσ2k� � (10)

Thus, σ̂2 describes variability in the background [CO2] among sessions within each k by v by d combination;

we assume that σ̂2 varies by CO2 treatment level given the much larger variation that is expected under
experimentally applied elevated CO2. Similarly, eσ describes variability in the fluxes within each combination
of k, v, and d, and we allow for eσ to differ among the six treatment (k) levels. Since the hierarchical prior in
equation (10) results in borrowing of strength andmore precise estimates of C0 and f, we did not find it neces-
sary to constrain C0i between 300 and 4500μmolmol�1, as done in the nonhierarchical models.

Third, we assigned a hierarchical prior to the Ĉ0k,v,d parameters that allows for borrowing of strength among
treatments, vegetation types, and dates within each CO2 treatment level k′:

Ĉ0k;v;d e Normal C0k′; σ2k′
	 


(11)

Conversely, we give independent priors to the treatment by vegetation type by date-level flux parameters (ef)
because these are our primary quantities of interest, and they could vary considerably across time and among
treatments. Thus, we wish to avoid borrowing of strength that could lead to an underestimate of this poten-

tial variability; hence, we give independent, vague priors to each ef following equation (8):ef k;v;d e Normal 0; Bð Þ (12)

Again, B is chosen to be sufficiently large. The remaining treatment-level parameters are assigned standard,
vague priors for the variances (inverse gamma distribution), and initial [CO2]:

σ2k ;eσ2k ; σ̂2
k′; σ

2
k′ e InvGamma a; bð Þ

C0k′eUniform L;Uð Þ (13)

where a and b are sufficiently small (relatively noninformative) and L and U correspond to 300 and
4500μmolmol�1, respectively.

For the HBL and HBD models, the joint posterior distribution of the model parameters is

C0; Ĉ0;C0; f;ef; σ; σ̂;eσ; σjCobs
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

posterior

∝ CobsjC0; f; σ
� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

likelihood

fjef;eσh i
C0jĈ0; σ̂
� �

Ĉ0jC0; σ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hierarchical priors

C0
� � efh i σ½ � σ̂½ � eσ½ � σ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

priors

(14)

Cobs, f, and C0 are as described following equation (9); here Ĉ0 andef are the arrays of the treatment by vege-

tation type by date-level initial [CO2] and CO2 fluxes, respectively, and C0, σ, σ̂, eσ, and σ are the vectors of the
treatment-level initial [CO2] and the standard deviations. The likelihood is given by equation (7) with σi

2

replaced with σk
2, the hierarchical priors are given by equations (10) and (11), and the priors are given by

equations (12) and (13).

3.5. Treatment Effects

Traditional approaches to estimating the surface soil CO2 flux obtain point estimates of f then treat these as
data in subsequent analysis. This approach, however, ignores the uncertainty in the f estimates. The Bayesian
approach, whether hierarchical or not, can be easily extended to account for uncertainty in the f estimates,
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thus facilitating a more appropriate approach to subsequent analysis of f. We demonstrate this in a simple
analysis that calculates all possible pairwise treatment contrasts to obtain posterior estimates of each
contrast, which can be evaluated to make inferences about treatment effects. An approach to comparing f
among treatments is to first compute the average f value across all plots (pk) and dates (d) associated with
global change treatment k and vegetation type v:

f k;v ¼ 1
D

X
d∈ 2009;2011½ �

1
6

X6
pk¼1

f i k;v;dð Þ

 !
(15)

where i(k,v,d) denotes the chamber session i associated with each k, v, and d. For illustrative purposes, we only
consider dates between 2009 and 2011 (thus, the number of days is D= 41), which corresponds to the years
for which the vegetated and nonvegetated plots were always measured on the same dates.

Next, we compute all possible pairwise treatment contrasts (Δ), comparing treatment level k versus k′ within
each vegetation type:

Δk;k′;v ¼ f k;v � f k′;v (16)

for k= 1, 2,…, 5 and k′= k+ 1,…, 6, resulting in 21 pairwise comparisons (15 for the vegetated plots [6 × 5/2]
and 6 for the nonvegetated plots [4 × 3/2]; treatments 5 and 6 were not applied to nonvegetated plots). The
treatment contrasts (Δs) are treated as derived quantities in the Bayesian models, and posterior distributions
for each Δ are obtained. One could follow the same procedure to compute contrasts between the vegetation
types within each global change treatment level. Note that an advantage of a hierarchical Bayesian approach
is that one generally does not need to correct for family-wise errors rates associated with typical multiple
comparison tests [Gelman et al., 2012; Li and Shang, 2013].

3.6. Model Comparisons

For each of the four models, we evaluated model fit by comparing the observed concentration data (Cobs)
versus “predicted” (or “replicated”) data (Cpred) [Gelman et al., 2004] that would be generated under the same
sampling distributions (e.g., equation (7) with σi

2 [BL and BD] or σk
2 [HBL and HBD]) given the predicted con-

centrations (C; equations (1) or (2)). Model fit was qualitatively evaluated by plotting Cpred versus Cobs and by
computing the R2 from a linear regression of the posterior medians of Cpred versus Cobs. We also computed
model comparison indices, including the deviance information criterion, DIC [Spiegelhalter et al., 2002], and
posterior predictive loss, D∞ [Gelfand and Ghosh, 1998]. DIC is the sum of a “model fit” term (Dbar; lower values
indicate better fit) and a “penalty” term representing the effective number of parameters (pD; higher values
reflect a more parameter-rich model). A difference in DIC> 10 between two models provides strong support
for the model with the lowest DIC [Spiegelhalter et al., 2002]. Likewise, D∞ is the sum of a model fit term and a
model penalty term, and a lower D∞ implies a better model; unlike DIC, there are no specific rules of thumb
for differences in D∞ among candidate models [Gelfand and Ghosh, 1998]. However, D∞ is generally thought
to be more stable or reliable than DIC, and D∞ assesses predictive performance, whereas DIC assesses expla-
natory performance [Carlin et al., 2006].

3.7. Implementation

All four Bayesian models were implemented in OpenBUGS [Lunn et al., 2009]. For each model (BL, HBL, BD,
and HBD), we ran three parallel Markov chain Monte Carlo chains for sufficiently long to obtain an equivalent
of >3000 effectively independent samples from their joint posteriors. Each parameter’s marginal posterior
distribution was summarized by its posterior median and 95% credible interval (CI), which is defined by
the 2.5th and 97.5th quantiles. The OpenBUGS code and data are available from the Dryad Digital
Repository (doi:10.5061/dryad.mb605) at 10.5061/dryad.mb605.

4. Results
4.1. Model Comparisons and Model Fit

Although the BL, HBL, and HBD models fit the data equally well (R2≥ 0.98; Figures 1a, 1c, and 1d), the BD
model produced more variable predictions and underpredicted [CO2], yielding predictions close to 0 ppm
for a subset of relatively high observed values, resulting in an inferior model fit (R2 = 0.87). Both
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nonhierarchical (BL and BD) models led to highly uncertain predictions of [CO2] such that the 95% CIs for the
Cpred values were exceptionally wide compared to the HBL and HBD models (Figures 1 and 2a).

The DIC and D∞ model comparison indices also provide strong support for the hierarchical models (HBL
and HBD), with slightly greater support for the HBD model. The DIC values for the BL and BD models were
about 3.5–9 times higher than the DICs of the HBL and HBD models, and the D∞ values were 2–3 orders of
magnitude higher (Table 1). Moreover, the HBL and HBD models resulted in notably fewer effective para-
meters (lower pD) and thus a more parsimonious model, owing to the borrowing of strength across the
data set.

4.2. Posterior Estimates of Soil CO2 Flux

The main goal of implementing the four models described herein was to obtain estimates of the soil CO2 flux
rate (f) associated with each chamber session. The two linear models (BL and HBL) produced similar point
estimates (posterior medians) of the f values (r= 0.97; Figure 3a), whereas the BD model overestimated the
f values compared to its hierarchical counterpart (HBD) (r= 0.989, but all points fall under the 1:1 line;
Figure 3b). While the f estimates from the HBL and HBD models were highly correlated (r= 0.995), the HBL
model underestimated the f values by ~33% compared to the HBD model (Figure 3c). As found for the
replicated data, both nonhierarchical models also produced highly uncertain estimates of f (wide 95% CIs)
compared to the hierarchical models (Figures 2b, 3, and S1).

Figure 1. Observed versus predicted chamber [CO2] for the (a) nonhierarchical Bayesian linear (BL) model; (b) nonhierarch-
ical Bayesian, nonsteady state diffusion (BD) model; (c) hierarchical Bayesian linear (HBL) model; and (d) hierarchical
Bayesian nonsteady state diffusion (HBD) model. The best fit line is indicated by the thin blue diagonal line; the 1:1 line is
indicated by the thick red diagonal line. Each point represents an individual observation (N = 12,240). The predicted [CO2]
values are the posterior medians (symbols) and 95% credible intervals (CIs; gray error bars) for each replicated data point.
For the nonhierarchical models (BL and BD), the narrowest 50% of the CIs are indicated by dark gray, and the widest 50%
are indicated by light gray.
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An advantage of the hierarchical models is that they produce estimates of soil CO2 flux rates at the level of

treatment (k), vegetation type (v), and date (d), denoted by ef in equation (10), that account for variation

among plots within each treatment (as captured by the treatment-specific variance term,eσ2, in equation (10)).

Figure 4 provides the example time series of the predictedef values obtained from the HBD model, for three
different treatment combinations, showing that the soil CO2 flux rates were fairly similar between the ambi-
ent (ct) and elevated CO2 and warming (CT) treatments, but removal of vegetation (ct-veg) greatly reduced
the flux rates in 2009–2011 (Figure 4).

4.3. Posterior Estimates of Other Quantities

The HBL and HBD models generally produced more precise and realistic estimate of the initial (or back-
ground) [CO2] (C0; equations (1), (2), and (8)) compared to the two nonhierarchical models (BL and BD)
(see Figure S2). Unlike the nonhierarchical models, the hierarchical models provided direct estimates of

the overall initial [CO2] by CO2 treatment (i.e., C0 in equation (11)). The HBL and HBD models estimated C0

to be 488.7 [483.4, 494.2] and 467.1 [463.2, 471.0] for the ambient CO2 treatment and 802.5 [783.8, 820.7]
and 782.2 [765.0, 799.2] for the ele-
vated CO2 treatments, respectively.

The HBL and HBD models also quan-
tified four potentially important var-
iance terms, as summarized in Table
S1 in the supporting information.
For example, both models indicate
that the variation in the initial [CO2]
(C0i) among sessions (i) within treat-
ments (k), vegetation types (v), and
dates (d) was 3 orders of magnitude
higher in the elevated CO2 plots com-
pared to the ambient CO2 plots, and
ambient showed remarkably little var-
iation in C0i (e.g., posterior medians
for σ̂ k′ were <1μmolmol�1 for the
ambient plots versus approximately
200μmolmol�1 for the elevated CO2

Table 1. Summary of Model Fit and Comparison Indicesa

Modelb R2 Difference in DIC Relative pDc Difference in D∞

BL model 0.98 7.8 × 104 8.89 8.8 × 1010

HBL model 0.98 4.1 × 103 3.52 7.9 × 107

BD model 0.87 6.4 × 104 1.02 1.0 × 1011

HBD model 0.99 0 1 0

aThe coefficient of determination (R2) was obtained from a least
squares regression of the predicted (posterior median of replicated data)
versus observed chamber [CO2] data. Differences in the deviance informa-
tion criterion (DIC) and posterior predictive loss (D∞) were computed for
the BL, HBL, and BD model relative to (minus) the HBD model (i.e., the
HBD model had the lowest DIC and D∞). The relative, effective number
of parameters (pD) was computed for the BL, HBL, and BD models as their
pD values divided by the pD value for the HBDmodel (the HBDmodel had
the lowest pD).

bBL = nonhierarchicalBayesian linearmodel,HBL = hierarchical Bayesian
linear model, BD = nonhierarchical Bayesian nonsteady state diffusion
model, and HBD= hierarchical Bayesian nonsteady state diffusionmodel.

cWe used the alternative formulation that computes pD from the
posterior variance of the log likelihood [Gelman et al., 2014].

Figure 2. Cumulative distribution of the 95% CI widths for each (a) observation level replicated chamber [CO2] data point
(N = 12,240) and (b) session-level estimated soil surface CO2 flux (N = 3139). The CI widths are computed at the 97.5th
percentile minus the 2.5th percentile based on the corresponding posterior distributions. See Figure 1 for a description of
the models (BL, HBL, BD, and HBD).
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plots; Table S1). The higher spatial and temporal variation in the elevated CO2 plots is expected given the tech-
nologyused to supply CO2 and the effect of environmental conditions (especiallywind) on the spatial and tem-
poral variability of the CO2 concentration within an elevated CO2 plot [Bunce, 2011; Miglietta et al., 2001].
However, the variation in initial [CO2] among levels of t, v, and d (Ĉ0k,v,d), effectively “averaging” across sessions
and plots, was comparable between elevated and ambient CO2 treatments (i.e., posterior medians for σk′ were
only ~3 times higher in the elevated plots; Table S1). Bothmodels also indicate that variation in the CO2 fluxes
(fi) among sessions within each k, v, and d was lowest in the ambient (control) treatment and highest for the
irrigated treatments (Table S1).

4.4. Treatment Contrasts

Although this study does not focus on quantifying the effects of the different global change treatments on
soil CO2 flux (f), we demonstrate how the Bayesian approach to estimating f can be easily extended to quan-
tify treatment effects. If uncertainty in f is rigorously accounted for, as done in the Bayesian approach, the BL
model suggests that f only differed among global change treatments (within a given vegetation type) for 3 of
the 21 comparisons (i.e., 95% CI for Δ (equation (16)) did not contain zero). Conversely, the other threemodels
(HBL, BD, and HBD) found many differences among the treatments, yielding 17–18 Δs that were different
from zero. The lack of treatment differences associated with the BL model may be attributed to the highly
uncertain estimates of f (wide 95% CIs for f (e.g., Figure 3) and, hence, wide 95% CIs for Δ). However, despite
the wide CIs for f generated by the BD model (Figure 3), the uncertainty in the difference among pairs of f
values was remarkably low (narrow CIs for Δs; Figure 5a). As one might expect, precise estimates of f
produced by the HBL and HBD models led to tight estimates for the Δs (Figure 5). In general, however, the

Figure 3. (a–c) Comparison of the predicted session-level, surface soil CO2 fluxes (f) obtained from the four models
described in Figure 1 (BL, HBL, BD, and HBD). The points depict the posterior medians for each model, and the horizontal
and vertical gray error bars denote the 95% CIs for the y and xmodels, respectively. The thin blue lines indicate the best fit
line; the thick diagonal red line denotes the 1:1 line.

Figure 4. (a–e) Predicted (posteriormediansand95%CIs) treatment-level surface soil CO2fluxes (ef in equations (10) and (12))
for a subsetof treatments, for eachof thefivegrowing seasons forwhich chamberdatawere collected. The treatments shown
are ambient CO2 and temperature (ct), elevated CO2 and warming (CT), and ambient CO2 and temperature with vegetation
removed (ct-veg). Predictions were generated by the hierarchical Bayesian nonsteady state diffusion (HBD) model.
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direction (positive or negative) and magnitude (posterior median) of the Δs were comparable across models
(very few points fall in the gray areas in Figure 5).

5. Discussion and Conclusions
5.1. Linear Versus Nonsteady State Diffusion Model

Just focusing on the hierarchical models (HBL and HBD) and point estimates (here posterior medians), the
linear (HBL) model tends to underestimate f by ~33% (multiplicative bias) and overestimate C0 by
~40 ppm (additive offset) relative to the HBD model. This difference is to be expected if a linear model is
fit to concentration (C) versus time (t) data obtained from fairly small, static chambers that may be subject
to concentration feedback [Livingston et al., 2006; Pedersen et al., 2001]. Such feedback would lead to an
observed nonlinear, decelerating relationship between observed C versus t, and a linear model would neces-
sarily have aflatter slope compared to the initial slope near t= 0,which represents the surfaceflux (f) of interest.
Thus, as others have also suggested [Venterea et al., 2009], the linearmodel is not appropriate in such situations,
and a nonlinear model that captures the decelerating relationship is more appropriate. In particular, it would
seem most appropriate to use a model based on the physics underlying the concentration feedback effects.
Thus, the nonsteady state diffusion model [Livingston et al., 2005, 2006] would be the preferred model. This
nonsteady state diffusion model is easy to implement within the hierarchical Bayesian approach, and the
flexibility of the coding environment (e.g., OpenBUGS and JAGS) further facilities the application of such a
model (see online supporting information). However, the HBD model can take 10 times longer to implement
in software such as OpenBUGS, such that the HBL model may be preferred in situations where concentration
feedback is minimal.

5.2. Nonhierarchical Versus Hierarchical Statistical Model

An important contribution of this study is the finding that a hierarchical statistical modeling approachmay be
preferred over a more standard, nonhierarchical approach for estimating fluxes from nonsteady state cham-
bers that yield a limited number of observations per session. The hierarchical approach yielded much more

precise estimates of all quantities of interest, such as session-level fluxes (f), higher-level fluxes (e.g.,ef ), initial
(background) [CO2] (C0), and pairwise treatment contrasts (Δ). The reason for these more precise estimates
(i.e., narrower CIs) is that the hierarchical approach results in borrowing of strength (or partial pooling)
[Gelman and Hill, 2007; Gelman et al., 2012; Ogle et al., 2014], such that problematic (bad) chamber sessions
(ones with low individual R2 values) are informed by good chamber sessions (e.g., Figures 6a–6e). Thus, the
HBL and HBD models not only provide more precise estimates but also yielded more biologically realistic

Figure 5. Comparison of the posterior estimates (medians) for the pairwise treatment contrasts (Δ; see equation (16)) between the four models described in Figure 1
(BL, HBL, BD, and HBD). The quadrats shaded in gray indicate the conflicting results generated by the two models being compared (e.g., model x predicts that f is
higher for treatment k relative to k′, whereas model y predicts the opposite). The white (unshaded) quadrats indicate the general agreement among the two models,
and points that fall along the diagonal 1:1 line indicate perfect agreement between the models, with respect to the posterior median. The BL model only yielded
three Δ values that were significantly different from zero (i.e., 95% credible intervals [CIs] for a particular Δ did not contain zero), whereas the HBL, BD, and HBD
models yielded 17, 17, and 18 significant Δ values, respectively.
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estimates, especially for bad chamber sessions. Thus, the hierarchical models are not wasteful. That is, there is
no need to discard bad session data as the borrowing of strength attribute generally ensures that the session-
level f estimates for these sessions are reasonable, provided that there are more good than bad sessions.
Additionally, in situations where all sessions produced the same amount (e.g., 4 time points) of good data,
there is comparatively less borrowing of strength and the predicted chamber [CO2] values align with the
observed [CO2] values for each replicate session (e.g., Figures 6f–6j), but the hierarchical structure still
produces much more precise estimates than the nonhierarchical approach.

The borrowing of strength attribute associated with the hierarchical approach also results in fewer effective
parameters (i.e., decreased model complexity). This essentially overcomes the problem of a potentially over-
parameterized statistical model. For example, in the nonhierarchical models, three parameters (f, C0, and σ)
are being estimated for each chamber session, yet there may only be three to four observations of C versus
t per session. Thus, there is essentially 0.75–1 parameter being informed by each data point (or 1–1.33 data
points per parameter), resulting in a highly overparameterized model. In the hierarchical models, the effec-
tive number of parameters is much less, such that each parameter is effectively informed by approximately
3.5–9 times as much information compared to the two nonhierarchical models (Table 1), thus increasing the
information content of the C versus t data.

5.3. Postanalysis of Flux Estimates

In this study, we present a simplified example involving pairwise treatment contrasts, with the idea that these
contrasts can lend insight into potential factors (i.e., treatment effects) contributing to variation in the
estimated fluxes (fs). In doing so, we propagated uncertainty in the fs to the derived Δs, allowing us to obtain

Figure 6. Example chamber sessions for (a–e) 25 April 2011, for the control (ct) treatment (ambient CO2 and temperature),
and (f–j) 18 June 2009, for the ambient CO2 and warming (cT) treatment. Observed and predicted (posterior medians and
95% CIs) for chamber [CO2] values are shown for each of the five replicate plots for each date, based on the BL, HBL, and
HBDmodels (see Figure 1 for a description of themodels); results for the BDmodel are not shown for clarity of presentation
and given its poor fit (Figure 1b). These results demonstrate the utility of the hierarchical approach for yielding more
realistic estimates of the soil surface flux (f) for chamber sessions associated with poor data (Figure 6e); for this session, the
BL model predicted a negative flux, while the HBL and HBD models predicted positive fluxes that are consistent with the
other sessions on that day. On dates the yielded “good” sessions for all five replicates (e.g., Figures 6f–6j), the BL, HBL, and
HBD models produced similar predictions, but BL and HBL tend to slightly overestimate the initial [CO2]. The symbols and
corresponding CIs are systematically jittered to increase visibility; some CIs are very narrow and are hidden behind their
corresponding symbol.
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posterior distributions for the Δs. More detailed “postanalyses” of f can also be implemented to provide
greater insight into the factors governing f. As an alternative to the approach described herein for evaluating
Δ, one could account for uncertainty in f in the postanalyses following a general model such as

E f ijDatað Þ e Normal μi; σ
2
i

	 

σ2i ¼ Var f ijDatað Þ þ σ2resid

μi ¼ M β;Xð Þ
(17)

E(fi|Data) is the posterior mean (or expected value) of each f value (e.g., for each chamber session), conditional
on the chamber data (i.e., Data =C observations). In this generic example, we assume that these point
estimates, E(fi|Data), are normally distributed with mean μi and variance σi

2, but other, potentially more
appropriate, distributions could be employed.

One would account for uncertainty in fwhen specifying the variance model, such that σi
2 is decomposed into

two terms: Var(fi|Data) is the estimated posterior variance of each fi, and σ2resid describes the “typical”

(unknown) residual variance. (A traditional approach would assume that Var(fi|Data) = 0 and estimate a com-
mon residual variance.) E(fi|Data) and Var(fi|Data) are outputs generated from the HBD (or HBL) model
described herein and are thus treated as known (“data”) in the postanalysis. Flexibility in modeling the factors
governing f is accommodated by the model for μi, M(β,X), which can take on any form appropriate to the
particular analysis. For example, M(β,X) could represent a linear or nonlinear “regression” involving a set of
continuous and/or categorical covariates, X (e.g., soil water content, soil temperature, season, and treatment
level), with regression coefficients (or parameters), β. In this postanalysis, one would obtain estimates and
posterior distributions of β and σ2resid . The posterior results for β incorporate the uncertainty in the f values
and are used to make inferences about the factors affecting the surface fluxes.

5.4. Future Directions

We demonstrate a hierarchical, nonsteady state diffusion modeling approach to estimating soil surface CO2

efflux (e.g., f) based on C versus t data collected from nonsteady state soil chambers. Our original intention
was to demonstrate this approach for estimating surface fluxes for multiple trace gases (e.g., N2O, CH4,
and CO2). However, application of the approach to N2O and CH4 fluxes is more challenging because the soil
can act as both a source and a sink for N2O and CH4. The nonsteady state diffusion model that we adapted
from Livingston et al. [2005, 2006] is only applicable to situations where the soil acts as a source. We are not
aware of a comparable solution for situations where the soil acts as both a sink and/or a source. Sahoo and
Mayya [2010] offer a potential solution by solving a two-dimensional nonsteady state diffusion model, but
the solution is quite complicated and cannot be easily implemented in existing software packages such as
OpenBUGS or JAGS. However, one could use a simpler (e.g., exponential) equation [Hutchinson and Mosier,
1981; Sahoo and Mayya, 2010] that approximates the complicated analytical solution, and our work suggests
that this should be implemented in a hierarchical statistical framework.
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