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[1] The future carbon balance of high-latitude ecosystems is dependent on the
sensitivity of biological processes (photosynthesis and respiration) to the physical
changes occurring with permafrost thaw. Predicting C exchange in these ecosystems is
difficult because the thawing of permafrost is a heterogeneous process that creates a
complex landscape. We measured net ecosystem exchange of C using eddy covariance
(EC) in a tundra landscape visibly undergoing thaw during two 6 month campaigns in
2008 and 2009. We developed a spatially explicit quantitative metric of permafrost thaw
based on variation in microtopography and incorporated it into an EC carbon flux
estimate using a generalized additive model (GAM). This model allowed us to make
predictions about C exchange for the landscape as a whole and for specific landscape
patches throughout the continuum of permafrost thaw and ground subsidence. During June
through November 2008, the GAM predicted that the landscape on average took up
337.1 g C m�2 via photosynthesis and released 289.5 g C m�2 via respiration,
resulting in a net C gain of 47.5 g C m�2 by the tundra ecosystem. During April
through October 2009, the landscape on average took up 498.7 g C m�2 and
released 410.3 g C m�2, resulting in a net C gain of 87.8 g C m�2. On average,
between the years, areas with the highest permafrost thaw and ground subsidence
photosynthesized 17.7% more and respired 3.3% more C than the average landscape.
Areas with the least thaw and subsidence photosynthesized 15% less and respired
5.1% less than the landscape on average. By incorporating spatial variation into the
EC C estimate, we were able to estimate the C balance of a heterogeneous landscape
and determine the collective effect of permafrost thaw on the plant and soil processes
that drive ecosystem C flux. In these study years, permafrost thaw appeared to
increase the amplitude of the C cycle by stimulating both C release and
sequestration, while the ecosystem remained a C sink at the landscape scale.
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1. Introduction

[2] Northern high latitudes are disproportionally warming
and arctic temperatures are predicted to increase by 6.5°C or
more by the year 2100 in response to radiative forcing
caused by increasing greenhouse gases and changes in
albedo [Chapin et al., 2000, 2005; Hinzman et al., 2005;
Intergovenmental Panel on Climate Change, 2007]. Cur-
rently, permafrost occurs within 24% of the ice-free land
area in the northern hemisphere [Zhang et al., 1999], and it
is estimated 25%–90% will degrade into seasonally frozen
ground by the year 2100 [Anisimov and Nelson, 1996;

Lawrence et al., 2008; Saito et al., 2007]. According to
recent estimates, permafrost soils contain twice as much
carbon (1672 Pg) as the entire atmospheric pool [Schuur
et al., 2008; Tarnocai et al., 2009]. If a portion of this
C is released to the atmosphere it could result in a strong
positive feedback to climate change. Understanding how
permafrost thaw affects the rate of C exchange from this
large pool is essential for understanding the global C cycle
in a warmer world.
[3] Thawing of permafrost is a temporally dynamic and

spatially heterogeneous process. Rising temperatures increase
active layer (seasonally thawed surface layer) thickness and
form thermokarst [Jorgenson and Osterkamp, 2005; Zhang
et al., 2005]. Thermokarst is uneven ground that forms when
ice-rich permafrost thaws, drainage occurs, and the ground
surface subsides [Jorgenson and Osterkamp, 2005]. These
localized changes in surface relief greatly alter the surface
hydrology of the area. As water is redistributed from higher
to lower microtopographical areas, thermal erosion by the
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movement of water warms the soil and further perpetuates
permafrost thawing [Kane et al., 2001; Osterkamp et al.,
2009]. This positive feedback creates a mosaic of patches
that range from high, dry embankments with shallow active
layers to subsided areas with relatively wet, warm soils and
deep active layers [Lee et al., 2011; Osterkamp et al., 2009;
Vogel et al., 2009]. Furthermore, this pattern of ground sub-
sidence, dictated by the initial presence of ice-rich perma-
frost, is interspersed throughout the landscape and ultimately
creates a mosaic of various degrees of permafrost thaw
and microtopography.
[4] The future C balance of high-latitude ecosystems

depends on the sensitivity of biological processes (pho-
tosynthesis and respiration) to the physical changes in
temperature and moisture occurring with permafrost thaw.
But, predicting C exchange in these ecosystems is diffi-
cult because of the landscape heterogeneity created as
permafrost thaws. Since adjacent patches can have very
different physical environments, they can have very dif-
ferent gross primary production (GPP) and ecosystem
respiration (Reco) [Lee et al., 2011; Vogel et al., 2009].
Landscape-scale GPP and Reco will depend on the
cumulative response of the landscape to permafrost thaw,
which in turn will dictate the direction and magnitude of
net ecosystem exchange (NEE = GPP � Reco).
[5] The response of the C cycle to spatial and temporal

environmental variation is often nonlinear and not simply
described by the mean response [Aubinet et al., 2002].
Therefore, an appropriate understanding of both the spatial
and temporal variation of C flux is essential for estimating
the C balance of a landscape. But the intensive temporal
sampling required for good estimates of C flux makes it
difficult to obtain extensive, spatially explicit C flux data.
Eddy covariance (EC) provides a method to directly
measure C exchange at a high level of temporal resolution
over a large spatial scale [Baldocchi, 2003]. But fluxes
measured by EC are commonly assumed to come from a
homogenous surface, which makes it difficult to resolve
the cumulative contribution of localized features in the
landscape to an EC estimate [Laine et al., 2006; Schmid
and Lloyd, 1999]. Although much effort has gone into
developing and using models to locate where fluxes orig-
inate (i.e., the footprint of an EC tower) [Kormann and
Meixner, 2001; Schmid, 1997, 2002; Schmid and Lloyd,
1999], less effort has gone into incorporating spatial
information back into EC C estimates. However, the
abundance of data produced by EC towers gives us the
ability to explore spatial patterns of C flux.
[6] In this study, we use generalized additive models

(GAMs) to generate a continuous time series of NEE for a
tundra landscape undergoing permafrost thaw. We devel-
oped a spatially explicit quantitative metric of permafrost
thaw based on variation in microtopography. By incorpo-
rating our spatial metric into EC gap-filling models, we were
able to make C flux predictions for the landscape as a whole,
as well as for specific landscape patches throughout the
continuum of permafrost thaw and ground subsidence. We
tested the robustness of our models against more widely
used (nonspatial) gap-filling methods. Our objectives were
to more accurately estimate the C balance of a heteroge-
neous landscape and to explore the collective effect of

permafrost thaw on the plant and soil processes that dictate
ecosystem C exchange.

2. Material and Methods

2.1. Site Description

[7] The study site is within the Eight Mile Lake (63°52′42′
N, 149°15′12′W), watershed in the northern foothills of the
Alaska Range near Denali National Park and Preserve
[Schuur et al., 2007, 2009]. This upland area occurs within a
vulnerable band of discontinuous permafrost near the point
of thaw due to the combination of its elevation and geo-
graphic position [Romanovsky et al., 2007; Yocum et al.,
2006]. Deep permafrost temperature has been measured
at the site since 1985 and during this time thermokarst
terrain has developed and expanded as the permafrost has
warmed [Osterkamp et al., 2009]. Vegetation at the site is
dominated by moist acidic tussock tundra comprising
sedge (Eriophorum vaginatum), deciduous and evergreen
shrubs (Vaccinium uliginosum, Rubus chamaemorus, Betula
nana, and Ledum palustre), and nonvascular plants (Sphag-
num spp., Dicranum spp., feathermoss, and lichens). Soils at
the site are classified as Gelisols because permafrost is found
within 1 m of the soil surface [Soil Survey Staff, 1999]. An
organic horizon, 0.45–0.65 m thick, covers cryoturbated
mineral soil that is a mixture of glacial till (small stones and
cobbles) and windblown loess. Organic C pools in the top
meter of soil range between 55 and 69 kg C m�2 [Hicks Pries
et al., 2011].
[8] The long-term mean annual air temperature (1976–

2009) of the area is �1.0°C and the growing season
(May–September) mean air temperature is 11.2°C, with
monthly averages ranging from �16°C in December to
+15°C in July. The long-term annual mean precipitation
is 378 mm with a growing season mean precipitation of
245 mm (National Climatic Data Center, National Oceanic
and Atmospheric Administration). Mean growing season air
temperature was 8.1°C and 9.7°C during 2008 and 2009,
respectively, and growing season precipitation was 346 mm
and 178 mm during 2008 and 2009, respectively.

2.2. Eddy Covariance Measurements

[9] NEE was measured using eddy covariance (EC) from
June to December 2008 and April to October 2009. The EC
system consisted of a CSAT3 sonic anemometer (Campbell
Scientific, Logan, Utah) and an open path CO2/H2O gas
analyzer (Li-7500, LI-COR Biosciences, Lincoln, Nebraska)
mounted on a 2 m tower. Data were recorded at a frequency
of 10 Hz on a CR5000 data logger (Campbell Scientific),
and fluxes were Reynolds averaged over 30 min time peri-
ods [Reynolds, 1895]. Calibration was preformed monthly
during the growing season using a zero CO2 air source, a
�1% standard CO2 concentration, and a dew point generator
(Li-610, LI-COR Biosciences) for water vapor. The EC
tower was placed within a patchy landscape consisting of
visibly subsided areas to the North and West and relatively
even terrain to the South and East. The fetch from the tower
was greater than 300 m in all directions and winds pre-
dominantly came from the NE and SW. An analytical foot-
print model developed by Kormann and Meixner [2001]
showed on average 50% of fluxes originated within the first
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50 m around the tower, and greater than 80% of fluxes
originated within 200 m from the tower.
2.2.1. EC Data Handling
[10] Raw CO2 fluxes were corrected for damping of high-

frequency fluctuations, sensor separation, and misalignment
of wind sensors with respect to the local streamline [Aubinet
et al., 1999; Moncrieff et al., 1997; Wilczak et al., 2001].
CO2 fluxes were then corrected for variations in air density
due to fluctuation in water vapor and heat fluxes [Webb
et al., 1980] and for fluctuations caused by surface heat
exchange from the open path sensor during wintertime
conditions [Burba et al., 2008]. Data screening was applied
to eliminate half-hourly fluxes with systematic errors and
nonrelevant environmental influences such as (1) incomplete
half-hour data sets as a result of system calibration or
maintenance; (2) time periods when the canopy was poorly
coupled with the external atmospheric conditions as defined
by the friction velocity, u* (threshold <0.12 m s�1) [Clark
et al., 1999; Goulden et al., 1996]; and (3) excessive
variation from the half-hourly mean based on an analysis
of standard deviations for u, v, and w wind statistics and
CO2 fluxes. Fluxes were then divided into weekly data
sets for both day and night conditions and unrealistic low
or high values (>2 standard deviations from the mean)
were filtered out. In total, ecosystem fluxes were measured
72% and 96% of the time during the 2008 and 2009
campaigns, respectively, while 64% and 60% of those
values were eliminated by the screening criteria listed
above. The quality of our data was evaluated by the degree
of growing season energy closure (Rnet = LE + H + G),
which was 76% in 2008 and 73% in 2009. Ground heat flux
(G) was estimated as the change in soil temperature with
depth plus soil heat storage [Liebethal et al., 2005; Liebethal
and Foken, 2007]. To calculate soil heat storage, we
assumed 40% organic matter content [Hicks Pries et al.,
2011] and 60% volumetric water content based on soil
cores taken from the site. Measurements of half-hour NEE
were calculated as: NEE = Fco2 + Fs, where FCO2 was the
mean flux of CO2 at measurement height and Fs was the
half-hour change in CO2 stored below measurement height.
Because of the short vegetation (�30 cm), we calculated the
change in CO2 storage by taking the difference in successive
CO2 measurements at the measurement height [Hollinger
et al., 1994]. We used the meteorological convention that
positive NEE represents a transfer of CO2 from the eco-
system to the atmosphere.
2.2.2. Environmental Measurements
[11] Standard meteorological data were collected on a

tower adjacent to the EC tower, including photosynthetic
photon flux density (PPFD; Li-190SA, LI-CORBiosciences),
incident radiation (Li-200SA, LI-COR Biosciences), net
radiation (REBS Q*7.1, REBS Inc., Seattle, Washington),
relative humidity and air temperature (Vaisala HMP45c,
Campbell Scientific), and wind speed and direction (RM
Young 3001, Campbell Scientific). Soil temperature profiles
(5, 10, 15, 20, and 25 cm from surface) were measured with
constantan-copper thermocouples and a thermistor (at 5 cm
depth only; 107, Campbell Scientific). Moisture integrated
over the top �15 cm of soil was measured with a Campbell
CS615 water content reflectometer. All measurements were
recorded at half-hour average intervals with a CR5000 data
logger (Campbell Scientific). A complete replicate set of

micrometerological measurements were collected at a tower
100 m to the NW of EC tower, and were used to interpolate
gaps in micrometeorological data measured at the EC tower.

2.3. Landscape Properties

[12] To quantify the amount and distribution of land sur-
face subsidence associated with permafrost thaw, a digital
elevation model (DEM) was created from point measure-
ments of elevation. Fine-scale differences in elevation were
measured with a high-resolution differential global position
system (dGPS). One GPS unit (Trimble 5400) was placed at
a nearby USGS geodetic marker (WGS84, 63°53′16.56′N,
149°14′17.92′W), which acted as the reference receiver.
Using a second GPS unit (Trimble 5400) secured to a
backpack, a kinematic survey was conducted by walking
transects within a 400 m diameter circle encompassing the
EC tower footprint. Geographic position and elevation were
collected at 5 s intervals, yielding a total of 7220 points.
These data were postprocessed with methodology developed
by UNAVCO using Trimble Geomatics Office (Dayton,
Ohio).
[13] To create the DEM of the area surrounding the EC

tower, spherical models were fit to empirical semivario-
grams, and ordinary kriging was used to interpolate between
point measurements using the calculated range of 282 m, a
nugget of 0.02, and a partial sill of 0.47. Variogram analysis
and kriging was done with the Geostatistical analyst exten-
sion in ArcGIS 9.3. Because the study site is on a gentle
slope (�5%), the original DEM was corrected for overall
slope elevation changes, so we could decipher small-scale
subsidence features. To correct for the slope, the DEM was
first rescaled so the minimum elevation equaled zero. Mean
elevation within 30 m blocks was subtracted from the
rescaled DEM, resulting in the deviation in elevation away
from the mean plane. This created a map of small-scale
variations in topography that we define here as micro-
topography. Pixel resampling and calculations were done
using the aggregate function, resample tool, and the raster
calculator in the Spatial Analyst extension in ArcGIS 9.3.
[14] To obtain landscape information in a form compara-

ble to EC data, we extracted information on micro-
topography corresponding to each wind direction sampled
by the EC tower. Virtual transects 200 m in length, originating
at the EC tower and radiating out in every wind direction (0–
359), were created. A distance of 200 m was chosen because it
corresponded to the distance where on average >80% of scalar
fluxes originated based on an analytical footprint model
[Kormann and Meixner, 2001]. Microtopography (i.e., local
elevation) was sampled everymeter along each transect using
Hawth’s Analysis Tools (H. L. Beyer, Hawth’s Analysis
Tools for ArcGIS, http://www.spatialecology.com/htools/
tooldesc.php, 2004) in ArcGIS 9.3. The standard deviation
of microtopography, which we refer to as roughness, was
calculated for each transect (wind direction). This calculated
metric was chosen because it captures the variation in
microtopography created by permafrost thaw (both subsided
areas and raised embankments). Our metric, roughness,
should not be confused with the micrometeorological term
roughness length.
[15] To calculate our metric, roughness, corresponding to

each (half-hour) flux measurement, we simply calculated the
standard deviation of the per meter values of microtopography
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along the entire transect corresponding to the measured wind
direction. We acknowledge that C fluxes measured over a 30
min period do not emanate from a one-dimensional transect;
instead they come from two-dimensional areas in the land-
scape. To find the best spatial metric corresponding to the
measured C flux, we also calculated roughness for the three
and five adjacent transects of the measured wind direction.We
found no change in the relationship between C flux and
roughness when using a greater number of transects. Also, in
principle, footprint models provide more information than the
overall radial scale of the area surrounding the EC tower
because they help to pinpoint where in the landscape fluxes are
originating [Kormann and Meixner, 2001; Schmid, 1997,
2002; Schmid and Lloyd, 1999]. So, for comparison, we also
used estimates of the cumulative probability of fluxes coming
from different fetches, calculated by a footprint model, to
calculate a weighted standard deviation of roughness. How-
ever, we chose to use the simple nonweighted roughness
because under certain conditions weighting caused relatively
flat areas to the SE to have a higher standard deviation than the
most subsided areas to the NW.We believe this discrepancy is
due to the mismatch in scale between our one-dimensional
transects and the two-dimensional cumulative density function
calculated by the footprint model [Kljun et al., 2003;Kormann
and Meixner, 2001].
[16] We explored the relationship between roughness and

normalized difference vegetation index (NDVI), and the
relationship between microtopograghy and active layer
depth (ALD). NDVI was calculated using spectral data from
an IKONOS image of the site acquired in June 2008. Mean
NDVI was calculated for each of the 360 virtual transects
radiating out from the EC tower, and was compared to the
roughness of the corresponding transect. ALD was measured
at 310 locations stratified at various distances within the
potential EC footprint, by measuring the length of a metal
probe inserted into the soil until the impenetrable frozen
layer was reached. The geographic location of each site was
measured and subsequently used to extract corresponding
values of elevation from the map of microtopography. We
only compared ALD to microtopography because we did
not have a continuous surface of ALD; therefore, were unable
to extract data for the 360 virtual transects to compare with
roughness. Relationships were explored with generalized
additive models using the mgcv package in R [R Development
Core Team, 2010; Wood, 2008].

2.4. Estimation of Landscape-Scale Carbon Exchange

[17] To estimate the carbon balance of an ecosystem,
measured CO2 fluxes must be gap filled to generate a con-
tinuous time series of net ecosystem exchange (NEE). We
estimated carbon exchange using two gap-filling strategies:
(1) a novel gap-filling strategy using generalized additive
models (GAMs) that are flexible enough to incorporate
spatial information and (2) nonlinear (NL) relationships with
nonspatial environmental variables.
[18] Although NEE is directly measured by the EC

technique, the driving force of the exchange is dependent
on environmental conditions. Therefore, we modeled NEE
for gap filling during winter, growing season (GS) days,
and GS nights separately. The beginning and end of the
GS was determined by abrupt changes in net radiation
corresponding to snowmelt and widespread snow cover,

respectively. Generally, the GS began in early May and
ended at the end of September. Data during the GS were
split into day and night by ambient light, so when PPFD
was greater than 10 mmol m�2 s�1 daytime conditions were
assumed. During daytime, NEE is the balance between gross
primary production (GPP) and ecosystem respiration (Reco).
To tease apart their contributions, we modeled Reco during
GS days using models fitted with GS night data and calcu-
lated GPP as the difference between NEE and Reco (GPP =
NEE � Reco). Once soil temperature at 5 cm fell below 0°C,
winter conditions were assumed. During these conditions,
photosynthesis is not occurring so NEE is equivalent to Reco.
2.4.1. Gap-Filling Strategy 1: Generalized Additive
Models
[19] To generate a continuous time series, we gap filled

NEE using generalized additive models (GAMs), an exten-
sion of generalized linear models where a response is mod-
eled as the additive sum of smoothed covariate functions
[Hastie and Tibshirani, 1990; Wood, 2006]. With GAMs,
nonlinear effects can be modeled without manually speci-
fying the shape of the relationships, which provided us the
flexibility to incorporate roughness along with other
explanatory variables into the prediction of NEE [Wood,
2006; Zuur et al., 2009]. To control the shape of functions,
we used penalized regression splines, which determine the
appropriate degree of smoothness of each smoothing func-
tion by generalized cross validation (GCV) and adds a
“wiggliness” penalty when estimating the coefficients of
each smooth with maximum likelihood [Wood, 2006]. All
GAMs used had the basic form

yi ¼ b0 þ f1 xið Þ þ f2 zið Þ þ f3 xi; zið Þ þ ɛi; ð1Þ

where yi denotes the response variable (NEE or Reco), b0 is
the intercept, functions f1(xi) and f2(zi) are smooth functions
of explanatory variables xi and zi, and f3(xi, zi) is a two-
dimensional smooth function of their interactions. We used
thin plate regression splines as the basis for representing
smooths (f1 and f2) for single covariates and tensor product
smooths (f3) for interactions (multiple covariates) because
they have been found to perform better when covariates are
not on the same scale [Wood, 2006]. We forced the effective
degrees of freedom in each model to count as 1.4 degrees of
freedom in the GCV score, which forces the model to be
slightly smoother than it might otherwise be, this is an ad
hoc way to avoiding overfitting [Kim and Gu, 2004].
[20] Because eddy covariance data are heteroscedastic

[Richardson et al., 2008] and there were distinct patterns
in the residuals, we fit GAMs using a mixed model
framework (GAMM) with a Gaussian error distribution to
facilitate the incorporation of an exponential variance
structure:

ɛi � N 0; s2 ⋅ eV
� �

; ð2Þ

where the variance of the residuals s2 is multiplied by an
exponential function of the fitted values (V). We used all
data in a single dummy group as our random effect to
facilitate the incorporation of the variance structure into
the GAM [Dormann, 2007; Wood, 2006; Zuur et al.,
2009]. All models were fitted using the mgcv package
[Wood, 2006] in R [R Development Core Team, 2010].
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[21] A subset of explanatory variables was selected a
priori including: PPFD, temperature (air, soil at 5 cm, depth-
integrated soil temperature down to 25 cm), roughness, and
day of year (DOY). We suspected there might be complex
interactions between explanatory variables, so both direct
effects and all possible interactions were compared. Models
were selected for each time period (winter, GS day, GS
night) during each year (2008, 2009), by starting with the
full model containing all variables and interactions and using
a form of automatic backward selection in which the
penalization term for each smooth could automatically set
the term to zero and remove it from the model as appropriate
[Wood, 2008]. We also took into consideration how
removing terms affected (1) the GCV score (the lower the
better), (2) the deviance explained (the higher the better),
and (3) the Akaike Information Criterion (AIC, the lower the
better) [Anderson et al., 1998, 2001].
[22] Because our GAM models incorporated landscape

information, they allowed us to estimate the landscapes
carbon balance in two different ways. If we assumed the
landscape was one unit (measurements taken from one
“population” of fluxes), then gaps in the time series were
filled depending on the measured wind direction at the time
of the gap. This resulted in a single time series of carbon
exchange for the landscape (GAM 1). Alternately, if we
assumed the landscape was a combination of multiple pat-
ches (wind directions), all absorbing or releasing C simul-
taneously, then each wind direction was gap filled separately
for the entire time series. This resulted in 360 separate time
series, whose predictions were averaged to achieve an esti-
mate of carbon exchange for the entire landscape (GAM
360). This method allowed us to estimate C exchange for the
entire heterogeneous landscape and made it possible to
compare predictions from landscape patches that differed in
roughness. Both methods of prediction were done for each
time period during 2008 and 2009.
2.4.2. Gap-Filling Strategy 2: Nonlinear Regressions
[23] For comparison we also gap-filled data using a more

traditional nonlinear (NL) regression approach. During GS
days, gaps were filled using parameters obtained by fitting
half-hour NEE to PPFD using a nonrectangular hyperbola
[Thornley and Johnson, 1990]:

NEE ¼ a ⋅ PPFD ⋅ Pmaxð Þ= a⋅PPFDþ Pmaxð Þð Þ � R; ð3Þ

where a is the linear portion of the light response curve,
PPFD is photosynthetically active radiation, Pmax is the
asymptote, and R is the intercept or dark respiration term.
To capture changes in phenology, parameters were esti-
mated biweekly or monthly depending on the variation
among weeks. We incorporated an exponential variance
structure due to the heteroscedacity of the data and used
maximum likelihood to estimate parameters using the
bbmle package (B. M. Bolker, bbmle: Tools for general
maximum likelihood estimation, https://r-forge.r-project.
org/R/?group_id=176, 2010) in R.
[24] We were unable to fit exponential models to winter

and GS night data separately, so we gap filled with para-
meters estimated using both data together. Parameters were
estimated using the following equation:

Reco ¼ a ⋅ eb⋅T ; ð4Þ

where a is the intercept and b is the slope and T was depth-
integrated soil temperature during 2008 and soil temperature
measured at 5 cm during 2009. We compared models with
various forms of temperature (air, soil at 5 cm, depth-inte-
grated soil) and chose the best model based on AIC. We
choose not to model average because the best model’s AIC
was much lower (>5 pts) than the alternatives. An expo-
nential variance structure was added and parameters were
estimated using generalized nonlinear least squares using the
nlme package in R (J. Pinheiro et al.,, nlme: Linear and
nonlinear mixed effects models, http://cran.r-project.org/
web/packages/nlme/index.html, 2010).
2.4.3. Model Performance
[25] We compared the coefficient of variation (R2) and

Akaike Information Criterion (AIC [Anderson et al., 1998,
2001] of each GAM and NL model, during each time period.
Because of the variation in model types, we calculated the R2

simply as the correlation between the predicted values from
each model and the observed values. To assess the predictive
performance of the GAM and NL models, we performed
cross validation. Ten percent of the data was randomly
removed, models were fitted to the remaining data, and these
models were then used to predict responses for the with-
drawn ten percent. This process was repeated ten times and
the root mean square error (RMSE) was calculated for each
model. We then compared RMSE of the GAM and NL
models within each time period using a t test at a statistical
significance of p < 0.05. To calculate comparable values of
AIC we used the following equation:

AIC ¼ 2 ⋅ n ⋅ log RMSEð Þ þ 2 ⋅ p; ð5Þ

where n is the number of observations and p is the number of
parameters [Venables and Ripley, 2002].

3. Results

3.1. Landscape Heterogeneity of the EC Footprint

[26] Our map of microtopography captured the spatial
pattern of ground subsidence created by permafrost thaw
within the EML watershed (Figure 1). The largest variation
in microtopography was found to the NW of the EC tower,
while areas to the E and SE were relatively flat. This spatial
distribution of ground subsidence agreed well with patterns
visible in high-resolution aerial photographs of the site. In
addition, the maximum (0.5 m) and minimum (�0.9 m)
deviations away from the mean elevation were consistent
with field measurements of the depth of individual subsided
features and height of raised embankments created by thaw
(data not shown). This pattern was mirrored by our calcu-
lated landscape metric roughness. Transects with the highest
and lowest roughness corresponded with the winds coming
from the N-NW and SW-SE, respectively (Figure 1).
[27] In general, the depth of the active layer increased as

local elevation decreased (became more subsided) and
microtopography explained 51% (adjusted R2 = 0.51) of the
observed variation in active layer depth. The relationship
was nonlinear, with little variation in active layer depth at
sites where elevation was positive or slightly negative, fol-
lowed by an exponential increase in active layer depth as
elevation fell below �0.2 m (Figure 2a). Transects with
more variation in microtopography (high roughness) were
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found to have higher mean NDVI than transects with less
variation (low roughness), and roughness explained 55% of
the variation in mean NDVI (adjusted R2 = 0.55, effective
degrees of freedom = 6.1). This relationship was also non-
linear, with NDVI linearly increasing with roughness, then

Figure 2. (a) Nonlinear relationship between active layer
depth (ALD; cm) and microtopography (adjusted R2 =
0.51) with 95% confidence intervals. Note the small amount
of variation in ALD where microtopography is positive or
slightly negative, then an exponential increase in ALD as
microtopography falls below�0.2 m. (b) Nonlinear relation-
ship between mean normalized difference vegetation index
(NDVI) and roughness (adjusted R2 = 0.55) with 95% confi-
dence intervals. NDVI linearly increases until roughness
reaches 0.14, then NDVI levels out or decreases.

Figure 1. (top) Map of microtopography surrounding the
eddy covariance (EC) tower (star), with lighter shades indi-
cating areas where the ground surface is higher than the mean
elevation of the landscape and darker shades indicating
where the ground surface was lower than the mean elevation
(i.e., subsided). (bottom) Transects numbering 360 radiating
out from the EC tower (star) corresponding to the wind direc-
tion sample by the tower. The color of transects grades from
light to dark as the degree of roughness increases. Note that in
general, the roughest transects occur to the north and north-
west of the EC tower, while transects to the south and east
have lower roughness.
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leveling out and sometimes decreasing as roughness
increased above 0.14 (Figure 2b).
[28] The magnitude of net ecosystem exchange (NEE)

increased as the roughness of the landscape increased
(Figure 3). During GS days, NEE became more negative
(more C uptake) with increasing roughness. More C was
released from areas with higher roughness during GS nights,
but the trend of increased C emission with increasing
roughness decreased in magnitude and then reversed during
the winter months (Figure 3).

3.2. Model Performance

[29] GAM models outperformed the nonspatial NL mod-
els for gap-filling C exchange. GAM models had a higher or
equivalent coefficient of determination (R2) and higher pre-
dictive power (lower AIC) than NL models during every
time period in both 2008 and 2009 (Table 1). During cross
validation, GAMmodels always had lower mean RMSE, but
were only significantly lower (at p < 0.05) during GS days of
2008 and 2009 (Table 1).

3.3. Predictions of Ecosystem C Balance

[30] In general, the three gap-filling methods (NL, GAM
1, GAM 360) resulted in similar estimates of NEE, GPP and

Figure 3. Relationships between roughness and net ecosystem exchange (g C m�2) during growing sea-
son (GS) nights, GS day, and winter. Actual data points are displayed behind the trend lines.

Table 1. Coefficient of Variation, Predictive Power, and Cross-
Validation RMSE for Generalized Additive Model and Nonlinear
Model During Growing Season Day, Growing Season Nights,
and Winter 2008 and 2009a

Time Period Model R2 D AIC RMSE

2008
GS-D GAM 0.83 0 0.067 � 0.03b

NL 0.78 2458.6 0.161 � 0.06
GS-N GAM 0.26 0 0.132 � 0.09

NL 0.26 93.4 0.151 � 0.10
Winter GAM 0.16 0 0.047 � 0.04

NL 0.01 116.9 0.053 � 0.05

2009
GS-D GAM 0.83 0 0.052 � 0.02b

NL 0.78 5971.8 0.181 � 0.17
GS-N GAM 0.29 0 0.085 � 0.06

NL 0.22 772.9 0.136 � 0.09
Winter GAM 0.22 0 0.041 � 0.03

NL 0.12 363.7 0.065 � 0.06

aAbbreviations are as follows: GAM, generalized additive model; GS-D,
growing season day; GS-N; growing season nights; NL, nonlinear model.

bSignificantly different than model counterpart at p < 0.05.
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Reco for the time periods 6 June through 8 December 2008
(weeks 24–48) and 24 April through 10 October 2009
(weeks 12–40; Figure 4). Weekly estimates of NEE, GPP
and Reco generated for both GAM methods closely mirror
one another throughout both 2008 and 2009 (Figure 4).
Although the NL and two GAM methods generated similar
final estimates of net ecosystem exchange, there were some
notable differences. The two GAM methods estimated a
slightly higher uptake of carbon (more negative GPP) than
their NL counterpart, 10–13 g C m�2 more in 2008 and 12–
19 g C m�2 more in 2009. This difference in GPP was
spread throughout the growing season, with no single week
solely responsible for the difference (Figure 4a). Similarly,
the two GAM methods estimated a slightly higher release of

carbon (Reco) than the NL method, 10–11 g C m�2 more in
2008 and 7 – 13 g C m�2 more during 2009. Unlike GPP,
however, differences in Reco could be attributed to certain
time periods. During 2008, the major differences between
the predictions of the two methods occurred during the early
growing season (weeks 21–29) where the NL method pre-
dicted lower Reco than either GAM method. During the
majority of the GS of 2009 the GAM methods estimated
higher Reco than the NL method. The other time of diver-
gence among the methods was during transitions into and
out of the growing season. The GAM methods predicted
lower Reco than the NL method during transition from GS to
winter (weeks 39–40) in 2008 and during the transition from
winter to GS (week 15–19) in 2009 (Figure 4b).

Figure 4. (a) Gross primary production (GPP; g C m�2), (b) ecosystem respiration (Reco; g C m�2), and
(c) net ecosystem exchange (NEE; g C m�2) for the three methods of prediction, generalized additive
model (GAM) 360, GAM 1, and nonlinear, over the measurement campaigns of 2008 and 2009. Shaded
areas denote winter conditions, and negative values occur when the ecosystem is a C sink.
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3.4. Predictions of Landscape Heterogeneity of C Flux

[31] Using GAMs, we were also able to predict C
exchange for each wind direction. To estimate the C balance
for the entire landscape we calculated the mean carbon flux
of all wind directions for each 30 min interval throughout
2008 and 2009 (GAM 360). This resulted in an estimate of
NEE, GPP, and Reco for the landscape on average but also
allowed us to compare C fluxes from the wind directions
with the minimum and maximum roughness to further
understand the influence of permafrost thaw and ground
subsidence on C flux.
[32] From June to December 2008, GAM 360 estimated

the landscape on average took up 337.1 g C m�2 via pho-
tosynthesis and released 289.5 g C m�2 via respiration,

resulting in an ecosystem carbon gain of 47.5 g C m�2

(Figure 5 and Table 2). The direction with the maximum
roughness had higher GPP and Reco than the landscape on
average, while the direction with the minimum roughness
had lower GPP and Reco (Figure 5 and Table 2). This
resulted in the direction with maximum roughness gaining
55% more C than the landscape on average, while the
direction with minimum roughness gained 76.4% less C
(Table 2).
[33] From April to October 2009, the landscape on aver-

age took up 498.7 g C m�2 via photosynthesis and released
410.3 g C m�2 via respiration, resulting in a net gain of
87.8 g C m�2 (Figure 5 and Table 2). Again, the direction
with the maximum roughness had higher GPP and Reco than

Figure 5. (a) GPP (g C m�2), (b) Reco (g C m�2), and (c) NEE (g C m�2) for the landscape on average
(360 average) and for the wind direction with maximum roughness and minimum roughness over the mea-
surement campaigns of 2008 and 2009. Shaded areas denote winter conditions, and negative values occur
when the ecosystem is a sink.
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the landscape on average, while the direction with the min-
imum roughness had lower GPP and Reco (Figure 5 and
Table 2). This resulted in the direction with maximum
roughness gaining 41.4% more C than the landscape on
average, while the direction with minimum roughness
gained 61.7% less C (Table 2).
[34] The amplified increase in GPP with maximum

roughness was consistent throughout all weeks of the
growing season in both 2008 and 2009 (Figure 5a). Unlike
GPP, the increase in Reco with roughness was not consistent
throughout either year. During the GS of both years, the
landscape with maximum roughness had higher Reco, but
during the winter this trend reversed and the landscape with
min roughness had higher Reco (Figure 5b). Even though
areas with minimum roughness had higher Reco during
winter, the overall carbon emission throughout 2008 and
2009 was still greater from areas with maximum roughness
(Table 2).

4. Discussion

4.1. Quantifying Spatial Heterogeneity

[35] Microtopography is an easy to obtain, integrative
metric of the physical and biological changes occurring as
the result of permafrost thaw within the EML watershed
because it correlates with variables that drive C cycling.
Roughness, our landscape level metric of permafrost thaw,
captured the variation in microtopography of each wind
direction sampled by the EC tower (Figure 1). We found that
as microtopography decreased (ground became more sub-
sided), active layer depths (ALD) increased, exponentially
increasing after a threshold (Figure 2a). This pattern is a
result of changes in soil thermal conductivity created by the
redistribution of water into subsided areas, which increases
soil temperature within depressions while decreasing tem-
peratures in higher, dryer areas [Jorgenson et al., 2001;
Kane et al., 2001; Osterkamp et al., 2009]. These physical
changes in soil moisture and temperature drive variable
depths of thaw across the hillslope. This landscape level
pattern of ALD and subsidence is consistent with previous
work at this site, which showed similar relationships
between microtopography, temperature, and moisture [Lee
et al., 2011; Vogel et al., 2009].
[36] Areas with greater roughness had higher mean NDVI,

with NDVI increasing with roughness until a threshold was
reached (Figure 2b). Unlike ALD, NDVI leveled out and
slightly decreased at the upper end of the roughness scale.

NDVI has been shown to be positively correlated with
leaf area index [Tucker, 1979; Williams et al., 2008],
aboveground biomass [Boelman et al., 2003; Sellers, 1985],
net primary production [Goward et al., 1985], GPP and Reco

[Boelman et al., 2003; La Puma et al., 2007; Vourlitis et al.,
2003]. Permafrost thaw within the EML watershed causes a
shift in species composition from a plant community domi-
nated by tussock-forming sedges to a community with
increased shrub and moss abundance, and concurrently an
increase in biomass and productivity [Schuur et al., 2007;
Vogel et al., 2009]. Our result of increased NDVI with
increased roughness is consistent with this pattern of
increased biomass and productivity with thaw and also
indicates that an upper limit of productivity may be reached
as permafrost thaw continues and plants respond to the
changing conditions. This upper limit is likely driven by the
size of shrub species currently at the site, but could increase
in the future, on the time scale of plant succession, if boreal
trees were to increase in abundance at this tundra site.
[37] These relationships between microtopography and

important biophysical features of the landscape (ALD and
NDVI) highlight the feasibility of using remotely sensed
spatial information to improve estimates of regional C bal-
ance in high-latitude ecosystems. Recent advancements in
sensor resolution (e.g., LIDAR) now make micro-
topographical mapping of these vast, remote areas possible.

4.2. Incorporating Spatial Heterogeneity Into EC C
Estimates

[38] We incorporated the spatial variability of C flux into
the EC estimate of C exchange during gap filling using
generalized additive models (GAMs). Because a continuous
time series is required to estimate C balance, missing time
periods must be modeled [Baldocchi, 2003; Falge et al.,
2001]. This gap-filling step provided a method for predict-
ing C exchange based on the roughness of the landscape in
specific wind directions, as well as more accurately deter-
mining the C balance of the entire landscape. We found that
GAMs were equivalent or superior to traditional NL
regression approaches (Table 1). GAMs had higher predic-
tive power and a higher or equivalent coefficient of variation
(R2) than the NL models during all time periods. During
cross validation, GAMs consistently had lower RMSE than
NL models over all time periods, but were statistically lower
only during GS days. The lack of statistical improvement in
RMSE during GS nights and winter by the GAMs is not
surprising because these time periods are notoriously diffi-
cult to model using any procedure [Baldocchi, 2003].
Overall, our model comparison to the more traditionally
used NL gap-filling models gave us confidence that adding
model complexity to include spatial information was
justified.
[39] The aggregated predictions of C exchange from the

GAM and NL models did not substantially differ from one
another throughout either 2008 or 2009 (Figure 4). How-
ever, there were notable time periods where the two methods
diverged in their predictive capabilities. During the early
growing season of 2008 (weeks 21–29), the GAM substan-
tially overpredicted Reco compared to the NL model
(Figure 4b). We believe this difference is due to a lack of
data during the early GS, which caused the GAM to miss the

Table 2. Carbon Estimates for the Wind Direction With the Min-
imum Roughness, Maximum Roughness, and the Average of All
360 Wind Directions During June to December 2008 and April to
October 2009a

Roughness

2008 2009

GPP Reco NEE GPP Reco NEE

Minimum �300.3 288.3 �11.2 �403.6 386.6 �33.6
Maximum �397.4 291.9 �106.1 �586.4 450.6 �149.8
Average �337.1 289.5 �47.5 �498.7 410.3 �87.8

aCarbon estimates are in g C m�2. Negative numbers denote when the
ecosystem is taking up carbon. Abbreviations are as follows: GPP, gross
primary production;Reco, ecosystem respiration; NEE, net ecosystem exchange.
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upswing of Reco that coincides with rapid changes in phe-
nology during the spring. Predictions of Reco and NEE from
the NL and GAM also diverged during the transition from
the GS to winter in 2008, and the transition from the winter
to the GS of 2009 (Figures 4b and 4c). We attributed this
sensitivity to seasonal transitions by the GAM to the flexi-
bility of their smoothing functions, which can capture rap-
idly changing trends in the data [Zuur et al., 2009]. Because
the NL models’ empirically derived parameter estimates
depend on relationships that change dramatically in this
highly seasonal ecosystem, the relationships would need to
be continuously updated in order to capture these transitions
[Baldocchi, 2003; Falge et al., 2001]. Biologically, the dip
in Reco during the transition in and out of winter could be
attributed to changes in microbial species composition, or to
the disruption of biological activity by the state change
(freezing point) of water [Mikan et al., 2002; Rivkina et al.,
2000]. This dip in Reco could also be caused by shifts in the
availability and use of substrates by microbes between the
GS and winter [Davidson and Janssens, 2006; Dioumaeva et
al., 2002; Hobbie et al., 2000].

4.3. Effects of Spatial Heterogeneity on C Flux

[40] By incorporating spatial information, we were able to
estimate the C balance of the landscape in two different
ways. First, we filled gaps depending on the measured wind
direction at the time of the gap and created a single time
series of C exchange for the entire landscape (GAM 1).
Second, we gap filled the entire time series for each wind
direction separately and averaged the predictions to estimate
the C balance of the landscape (GAM 360). This allowed us
to estimate C exchange for the entire heterogeneous land-
scape and also make predictions for the wind directions with
the minimum and maximum roughness. Final C estimates
from GAM 1 and GAM 360 were nearly identical (Figure 4).
This similarity indicates that the wind distribution sampled
by the EC tower was sufficient to capture the variability of
thaw seen across the entire radial landscape surrounding the
tower.
[41] The landscape on average (GAM 360) was a C sink

during both 6 month measurement campaigns. The wind
direction with the most variation in microtopography (max-
imum roughness), resulting from permafrost thaw and
ground subsidence, had both higher GPP and Reco than the
landscape on average (Figures 5a and 5b), while the wind
direction with least variation (minimum roughness) exhib-
ited lower GPP and lower Reco. Overall, during the 6 month
campaign of 2008, the area with highest roughness gained
55.2% more C than the landscape on average, while the area
with lowest roughness gained 76.4% less C. Similarly, dur-
ing the 6 month campaign of 2009, the area with the highest
roughness gained 41.4% more C, while the areas with lowest
roughness gained 61.7% less C (Table 2). On the basis of
these results, permafrost thaw and ground subsidence
amplifies both GPP and Reco.
[42] The amplification of GPP with roughness was con-

sistent throughout the GS of both 2008 and 2009 (Figures 3
and 5a). This enhanced C sequestration could be due to
shifts in the plant community to more highly productive
species as permafrost thaws [Osterkamp et al., 2009; Schuur
et al., 2007], or to increased plant productivity due to greater

nutrient availability resulting from enhanced decomposition
within subsided areas [Mack et al., 2004; Shaver et al.,
1992; Vogel et al., 2009; Natali et al., 2012]. Our results
of higher NDVI in areas with higher roughness also support
the idea of increased productivity as permafrost thaws
(Figure 2b), as do several other studies that show NDVI is
positively correlated with both Reco and GPP [Boelman et al.,
2003; La Puma et al., 2007; Vourlitis et al., 2003].
[43] Ecosystem respiration also increased in areas of the

landscape with greater roughness during the GS of both
years (Figures 3 and 5b) because of greater temperature and
moisture associated with greater ALD (Figure 2a) [Lee et al.,
2011; Vogel et al., 2009]. More organic C is exposed to
above freezing temperatures as ALD increases. These abi-
otic changes stimulate decomposition and nitrogen miner-
alization, which result in increased heterotrophic respiration
[Shaver et al., 1992]. Vogel et al. [2009] found that as sub-
sidence increased, ALD increased and, in conjunction, both
GPP and Reco increased. These results are consistent with a
large body of work showing that temperature and moisture
are often the major determinates of organic matter decom-
position and ecosystem respiration [Davidson and Janssens,
2006; Davidson et al., 1998; Hobbie et al., 2000; Oberbauer
et al., 1991; Shaver et al., 1992; Xu and Qi, 2001]. There is
also increased autotrophic respiration from more highly
productive plants in subsided areas contributing to the
overall increase in Reco during the GS [Schuur et al., 2007;
Vogel et al., 2009].
[44] In contrast to the GS, areas with increased roughness

had lower C emissions during the winter (Figures 3 and 5b).
Even though areas with less roughness had higher Reco

during winter, the overall C emission throughout 2008 and
2009 was still greater from areas with highest roughness.
The reversal of the relationship of roughness and Reco during
the winter is opposite previous work at the site that estimated
more subsided areas have greater C emissions [Vogel et al.,
2009]. They attributed greater winter C flux from subsided
areas to warmer soils resulting from delayed active layer
refreezing and the added insulation from snow accumulating
in subsided areas, but data in the critical winter months was
admittedly scarce [Hinkel and Hurd, 2006; Vogel et al.,
2009]. The inconsistency of our data may be due to differ-
ential diffusion through variations in snow cover trapped in
subsided areas. The coefficient of variation of the top GAM
was also very low, only 0.16 and 0.22 during winter of 2008
and 2009, respectively. Overall, there was little variation in
winter C flux (throughout space or time) and we believe
more measurements are needed before our winter pattern can
be fully supported. More winter data is also crucial for
determining the ecosystem’s annual C balance and its feed-
back to climate change.

5. Conclusions

[45] We estimated the C balance of a heterogeneous
landscape undergoing permafrost thaw by incorporating
spatial variation into an eddy covariance estimate. We found
strong relationships between thaw induced ground subsi-
dence and ALD and NDVI, which both correlate with C
flux. These microtopographical changes also strongly cor-
related with NEE. By using GAMs, we incorporated these
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spatial relationships back into final EC C balance estimates
during gap filling. Thus, we achieved a more accurate C
estimate for the heterogeneous landscape and could make
predictions for areas undergoing various degrees of perma-
frost thaw. Using GAMs, we were better able to predict C
exchange during seasonal transitions, which indicates this
type of gap-filling strategy would be good in systems with
high temporal variability. Because all natural ecosystems
vary through space and time, we believe GAMs can be an
important tool for achieving more accurate C estimates. The
use of GAMs will also allow EC towers to be placed in more
heterogeneous environments than they have been previously
used.
[46] As permafrost thaws within this upland tundra eco-

system, a heterogeneous environment is created by changes
in microtopography. We found this ecosystem was a C sink
during 2 consecutive years, and areas with greater thaw
exhibited greater C sequestration (GPP) and greater C loss
(Reco). Thawing of permafrost increases the amplitude of the
C cycle, which has important implications for the future
landscape-level C balance [Zimov et al., 1996]. Currently,
GPP is stimulated more than Reco, but this balance may shift
because we found that NDVI diminished with increased
permafrost thaw indicating there may be an upper limit in
productivity, unless successional changes in vegetation
occur.
[47] Although we found the ecosystem was a C sink during

the measurement campaigns of both years, this is not repre-
sentative of the annual C balance. We did not measure C flux
during a portion of the winter season, and even though C
fluxes during this time period are relatively low, the length of
the season make it very important. By linearly extrapolating
between these missing winter periods, we found that annually
the ecosystem became a C source of 60 g C m�2 yr�1 and
13 g C m�2 yr�1 in 2008 and 2009, respectively.
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