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a b s t r a c t

Most organic carbon (C) in soils eventually turns into CO2 after passing through microbial metabolic
pathways, while providing cells with energy and biosynthetic precursors. Therefore, detailed insight into
these metabolic processes may help elucidate mechanisms of soil C cycling processes. Here, we describe
a modeling approach to quantify the C flux through metabolic pathways by adding 1-13C and 2,3-13C
pyruvate and 1-13C and U-13C glucose as metabolic tracers to intact soil microbial communities. The
model calculates, assuming steady-state conditions and glucose as the only substrate, the reaction rates
through glycolysis, Krebs cycle, pentose phosphate pathway, anaplerotic activity through pyruvate
carboxylase, and various biosynthesis reactions. The model assumes a known and constant microbial
proportional precursor demand, estimated from literature data. The model is parameterized with
experimentally determined ratios of 13CO2 production from pyruvate and glucose isotopologue pairs.
Model sensitivity analysis shows that metabolic flux patterns are especially responsive to changes in
experimentally determined 13CO2 ratios from pyruvate and glucose. Calculated fluxes are far less
sensitive to assumptions concerning microbial chemical and community composition. The calculated
metabolic flux pattern for a young volcanic soil indicates significant pentose phosphate pathway activity
in excess of pentose precursor demand and significant anaplerotic activity. These C flux patterns can be
used to calculate C use efficiency, energy production and consumption for growth and maintenance
purposes, substrate consumption, nitrogen demand, oxygen consumption, and microbial C isotope
composition. The metabolic labeling and modeling methods may improve our ability to study the
biochemistry and ecophysiology of intact and undisturbed soil microbial communities.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most plant-derived carbon (C) is lost as CO2 or ends up as
stable soil organic matter after passing through microbial meta-
bolic pathways. Heterotrophic soil microbes utilize organic-C
substrates for energy production and biosynthesis. The partition-
ing of substrate between energy production and biosynthesis (C
Use Efficiency e CUE) has consequences for soil respiration and
soil C storage (Allison et al., 2010; Davidson and Janssens, 2006;
Manzoni and Porporato, 2009; Six et al., 2006), but is difficult to
.

All rights reserved.
determine in the spatially and temporally complex environment of
soils (Frey et al., 2001; Herron et al., 2009; Thiet et al., 2006). Here,
we present a new approach to determine aspects of energy
production, biosynthesis, CUE, and biochemical regulation of C
transformations using a model of soil microbial metabolic
processes. This paper combines the technique of position-specific
13C-labeled metabolic tracer labeling (Dijkstra et al., 2011) with
a metabolic model of C processes. This model can be further
developed, experimentally tested, and used to elucidate relation-
ships between microbial ecophysiology and C cycling processes in
soils.

In a previous paper, we used parallel incubations of soil amen-
dedwith small amounts of position-specific 13C-labeled pyruvate to
evaluate the relative activity of glycolysis and Krebs cycle in soil
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microbial communities (Dijkstra et al., 2011). However, because of
the complexity of themetabolic system, it is essential to usemodels
to achieve a quantitative interpretation of these results. Metabolic
networks are routinely modeled for industrially important micro-
bial species and increasingly used to study biochemistry and
physiology in plant and animal species (e.g., Fernie et al., 2005;
Kruger and Ratcliffe, 2009; Stephanopoulos, 1999; Wiechert et al.,
2001; Zamboni and Sauer, 2009). These models determine the
probabilistic path of each C atom from substrate molecules into
microbial products, such as amino acids, lipids, and CO2. The par-
titioning of pyruvate-C (and other metabolic tracers) between
microbial products and CO2 is determined by the pattern of C flux
through the metabolic network, which is a function of microbial
demand for energy and biosynthesis, available substrates, and
environmental conditions.

A simple example illustrates the principle of these model
calculations: when substrate is used for the production of energy
but not for biosynthesis, C from all positions will be released as
CO2 in the same proportion as present in the substrate. However,
when biosynthesis is active, some C atoms have a higher proba-
bility to end up in biosynthesis products, while others are more
likely to be released as CO2. Carbon in position 1 (C1) of pyruvate,
glycine and alanine are released as CO2 to a greater degree than C
in positions 2 and 3 (C2,3; Dijkstra et al., 2011; Fischer and
Kuzyakov, 2010; Kuzyakov, 1997; Näsholm et al., 2001). From the
differences in 13CO2 production of two position-specific 13C-
labeled metabolic tracer isotopologue pairs, we can model the
reactions of the C metabolic network.

The model described in this paper, derived from more complex
models (Quek et al., 2009; Suthers et al., 2007; Yang et al., 2005),
consists of three parts. The stoichiometric model describes net C
fluxes through metabolic pathways (Fig. 1, Appendix Table 1). The
atom mapping matrices (Zupke and Stephanopoulos, 1994)
describe how individual C atoms change position from substrate to
product for each reaction. Finally, the label identification vector is
Fig. 1. A simple model for metabolic processes in soil microbial communities. Flux rates (v
phosphate pathway details are given in a separate box. Abbreviations: G6P, glucose-6P; F1
citrate; aKG, a-ketoglutarate; OAA, oxaloacetate; RU5P, ribulose-5P; S7P, sedoheptulose-7P
a vector for each reaction that identifies which C atoms are 13C
labeled. The model calculates the steady-state 13CO2 production
from various position-specific 13C-labeled metabolic tracer iso-
topologues for a given C flux pattern. These modeled results are
then matched to experimentally determined 13CO2 production
ratios of the same metabolic tracers.

The use of position-specific 13C-labeled tracers in soil is
complicated by the presence of mineral and organic surfaces onto
which these compounds may sorb. For this reason, each metabolic
tracer is represented by a pair of isotopomers or isotopologues. By
calculating the ratio of 13CO2 production from two isotopologues of
the same metabolic tracer, effects of sorption and incomplete
uptake by microbial cells are canceled out, as both isotopologues
will be equally affected by these processes (Dijkstra et al., 2011). In
this paper, we demonstrate how combining two metabolic tracers,
glucose and pyruvate, each represented by a pair of isotopologues,
can be used to model the microbial metabolic system for a micro-
bial community in young volcanic soil (Selmants and Hart, 2008,
2010).

2. Materials and methods

2.1. Experimental procedures

Soil (0e10 cm depth, A-horizon; Typic Ustorthent) was collected
within a 5-m2 plot in piñon-juniper woodland on 19 and 29 July
2010 at a site near Sunset Crater (1905 m above sea level, 111� 250

2600 W; Flagstaff, AZ; MAT¼ 11 �C, MAP¼ 340 mmy�1). Soil was
developed from basaltic cinder deposited 930 y ago (Selmants and
Hart, 2008, 2010). Soil d13C value was �23.6&, while soil total C
concentration was 0.8% and soil total N concentration was 0.044%.
Gravimetric soil moisture content was between 2 and 4% on 19 July
and 7 and 8% on 29 July 2010.

Soil was sieved (2 mmmesh) and stored for at most four days at
4 �C in the dark. Once a day, 50 g aliquots were weighed into five
2ev21) are normalized to glucose uptake rate (v1, set at 100) on a molar basis. Pentose
,6P, fructose-1,6P2; GAP, glyceraldehyde-P; PYR, pyruvate; ACCO, acetyl-CoA; ICIT, iso-
; E4P, erythrose-4P. See also Appendix Table 1.
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specimen cups, soil moisture content adjusted to field capacity
(determined according to Haubensak et al., 2002), and incubated
overnight in airtight Mason jars (473 ml volume; Jarden Company,
Rye, NY, USA) at 20 �C in the dark. Soils were treatedwithmetabolic
tracers the next day. These five aliquots formed one experimental
replicate. Since we could analyze only one replicate per day, we
repeated this process eight times. To minimize any effects of soil
storage, we collected new soil from the same location after the first
four replicates. Any effects of soil storage and sampling date were
included in the experimental error.

Eighteen hours after start of the incubation, jars were opened
and headspace was refreshed. After closing, 10 ml of pure CO2
(d13C¼�6.8&) was added to the headspace and isotope compo-
sition of CO2 in each jar was determined 30 min thereafter by
sampling 10 ml of headspace atmosphere. The 10 ml headspace
sample was injected into a Tedlar air-sample bag (Zefon Interna-
tional, Ocala, FL, USA) and qualitatively diluted with CO2-free air.
The initial injection with pure CO2 was carried out to satisfy the
requirement of the Picarro G1101-i CO2 cavity ring-down isotope
spectrometer (Picarro Inc., Sunnyvale, CA, USA) for a CO2 concen-
tration between 300 and 2000 mmolmol�1, while subsequent
dilution with CO2-free air was done to generate enough volume to
enable 10 min analysis per sample. We determined the CO2

concentration of the initial headspace atmosphere using a LICOR
6262 (Licor Inc., Lincoln, NE, USA).

Following the initial headspace measurement, 2 ml of
a 3.6 mmol l�1 position-specific 1-13C or 2,3-13C-labeled sodium
pyruvate solution or 2 ml of a 1.8 mmol l�1 1-13C or U-13C glucose
solutionwas injected through a septum onto the surface of the soil.
Control soil received a similar amount of unlabeled glucose (first
four replicates) or pyruvate (second four replicates). Pyruvate and
glucose isotopologues were 99 atom% 13C-enriched at the indicated
C positions (Cambridge Isotope Laboratories, Andover, MA, USA).
All jars received 0.43 mmol tracer-C per g soil. Isotope composition
of CO2 was determined 10, 20, 40, 60, and 120 min after tracer
addition. The 13CO2 production from metabolic tracers was calcu-
lated from the 13CO2 produced from the soil with metabolic tracer
corrected for 13CO2 produced from control soil. Jars were not
opened between measurements.

We calculated the ratios of position-specific 13CO2 production
from the two isotopologues for each metabolic tracer, as

C1=C2;3 ratio ¼
13CO2 production from1� 13Cpyruvate

13CO2 production from2;3� 13Cpyruvate
: (1)

Similarly,

CU=C1 ratio ¼
13CO2 production from U� 13C glucose
13CO2 production from 1� 13C glucose

: (2)

Soil respiration rates were determined separately on soil in
Mason jars without CO2 injection. Jars were opened and headspace
atmosphere was refreshed. Two hours later, an initial headspace
sample was analyzed for CO2 concentration with the LICOR 6262.
This measurement was repeated 24 h later.
2.2. Modeling metabolic flux networks

The metabolic model used to determine C flux patterns over the
various biochemical pathways consisted of three interacting parts:
a stoichiometric model that contained all the C transformations in
the network, atom mapping matrices that described how C atoms
change from product to substrates in each reaction, and a label
identification vector that contained information on which C atoms
were 13C labeled. The three model elements together predict where
specific 13C-labeled C atoms from metabolic tracers are released as
CO2 or incorporated into biomass.

2.2.1. Stoichiometric model
The stoichiometric network (Fig. 1, Appendix Table 1 for model

equations), constructed in Excel, described the steady-state parti-
tioning of glucose across the reactions of glycolysis, pentose
phosphate pathway, and Krebs cycle. Pyruvate carboxylase was
considered the main anaplerotic reaction (v9), balancing the
consumption of precursors from Krebs cycle pools for the purpose
of biosynthesis (v19, v20). The pentose phosphate pathway
produced pentoses for nucleotide synthesis, but also allowed C to
flow back to glycolysis. This metabolic pathway helped satisfy the
cell’s demand for NADPH. Several reactions and metabolite pools
were lumped, for example dihydroxyacetone-P, glyceraldehyde-P,
phosphoglycerate, and phosphoenolpyruvate with glyceraldehyde-
P. Fluxes (v1ev21) were assumed to be greater or equal to zero (in
the direction of the arrows). Pool sizes were considered small
relative to flux rates. Fluxes going into and out of metabolite pools
added up to zero (to meet the assumption of steady state for
metabolite pools; this assumption was not made for the much
larger biomass pools). The reaction network included eight biomass
reactions (v14ev21).Carbon dioxide was produced by 6-phopho-
gluconate dehydrogenase, pyruvate dehydrogenase, isocitrate
dehydrogenase and a-ketoglutarate dehydrogenase, the dominant
decarboxylating reactions, while that from other processes such as
amino acid synthesis was ignored. Carbon dioxide used in the
anaplerotic reaction was assumed to be unlabeled. We also
assumed that glucose was the only C substrate utilized bymicrobial
cells. This metabolic model consisted of 21 reactions (including the
reactions of the pentose phosphate pathwaye Fig. 1). The reactions
of the non-oxidative branch of the pentose phosphate pathway
were fully dependent on v11 (Fig. 1 insert), reducing themodel to 19
variables. Each node generates one equation assuming input equals
output. This creates a set of 9 equations with 19 unknowns. To solve
these equations, we estimated values for 10 unknown variables. By
expressing all rates relative to v1 (glucose uptake rate set at 100%),
the number of unknowns was reduced to nine (Appendix Table 2).
Seven unknowns were estimated by assuming a known chemical
composition, while the remaining two unknowns were derived
from experimentally determined metabolic tracer ratios (eqs. (1)
and (2)). We used v10 and v14 as the two remaining unknown
reactions rates (Appendix Table 2), but other variable combinations
can be used instead.

2.2.2. Atom mapping matrices
In order to trace individual C atoms across the metabolic

network, we used atom mapping matrices (AMM; Zupke and
Stephanopoulos, 1994). These matrices described for each reac-
tion how individual C atoms were transferred from substrate to
product. The AMMs were m� n matrices with n equal to the
number of C atoms in the substrate (rows in AMM) and m the
number of C atoms in the product (columns in AMM). For example,
the atom mapping matrices for the reaction (v10)
G6P/ RU5Pþ CO2 were:

½G6P/RU5P� ¼

2
66664

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3
77775
; (3)

and

½G6P/CO2� ¼ ½1 0 0 0 0 0 �: (4)
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These matrices indicated that C1 of G6P was released as CO2; C2
of G6P ended up in position 1 of RU5P; etc. The atom mapping
matrices for other reactions were given in Appendix Table 1.

2.2.3. Label identification vector
The label identification vector identified the 13C-labeled atoms

in reaction substrates and products. For example, glucose labeled in
positions 1 and 6 is represented as:

1;6� 13C glucose ¼

2
6666664

1
0
0
0
0
1

3
7777775
: (5)

For each reaction, the flux rate was multiplied with AMM and
the label identification vector of the substrate, thus generating
a new label identification vector for the reaction product, which
was used in the next reaction. Equation (6) calculates how 13C was
transferred from G6P to RU5P in reaction v10 (with v10 as the rate of
the reaction), as follows:

v10 �

2
66664

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3
77775
�

2
6666664

1
0
0
0
0
1

3
7777775

¼

2
66664

0
0
0
0
v10

3
77775
: (6)

In this example, 13C located in C6 of 1,6-13C G6P ends up in C5 of
RU5P. Similarly, the 13C located in C1 of 1,6-13C G6P is transferred to
CO2 with a rate calculated as:

v10 � ½1 0 0 0 0 0 � �

2
6666664

1
0
0
0
0
1

3
7777775

¼ ½v10�: (7)

The end-result of the calculation was used as the label identi-
fication vector for the next reaction, taking into account multiple
sources and total flux rates. For F1,6P, produced from 1,6-13C G6P
via pentose phosphate pathway shunt at a rate of v12þ v13, and via
glycolysis at a rate of v2, this calculation is as follows:

0
BBBBBB@

2
6666664

0
0
0
0
0
v12

3
7777775
þ

2
6666664

0
0
0
0
0
v13

3
7777775
þ

2
6666664

v2
0
0
0
0
v2

3
7777775

1
CCCCCCA
Oðv12 þ v13 þ v2Þ

¼

2
6666666664

v2
v12 þ v13 þ v2

0
0
0
0

v12 þ v13 þ v2
v12 þ v13 þ v2

3
7777777775

¼

2
66666664

v2
v12 þ v13 þ v2

0
0
0
0
1

3
77777775
: (8)

Because oxaloacetate was produced and consumed by cyclic
reactions, we used twelve spin-up calculations to arrive at the
steady-state labeling pattern. These spin-up calculations repre-
sented twelve runs through the Krebs cycle under constant labeling
and asymptotically approached the stable partial enrichment
values to within 1% (data not shown).
In this paper, we used 1-13C and 2,3-13C pyruvate and 1-13C and
U-13C glucose as metabolic tracer pairs. These compounds had the
following label identification vectors:

2
4
1
0
0

3
5;

2
4
0
1
1

3
5;

2
6666664

1
0
0
0
0
0

3
7777775

and

2
6666664

1
1
1
1
1
1

3
7777775
:

2.2.4. Solving model equations
To constrain the model, we used the proportional precursor

demand of the soil microbial community as input variables. The
proportional precursor demand was the relative requirement for
metabolic precursors feeding biosynthesis reactions v14ev21. The
precursor demand was a function of the chemical composition of
microbial cells, estimated from published values for fungi, gram-
positive and gram-negative bacteria, and scaled up to the micro-
bial community level using 1:1:1 as the relative abundance of these
groups of organisms. The assumption of a constant proportional
precursor demand was equal to assuming a constant biochemical
composition of the microbial cells. The proportional precursor
demand does not determine the rate of microbial growth in the
model.

The known and constant proportional precursor demand
reduced the stoichiometric model to a set of equations with two
unknowns, which were determined from experimentally deter-
mined ratios of position-specific 13CO2 production from the two
metabolic tracers (eqs. (1) and (2)). The model equations were
solved using ‘Solver’, a linear programming tool in Excel, by varying
v10 and v14 reactions rates until the 13CO2 production ratios (eqs. (1)
and (2)) calculated by the model matched those observed experi-
mentally, under condition that all fluxes were greater than or equal
to zero in the direction of the arrows. The reaction rates (v2ev21
normalized relative to v1), isotopologue ratios, flux partitioning
ratios, CUE, and energy production (Appendix Table 1) were
calculated by the model.

Flux partitioning ratios at major metabolic branch points were
calculated as follows:

F1 ¼ v2
v2 þ v10

; (9)

as flux partitioning between glycolysis and pentose phosphate
pathway.

F2 ¼ v21
v21 þ v11

; (10)

as flux partitioning between pentose biosynthesis and total pentose
phosphate pathway activity.

F3 ¼ v9
v9 þ v5

; (11)

as flux partitioning between pyruvate carboxylase and pyruvate
dehydrogenase.

CUE was calculated as

CUE ¼ 6� v1 �
P

CO2

6� v1
: (12)

ATP production was calculated using the flux rates and the
energy produced per reaction (Appendix Table 1), assuming that
NADPH and NADH produced 2.5 ATP and FADH2 equaled 1.5 ATP
(Nelson and Cox, 2008).



Fig. 2. Position-specific 13CO2 production (and standard errors; expressed in atom
percent excess) from pyruvate and glucose metabolic tracer isotopologues in a young
volcanic soil (n¼ 8).
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2.3. Sensitivity analysis

To evaluate the sensitivity of model to changes in proportional
precursor requirement, we changed the value of each variable
by þ10% or �10%. After changing the value for a single variable, we
then adjusted the reactions rates to match the observed 13CO2

production ratios from pyruvate and glucose, which for this
sensitivity analysis were set at 2.89 for C1/C2,3 of pyruvate and 2.59
for CU/C1 of glucose.
3. Results

3.1. Position-specific 13CO2 production

Position-specific 13CO2 production increased linearly between
0 and 120 min (Fig. 2). The 13CO2 production rate from 1-13C
pyruvate was greater than from 2,3-13C pyruvate, and greater
from U-13C glucose than from 1-13C glucose. The C1/C2,3 ratio of
13CO2 production from pyruvate was 4.4 (s.e.¼ 0.41; n¼ 8), while
CU/C1 ratio from glucose was 2.6 (s.e.¼ 0.06; n¼ 8). Ratios were
Table 1
Estimates of proportional precursor demand (expressed as a fraction of total precursor dem
species in in-vitro experiments. Differences between fungal species on the one hand and t
except for the requirement for G6P (P< 0.05). The metabolite pool of E4P was included

Species Category G6P F1,6P RU5P

Escherichia coli G� 0.016 0.005 0.096
Beijerinckia indica G� 0.016 0.006 0.101
Ralstonia metallidurans G� 0.030 0.008 0.072

Bacillus subtilis Gþ 0.059 0.070
Corynebacterium glutamicum Gþ 0.019 0.007 0.108
Bacillus clausii Gþ 0.063 0.037 0.052

Penicillium chrysogenum Fungus 0.087 0.023 0.081
Aspergillus oryzae Fungus 0.167 0.016 0.058
Saccharomyces cerevisiae Fungus 0.133 0.071

Abbreviations as in text and Fig. 1. References (1) Varma and Palsson, 1993; (2) Wu et al
Christiansen et al., 2002; (7) Henriksen et al., 1996; (8) Pedersen et al., 1999; (9) Gombe
determined from linear regression of position-specific 13CO2
concentration against time after metabolic tracer addition. Lowest
R2 value for the eight individual regressions was 0.98 (1-13C
pyruvate), 0.95 (2,3-13C pyruvate), and 0.99 (1-13C and U-13C
glucose). The theoretical expectation for 13CO2 production from
these tracers in the absence of biosynthesis was 0.5 for pyruvate
and 6.0 for glucose. The observed ratios were significantly
different from these theoretical expectations (P< 0.05), indicating
significant biosynthesis and C flux through the pentose phosphate
pathway.

3.2. Proportional precursor demand and model sensitivity

For a quantitative interpretation of the ratios of position-
dependent 13CO2 production, we developed a model that calcu-
lated these ratios as a function of C flux rates through the central
metabolic network (Fig. 1). This model contained information on
the proportional demand of microbial cells for biosynthetic
precursors (G6P, F1,6P, GAP, PYR, ACCO, aKG, OAA and RU5P).
We estimated proportional precursor demand for three categories
of microorganisms (fungi, gram-positive and gram-negative
bacteria) using nine studies in which microbial chemical
composition was determined (Table 1). These studies were all in-
vitro experiments and may thus be biased towards fast-growing
organisms and valid only for species that can be cultured.
Gram-positive and gram-negative bacteria were very similar in
their precursor requirements, while fungi had higher demand for
G6P (Fig. 3).

We evaluated the sensitivity of the model to changes in
proportional precursor demand by altering each value of v14ev21
by þ10% or �10% (Fig. 4A).Reaction v2 was most sensitive to
a change in input variables, exhibiting both positive (þ3.6%
increase in reaction rate when relative pyruvate precursor demand
was increased by 10%) and negative responses (�6.5%when relative
acetyl-CoA precursor demand was increased by 10%). However,
these changes were small compared to a 10% change in C1/C2,3 of
pyruvate and CU/C1 of glucose ratios (Fig. 4B). Neither of these
changes had a large effect on CUE and total ATP production
(between þ2% and �3% change).

3.3. Modeling metabolic flux patterns

The 21 model equations were solved with nine input variables.
Seven input variables were estimated assuming a constant
community proportional precursor demand from information in
Fig. 3 (fixing v15ev21 proportional to v14), assuming a microbial
and) to build bacterial and fungal biomass. Estimates were from studies using single
he gram-positive and gram-negative species on the other hand were not significant,
with Ru5P, and that of PGA was included with GAP.

GAP PEP PYR ACCO OAA aKG Reference

0.124 0.040 0.216 0.286 0.136 0.082 (1)
0.130 0.057 0.227 0.234 0.143 0.086 (2)
0.124 0.055 0.217 0.211 0.147 0.136 (3)

0.139 0.054 0.250 0.175 0.149 0.103 (4)
0.134 0.050 0.170 0.235 0.161 0.118 (5)
0.088 0.053 0.225 0.233 0.125 0.124 (6)

0.137 0.040 0.176 0.178 0.175 0.102 (7)
0.092 0.055 0.132 0.234 0.071 0.176 (8)
0.076 0.057 0.205 0.229 0.110 0.119 (9)

., 2005; (3) Ampe et al., 1997; (4) Dauner and Sauer, 2001; (5) Marx et al., 1996; (6)
rt et al., 2001.



Fig. 3. Proportional precursor demand for bacterial (gram-positive, gram-negative)
and fungal species (based on data in Table 1).
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composition of fungi: gram-positive bacteria:gram-negative
bacteria (F:Bþ:B�) ratio of 1:1:1. The remaining two unknowns
were estimated using the experimentally determined C1/C2,3

13CO2
production ratio of pyruvate and CU/C1 ratio of glucose. Standard
errors for modeled reaction rates were determined from the model
results for each of the eight replicates. All fluxes were significantly
different from zero (Fig. 5).

We determined the sensitivity of the model to community
composition by comparing above results with modeled outcomes
assuming contrasting community compositions: a bacteria-
dominated (F:Bþ:B� ratio of 1:4.5:4.5) and fungus-dominated
(F:Bþ:B� ratio of 8:1:1) community. Changes in overall propor-
tional precursor demand associated with changed microbial
community composition had only a modest effect on the individual
flux rates (Table 2). Most fluxes were unaffected by changes in
community composition, except for v3 and v4, which were signifi-
cantly lower for fungi-dominated communities. The significant
differences in biomass fluxes were the direct consequence of vari-
ation in input variables.
Fig. 4. Effects of 10% increases in proportional precursor demand for biosynthesis
reactions (v14ev21) on reaction rates (v2ev11; A), 10% increase in C1/C2,3 ratio of
pyruvate and CU/C1 ratio of glucose on reaction rates (% change relative to control;
v2ev11; B), and 10% increases of pyruvate and glucose ratios and relative precursor
demand on CUE and total ATP production (C). Some reactions of the pentose phosphate
pathway (v12ev13) are not shown.
3.4. Estimating CUE, F1, F2, F3, and ATP production

The following modeling results were obtained using an F:Bþ:B�

ratio of 1:1:1. Based on the C flux pattern observed for this soil, we
calculated CUE (0.72; s.e. 0.01). Carbon use efficiency was not
significantly affected by changing the community composition
(F:Bþ:B�¼ 8:1:1 and 1:4.5:4.5; Table 2). Flux partitioning ratios at
important branch points in the metabolic network were estimated
as F1¼0.67 (�0.04), F2¼ 0.19 (�0.01) and F3¼ 0.33 (�0.01). This
indicated that 67% of all glucose-C taken up entered the pentose
phosphate pathway, but only 19% of this was used for biosynthesis
and 81% cycled back to glycolysis (while producing NADPH).Com-
munity composition did not significantly affect these estimates
(data not shown).

Maximum ATP yield for 1 mol of glucose without biosynthesis
was 3200 mol ATP per 100 mol glucose (Nelson and Cox, 2008). ATP
production for this microbial community was 1080 mol ATP per
100 mol of glucose (�34) for the 1:1:1¼ F:B�:Bþ community. The
energy production was slightly higher for bacteria (1088� 34 mol
ATP) than fungi-dominated communities (1040� 34 mol ATP).
4. Discussion

Metabolic flux modeling is commonly applied to industrially
important microbial strains and contributes to optimizing
production of desirable products such as amino acids and anti-
biotics (e.g., Stephanopoulos, 1999). Although this is likely not
a goal for research on soils, a more complete understanding of soil
biochemical processes may increase our understanding of the
relationships between soil activity and microbial cell physiology
and improve our ability to predict the effects of perturbations
such as global climate change on soil CO2 production and
potential C sequestration. The paradigm of C and N control over
soil activity (e.g., Allen and Schlesinger, 2004; Dijkstra et al.,
2008; Hart et al., 1994) suggests that important changes in
microbial physiology should occur when C or N becomes limiting.



Fig. 5. Modeled rates (and standard error) for metabolic C fluxes in a young volcanic soil. Model assumes a F:Bþ:B� ratio of 1:1:1.
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These changes should be detectable using experimental and
modeling approaches described in this paper. Similarly, CUE and
partitioning of substrate-C over maintenance and growth
processes are essential concepts widely used in soil and
ecosystem models (Allison et al., 2010; Manzoni and Porporato,
2009). We can use this technique to determine these variables
experimentally, without changing substrate availability. This
could substantially aid in understanding soil processes. Changes
in soil moisture content and C availability resulted in altered
C1/C2,3 ratios for pyruvate and relative Krebs cycle activity
(Dijkstra et al., 2011), as also noted for individual microbial
species (Chen et al., 2009; Hua and Shimizu, 1999; Rühl et al.,
2010). Similarities between biochemical response to environ-
mental changes for single species and complex communities will
increase our confidence in this analysis.

It is entirely possible that measurements of the details of soil
metabolic systems will reveal little useful information. The soil is
Table 2
Flux distributions (% relative to glucose uptake) and CUE for three hypothetical microbi
8:1:1, and 1:4.5:4.5. Abbreviations as in Fig. 1.

Flux Community composition P B

1:1:1 1:4.5:4.5 8:1:1

v1 100 100 100 ns v
v2 33.9 34.4 31.0 ns v
v3 131.2 132.7 124.2 <0.05 v
v4 124.7 125.8 119.2 <0.05 v
v5 64.4 64.9 61.9 ns v
v6 33.0 33.0 32.9 ns v
v7 33.0 33.0 32.9 ns v
v8 19.1 19.3 18.5 ns v
v9 32.8 32.9 32.3 ns
v10 61.7 62.0 60.3 ns C
v11 49.8 49.9 49.6 ns
v13 33.2 33.2 33.1 ns
a relatively stable and buffered environment with respect to
temperature and moisture, and changes in metabolic flux patterns
may be rare or occur only in response to extreme perturbations. On
the other hand, it is also possible that changes in metabolic flux
patterns occur so rapidly and frequently that interpretation
becomes meaningless. For example, Rühl et al. (2010) observed
changes in flux patterns within 11 h accompanying a transition
from C-excess to C-limited growth in a Bacillus subtilis culture.
Future research will have to reveal whether persistent differences
in microbial C flux patterns can be detected.

We have shown here that the measurement of C flux patterns in
soil communities provides detailed information on metabolic
reaction rates, which can be used to determine CUE, energy
production for maintenance and growth processes, and be related
to community-level measurements of soil respiration, oxygen
consumption, and N mineralization. We are optimistic that this
information will prove useful to soil scientists.
al communities with fungal:gram-positive bacteria:gram-negative bacteria¼ 1:1:1,

iomass flux Community composition P

1:1:1 1:4.5:4.5 8:1:1

14 4.4 3.6 8.7 <0.05
15 1.4 1.3 2.0 <0.05
16 23.1 23.4 21.5 <0.05
17 27.6 28.1 25.1 <0.05
18 31.4 31.9 29.0 <0.05
19 13.8 13.7 14.5 ns
20 19.0 19.2 17.8 <0.05
21 11.9 12.2 10.7 <0.05

UE 0.72 0.72 0.73 ns
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4.1. Model assumptions

As most models, there are multiple assumptions in this model.
The model assumes that glucose is the main microbial C source.
Glucose and other carbohydrates are likely the dominant C
substrates in surface soils, and derived from cellulose, hemi-
cellulose, and starches. Glucose may not be the dominant
substrate for microbes living deeper in the soil or in specialized
niches where microbes decompose lignin or older soil organic
matter into low molecular weight compounds such as acetate
and succinate (Ornston and Stanier, 1966). Glucose may also not
be the dominant C source in the rhizosphere where large
amounts of organic acids are released (Dennis et al., 2010; Jones,
1998; Jones et al., 2003). Furthermore, anaerobic sites likely
induce fermentation, producing compounds such as ethanol and
lactate (Plassard and Fransson, 2009) that may be used as
substrate in nearby aerobic sites. These compounds will rear-
range the metabolic flux patterns and thereby influence the fate
of the glucose and pyruvate tracers. For example, Schilling et al.
(2007) found that glutamate utilization caused significant alter-
ations of C fluxes over metabolic pathways. Similarly, Dijkstra
et al. (2011) observed a strong reduction of 13CO2 production
from 1-13C and 2,3-13C pyruvate when succinate was added to
soil. For these specialized niches, alternative models need to be
developed.

We conclude that differences in chemical composition associ-
ated with microbial community composition have only a small
effect on C flux patterns (Figs. 3 and 4; Table 2). However, the
estimates of chemical composition were derived from in-vitro
studies. It is clear that more information on the chemical
composition and precursor demand is needed for microbes living
in soils. For example, protein and RNA content increase at higher
growth rates for some microbial species (Dauner and Sauer, 2001;
Gombert et al., 2001), although not for Escherichia coli (Carlson
and Srienc, 2004; Pramanik and Keasling, 1997). One way to
determine the proportional precursor demand directly is to solve
the model using a sufficiently large number of metabolic tracers.
Our conclusion that microbial chemical and community compo-
sition does not change the model output much should not be
interpreted to mean that community composition is not important
for C flux patterns. A change in community composition can bring
with it new metabolic capabilities that may alter substrate avail-
ability and utilization and potentially lead to large changes in
metabolic flux patterns.

Themodel output variables showed onlymoderate sensitivity to
changes in the proportional precursor demand, but high sensitivity
to changes in C1/C2,3 ratio of pyruvate and CU/C1 ratio of glucose
(Fig. 4). These results are encouraging, as they confirm that
chemical composition of the microbes has limited influence, as also
demonstrated by altering the F:Bþ:B� ratios.

The model calculates the ‘average community metabolic C flux
pattern’. This C flux pattern is dominated by the most active and
abundant species. Some of the less abundant species may exhibit
different metabolic patterns, for example reductive or reverse
Krebs cycle activity in certain autotrophic microbes (e.g.,
Buchannan and Arnon, 1990; Hügler et al., 2005), non-cyclic (or
split) Krebs ‘cycles’ as in some primitive microbes and under
anaerobic conditions (Meléndez-Hevia et al., 2008), and glyoxylate
pathway and gluconeogenesis that may be activated when lipids or
waxes are utilized (Gerstmeir et al., 2003). Although these alter-
native metabolic patterns are currently likely below the detection
limit in bulk soil, theymay be revealed whenmicrosites are studied
in isolation.
By comparing community flux patterns with flux patterns
obtained for single species, we may gain some confidence that
patterns observed in soil have biochemical relevance. For
example, F1 (C partitioning over pentose phosphate pathway
and glycolysis) in pure culture experiments ranged from 0.06 for
Saccharomyces cerevisiae (Nissen et al., 1997) to 0.85 for Phaffia
rhodozyma (Cannizzaro et al., 2004). We observed that in this
soil almost 65% of C passes through the pentose phosphate
pathway (F1), well within the range of values for single species.
In general, higher values were obtained for aerobic than anaer-
obic conditions for single species (S. cerevisiae, Torulopsis glab-
rata, Geobacillus thermoglucosidasius, and Corynebacterium
glutamicum; Gombert et al., 2001; Hua et al., 1999; Hua and
Shimizu, 1999; Tang et al., 2007). A lower pentose phosphate
pathway activity was observed for a microbial community in
anaerobic soil compared with a nearby aerobic soil (T. Spada
and P. Dijkstra, unpublished data). Likewise, the values we
observed for F2 and F3 were within observed ranges for in-vitro
experiments (e.g., F2 is 0.09e0.12 e Gombert et al., 2001 to
0.32e0.34 e Schilling et al., 2007; F3 is 0.12e0.28 e Schilling
et al., 2007 to 0.74 e Nissen et al., 1997). Finally, CUE calcu-
lated using this model falls within the range of estimates by
other researchers (0.32e0.77; Frey et al., 2001; Thiet et al., 2006
and references cited herein). We conclude, as did Thiet et al.
(2006) and Six et al. (2006), that CUE does not vary with F:B
ratio (Table 2). In contrast, CUE is affected by temperature
(Allison et al., 2010; Steinweg et al., 2008), although this effect
may be confounded with C availability (López-Urrutia and
Morán, 2007; Manzoni et al., 2008, 2010). Carbon use effi-
ciency is also negatively correlated with C:N ratio in litter
(Manzoni et al., 2010), and is affected by grazing by protozoa
(Frey et al., 2001), soil moisture content (Herron et al., 2009),
glucose addition (Bremer and Kuikman, 1994; Shen and Bartha,
1996), C availability (Hart et al., 1994), and oxygen concentra-
tion (Parsons and Smith, 1989).

It is important to point out that additional position-specific
13C-labeled metabolic tracer isotopologue pairs can be used to
validate the model or guide further development. In fact, this
model is already an improvement over a simpler model in which
the pentose phosphate pathway is used for biosynthesis only
without any recycling of C back to glycolysis (characterized as
v21¼ v10; v11, v12, v13¼ 0). The ratio of CU/C1 from glucose is
greater than or equal to 6 when the pentose pathway shunt is
inactive. C recycling via the pentose phosphate shunt is real
because the actual measured value of CU/C1 from glucose was 2.61,
significantly smaller than 6. Similarly, using additional tracer pairs,
other aspects of the microbial metabolic network may be tested
and improved.
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Appendix
Appendix Table 1
Reaction stoichiometry, atommappingmatrices (following notation ofWiechert et al., 1997) and energy production. Inmany cases, the reaction is a sum over various reactions.
For example, v10 represents the stoichiometry of three reactions: glucose-6P dehydrogenase, lactonase, and 6-phosphogluconate dehydrogenase. Biomass reactions (v14ev21)
are not listed.

# Reaction AMMa Energy production

v1 Glucose/ glucose-6P abcdef/ abcdef �1 ATP
v2 Glucose-6P/ fructose-6P abcdef/ abcdef
v3 Fructose-6P/ 2 glyceraldehyde-3P abcdef/ cbaþ def �1 ATP
v4 Glyceraldehyde-3P/ pyruvate abc/ abc þ1 NADHþ 2 ATP
v5 Pyruvate/ acetyl-CoAþ CO2 abc/ bcþ a þ1 NADH
v6 Acetyl-CoAþ oxaloacetate/ isocitrate abþABCD/ abABCD
v7 Isocitrate/ a-ketoglutarateþ CO2 abcdef/ abdefþ c þ1 NADPH
v8 a-Ketoglutarate/ oxaloacetate abcde/ abcdþ e þ2NADHþATPþ FADH2

v9 Pyruvateþ CO2/ oxaloacetate abcþA/ abcA �1 ATP
v10 Glucose-6P/ ribulose-5Pþ CO2 abcdef/ bcdefþ a þ2 NADPH
v11 2 Ribulose-5P/ seduheptulose-7Pþ glyceraldehyde-3P abcdeþABCDE/ ABabcdeþ CDE
v12 Seduheptulose-7Pþ glyceraldehyde-3P/ fructose-6Pþ erythrose-4P abcdefgþABC/ abcABCþ defg
v13 Ribuslose-5Pþ erythrose-4P/ fructose-6Pþ glyceraldehyde-3P abcdeþABCD/ abABCDþ cde

a Letters identify position of C atoms in substrates and products.

Appendix Table 2
Reactions rates (Fig. 1) expressed relative to v10 and v14. Coefficients (a1ea7) represent the proportional precursor demand relative to v14. The right column represents
equations using relative precursor demand for F:Bþ:B�¼ 1:1:1.

Reactions Reactions for F:Bþ:B�¼ 1:1:1

v1¼ 100 100
v2¼ v1� v10� v14 v1� v10� v14
v3¼ 2 (v1� (1/3)v10� (1þ a1þ (2/3)a7)v14)a 2 (v1� 0.33v10� 3.11v14)a

v4¼ 2v1� (1/3)v10� (2þ 2a1þ a2þ (5/3)a7)v14 2v1� 0.33v10� 12.31v14
v5¼ 2v1� (1/3)v10� (2þ 2a1þ a2þ a3þ a5þ a6þ (5/3)a7)v14 2v1� 0.33v10� 25.98v14
v6¼ 2v1� (1/3)v10� (2þ 2a1þ a2þ a3þ a4þ a5þ a6þ (5/3)a7)v14 2v1� 0.33v10� 32.96v14
v7¼ 2v1� (1/3)v10� (2þ 2a1þ a2þ a3þ a4þ a5þ a6þ (5/3)a7)v14 2v1� 0.33v10� 32.96v14
v8¼ 2v1� (1/3)v10� (2þ 2a1þ a2þ a3þ a4þ 2a5þ a6þ (5/3)a7)v14 2v1� 0.33v10� 36.07v14
v9¼ (a5þ a6)v14 7.38v14
v10¼ v10 v10
v11¼ v10� a7v14 v10� 2.68v14
v14¼ v14 1.00v14
v15¼ a1v14 0.32v14
v16¼ a2v14 5.20v14
v17¼ a3v14 6.20v14
v18¼ a4v14 7.07v14
v19¼ a5v14 3.11v14
v20¼ a6v14 4.27v14
v21¼ a7v14 2.68v14
a v3 is expressed in moles GAP relative to v1, and thus twice as much as flux of fructose coming out of the F1,6P pool.
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