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Abstract Global environmental changes are expected to

impact the abundance of plants and animals aboveground,

but comparably little is known about the responses of

belowground organisms. Using meta-analysis, we synthe-

sized results from over 75 manipulative experiments in

order to test for patterns in the effects of elevated CO2,

warming, and altered precipitation on the abundance of soil

biota related to taxonomy, body size, feeding habits, eco-

system type, local climate, treatment magnitude and

duration, and greenhouse CO2 enrichment. We found that

the positive effect size of elevated CO2 on the abundance

of soil biota diminished with time, whereas the negative

effect size of warming and positive effect size of precipi-

tation intensified with time. Trophic group, body size, and

experimental approaches best explained the responses of

soil biota to elevated CO2, whereas local climate and

ecosystem type best explained responses to warming

and altered precipitation. The abundance of microflora and

microfauna, and particularly detritivores, increased with

elevated CO2, indicative of microbial C limitation under

ambient CO2. However, the effects of CO2 were smaller in

field studies than in greenhouse studies and were not sig-

nificant for higher trophic levels. Effects of warming did

not depend on taxon or body size, but reduced abundances

were more likely to occur at the colder and drier sites.

Precipitation limited all taxa and trophic groups, particu-

larly in forest ecosystems. Our meta-analysis suggests that

the responses of soil biota to global change are predictable

and unique for each global change factor.

Keywords Soil organisms � Soil food webs � Trophic

structure � Body size � Elevated carbon dioxide �Warming �
Altered precipitation

Introduction

Rising atmospheric CO2 and climatic change are antici-

pated to alter the functioning and structure of terrestrial

ecosystems (Chapin et al. 1997), and this has triggered

extensive research into the consequences of these envi-

ronmental changes. The majority of experiments have

focused on plants and animals living aboveground (Har-

rington et al. 1999; Hughes 2000; Walther et al. 2002;

Badeck et al. 2004; Ainsworth and Long 2005; Parmesan

2006, 2007; Stiling and Cornelissen 2007; Lenoir et al.

2008; Wu et al. 2010). Comparably less is known on

responses of soil biota (Fierer et al. 2009). Soil biota

influence biogeochemical cycling and physical conditions,
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and their responses to global change are likely important at

the ecosystem scale (Brussaard et al. 1997; Lavelle et al.

1997; Bradford et al. 2002a).

Interactions between soil organisms are inherently

complex; both bottom–up and top–down forces are at play

(i.e., resource supply and predation, respectively; Scheu

2002), and these interact with climate and physical factors

such as available mineral surfaces (Wall et al. 2008). The

ultimate controls of belowground trophic structure are still

heavily debated (Scheu 2002; Wardle 2002). Most research

into soil biotic responses to global change has focused on

the microflora: bacteria and fungi (Zak et al. 2000;

Treseder 2004; de Graaff et al. 2006). Bacteria and fungi

make up most of the soil microbial biomass (Fierer et al.

2009), the turnover of which impacts nutrient cycling,

distribution, and availability to plants (Ingham et al. 1985;

Hunt et al. 1987; Verhoef and Brussaard 1990; Bardgett

and Chan 1999), and soil aggregate stability (Wright and

Upadhyaya 1998). Soil fauna at higher trophic levels, such

as protozoans, nematodes, mites, and springtails, influence

the activity and turnover of the microflora through grazing

(Clarholm 1989; Kuikman and Van Veen 1989; Rutherford

and Juma 1992; Hedlund and Öhrn 2000). Effects of global

change on these higher trophic levels of the soil food web

could have important consequences for C and nutrient

cycling in terrestrial ecosystems, both directly through

effects on population size and turnover of the microflora

(Woods et al. 1982; Griffiths 1986; Kuikman et al. 1989;

Wright et al. 1995) and indirectly through effects of fauna

on litter comminution, soil bioturbation, and soil structure

(van Vliet et al. 1995; Lavelle et al. 1997; Laakso et al.

2000; Bradford et al. 2002b; Meyer et al. 2010).

Given the complexity of the soil food web, are there any

general patterns of response to environmental change?

Some taxa may be more sensitive than others to particular

components of global change. Bacteria, enchytraeids,

nematodes, and protozoans dwell largely in water films

(Jones et al. 1969; Elliott et al. 1980; Vargas and Hattori

1986; Didden 1993; Hassink et al. 1993; Bouwman

and Zwart 1994; Savin et al. 2001), whereas fungi, mites,

and springtails dwell in inter-aggregate voids (Petersen and

Luxton 1982; Denef et al. 2001; Six et al. 2006) and tend to

prefer drier conditions (Hendrix et al. 1986; Cornejo et al.

1994). Bacteria and organisms that feed on them may be

less sensitive to climatic change than fungi because bac-

teria inside soil aggregates and other small pores (e.g.,

associated with clay particles) experience less extreme

fluctuations in microclimate (Bushby and Marshall 1977;

Hattori 1988; Denef et al. 2001). Other studies found that

habitable pore space was not important in explaining the

responses of bacteria and fungi to desiccation, because

predators can feed in the remaining water pockets (Savin

et al. 2001), bacteria and fungi have similar survival

strategies (West et al. 1992; Shi et al. 2002; Strickland and

Rousk 2010), and water eventually evaporates from both

small pores and large pores during drought events (Van

Gestel et al. 1996). Mites may be generally less sensitive

than springtails to high temperature and desiccation

(Hodkinson et al. 1994; Coulson et al. 1996). It is unknown

whether the varying ecological niches of taxa elicit dif-

ferent responses to global change. The importance of body

size in explaining the responses of soil biota to elevated

CO2 and warming is also unknown. Smaller organisms can

live in smaller pores that contain resources inaccessible to

larger organisms (Strong et al. 2004) and that are perhaps

more buffered from extreme temperatures. Body size cor-

relates strongly with metabolic rate, generation time,

population density, and food size (Peters 1983) and may

provide a useful functional classification of soil biota

(Verhoef and Brussaard 1990; Beare et al. 1995; Bradford

et al. 2002a).

A recent meta-analysis concluded that spatial variation

in soil microbial and faunal biomass is predictable across

biomes, with soil biota increasing with more NPP and soil

C, suggesting universal C limitation (Fierer et al. 2009).

CO2 enrichment, warming, and increased precipitation

often increase plant photosynthesis and NPP (Nijs and

Impens 1996; Rustad et al. 2001; Ainsworth and Long

2005; Barker et al. 2006; Del Grosso et al. 2008; Niu et al.

2008; Prieto et al. 2009; Gunderson et al. 2010; Wu et al.

2010) and are therefore likely to alleviate potential

resource limitations of soil microbial groups. Warming and

increased water availability can also directly stimulate soil

microbial activity (West et al. 1988, 1992; Zogg et al.

1997; Gulledge and Schimel 1998; Arnold et al. 1999;

Fierer and Schimel 2002). Warming can reduce soil

moisture by increasing evapotranspiration (Norby and Luo

2004; Dermody et al. 2007), and CO2 enrichment often

increases soil moisture due to decreased plant stomatal

conductance (Field et al. 1995; Drake et al. 1997; Morgan

et al. 2004; Ainsworth and Long 2005). Experimental

manipulations of CO2 concentration, warming, and pre-

cipitation therefore provide a means to test the effects of

multiple environmental constraints on belowground

communities.

Experimental evidence for responses of multiple trophic

levels of the soil food web to elevated CO2 is equivocal.

Elevated CO2 generally increases the total microbial bio-

mass (Zak et al. 2000; Allen and Schlesinger 2004; de

Graaff et al. 2006) and the abundance of mycorrhizal fungi

due to enhanced plant mutualism (Klironomos et al. 1996;

Staddon and Fitter 1998; Treseder 2004). For higher tro-

phic levels, responses to elevated CO2 vary. In a green-

house CO2 study of a grassland soil, CO2 effects were

larger for higher trophic levels (approximately ?30% for

herbivores and bacterivores, and ?110% for predators),
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possibly because higher trophic levels were regulated by

resource limitation, while lower levels remained limited by

predation (Yeates et al. 1997). In a field CO2 study of a

different grassland soil, elevated CO2 had no effect on the

abundance of herbivorous nematodes, the abundance of

grazers (i.e., protozoans, bacterivorous and fungivorous

nematodes, mites, and springtails), or total microbial bio-

mass, and there were fewer large predacious nematodes

possibly due to smaller soil aggregate size (Niklaus et al.

2003). Therefore, the effects of elevated CO2 on soil biota

may depend on trophic group and body size.

Effects of experimental warming and altered precipita-

tion on soil biota are also equivocal. In four heathland

ecosystems along a climatic gradient in Europe, experi-

mental warming tended to increase soil microbial biomass

at the coldest and wettest site (i.e., cold limitation), and

decrease soil microbial biomass at the warmest and driest

site (i.e., heat and water stress; Sowerby et al. 2005). In

some ecosystems, mites respond more strongly to warming

than springtails (Sjursen et al. 2005; Bokhorst et al. 2008);

in other ecosystems, springtails respond more strongly to

warming than mites (Convey et al. 2002; Sinclair 2002;

Haimi et al. 2005; Bokhorst et al. 2008), perhaps due to

dissimilar ecological requirements in different ecosystems.

Increasing precipitation resulted in fewer mites and more

springtails in a high arctic tundra (Coulson et al. 2000), and

the responses of soil fauna to increased and reduced pre-

cipitation are not necessarily symmetrical (Lindberg et al.

2002; Tsiafouli et al. 2005). Thus, there is evidence that the

effects of climatic change on soil biota depend on taxon-

omy, ecosystem type, local climate, and the direction of

precipitation change.

Here, we used meta-analysis to test whether there are

general patterns of response of soil biota to global envi-

ronmental change. The present analysis is based on a

classification of soil biota into broad taxonomic and

functional groups. This classification was chosen for two

reasons. First, as discussed above, taxonomic groups dif-

fer in ecological requirements and soil physical niches,

and may therefore differ in their response to global

change. Second, trophic dynamic theory (e.g., Hairston

et al. 1960; Scheu 2002) suggests that trophic levels differ

in limitations, and may therefore exhibit specific respon-

ses to global change that may propagate up or down the

food web.

Our first objective was to quantify the effects of CO2

enrichment, experimental warming, and altered precipita-

tion on the abundance of soil biota to determine whether

any global change factor was particularly influential. Our

second objective was to determine whether the responses

of soil biota to global change were correlative with tax-

onomy, body size, or trophic level. Our third objective was

to assess the importance of ecosystem type, local climate,

and experimental approach in explaining the responses of

soil biota to global change.

Materials and methods

Data collection

Inference from meta-analysis depends on selection criteria

(Hungate et al. 2009). Our meta-analysis includes over 150

measurements of the abundance or biomass of soil organ-

isms in longer-term experiments (i.e., [50 days) that

simulated an increase in atmospheric CO2 concentration in

the field or greenhouse (Online resource 1), an increase in

temperature in the field (i.e., ‘warming’; Online resource

2), and an increase or reduction in precipitation quantity in

the field (Online resource 3). To investigate more realistic

global changes, our data collection of warming and pre-

cipitation studies excluded laboratory experiments, which

tend to reflect responses to short-term changes in temper-

ature and moisture rather than a shift in climate, and

because laboratory studies use disturbed soil rather than

intact profiles. Greenhouse CO2 studies were included in

this analysis because simulating a realistic increase in

atmospheric CO2 concentration in plant–soil mesocosms is

achievable, more so than simulating diurnal and seasonal

variation in temperature and the quantity and frequency of

precipitation events. In addition, there are a large number

of greenhouse CO2 studies, and much time has been

invested in setting up these manipulations, and it is

unknown whether responses of soil biota in the greenhouse

approximately match field responses.

Abundance measurements (i.e., density) were used in

this meta-analysis whenever possible, but biomass mea-

surements were included as a surrogate for abundances

(Petersen and Luxton 1982), and henceforth ‘abundance’

refers to both abundance and biomass measurements.

Bacteria, protozoans, springtails, mites, enchytraeids,

nematodes, and macroarthropods were typically measured

as the number of individuals per unit area or per gram of

soil. Total microbial biomass was measured as

lg C g-1 soil while measurements of fungi varied (e.g.,

hyphal length, % colonization, spore count, PLFA biomass,

and relative gene abundance).

Treatment and control means, errors, and sample sizes

(n) were recorded for each measurement. Search engines

(Google Scholar and ISI Web of Knowledge) and cross-

referencing were used to find studies in the literature that

met these criteria. Search terms included global change,

climate change, elevated CO2, temperature, warming, or

precipitation and soil biota, belowground organisms,

microbial biomass, or taxon names. Taxa represented in the

literature with multiple replicates included bacteria
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(domain Bacteria), fungi (kingdom Fungi), protozoans

(kingdom Protista), springtails (subclass Collembola), mites

(subclass Acari), enchytraeids (family Enchytraeidae),

nematodes (phylum Nematoda), and macroarthropods

(phylum Arthropoda). Microbial biomass is commonly

assessed in global change experiments, and measurements

were included to primarily reflect abundances of bacteria and

fungi, because they account for up to 96% of belowground

heterotrophic biomass (Anderson and Domsch 1978; Van

Veen and Paul 1979; Fierer et al. 2009). Taxa were assigned

to body width classes according to the literature (Verhoef

and Brussaard 1990; Beare et al. 1995): microflora and

microfauna (1–100 lm wide: Bacteria, Fungi, Protozoa,

Nematoda, and total microbial biomass); mesofauna

(100 lm–2 mm wide: Acari, Collembola, and Enchytraei-

dae), and macrofauna (2–20 mm wide: macroarthropods).

To ensure some degree of independence between mea-

surements, if multiple species or trophic groups were

measured from a single taxon within a given study, then an

overall mean for the three most abundant species in the

taxon was calculated (if authors did not do so already). If a

taxon was measured more than once in the same experi-

ment (i.e., multiple sampling dates), then the measurement

with the longest treatment duration was included. If a taxon

was measured in multiple soil horizons, then the mea-

surement from the soil horizon with the highest population

density in the control treatment was included (e.g., organic

horizon microbial biomass in Bradford et al. 2008).

In order to minimize bias associated with land man-

agement (e.g., fertilization, tillage, and livestock grazing),

only manipulative experiments performed in natural or

relatively unmanaged soils were included in this meta-

analysis. Ecosystems were classified according to vegeta-

tion type and climate as boreal forest, coniferous forest

(temperate), deciduous forest (temperate), desert (hot),

grassland, heathland, shrubland, tropical forest, or tundra.

We included measurements from multiple sites in the same

study as long as treatments were replicated and that the

author(s) defined a distinct difference in geography (e.g.,

‘Anchorage Island’ and ‘Signy Island’), parent material

(e.g., ‘serpentine’ and ‘sandstone’), microclimate (e.g.,

‘wet’ and ‘dry’), or vegetation (e.g., ‘heathland’ and

‘tundra’).

Commonly reported categorical variables chosen to

possibly explain variation in global change effects included

the taxon and body width class of soil biota, and the type of

ecosystem sampled. Four continuous variables from each

study were also recorded: the mean annual temperature

(MAT) and mean annual precipitation (MAP) of study sites

where soils were collected, and the magnitude (CO2:

?ppmv above standardized ambient concentration of

370 ppmv; warming: temperature in �C; precipitation:

increase or reduction) and duration of treatments (in years).

Trophic level as a grouping variable

Because of the substantial number of CO2 and precipitation

studies that have measured multiple soil trophic groups

within a taxon (e.g., different nematode species that pri-

marily eat bacteria or fungi), the body of knowledge on

common feeding habits of different taxa of soil biota (e.g.,

Petersen and Luxton 1982; Yeates et al. 1993), and the

hypothesized influence of precipitation (Lensing and Wise

2006) and CO2 enrichment on soil food webs (Klironomos

et al. 1997; Yeates et al. 1997, 2003; Hoeksema et al. 2000;

Hungate et al. 2000; Neher et al. 2004; Sonnemann and

Wolters 2005; Drigo et al. 2008), we modified the dataset to a

form suited to test for common changes in trophic structure

among different taxa. A trophic group, or feeding group,

consists of biological species or taxa that depend on similar

prey or substrates, and that are assumed to be functionally

equivalent in the food web (Scheu 2002). Species that con-

sume detritus (detritivores), live plant roots (herbivores),

bacteria (bacterivores), fungi (fungivores), and soil fauna

(predators) were assigned to separate trophic groups.

There were no warming studies in our dataset in which

authors defined the feeding preferences of measured

organisms, but there were nine measurements of mites and

nematodes in CO2 enrichment studies with defined trophic

groups for different species (Klironomos et al. 1997;

Yeates et al. 1997; Hoeksema et al. 2000; Hungate et al.

2000; Niklaus et al. 2003; Neher et al. 2004; Sonnemann

and Wolters 2005) and six measurements of nematodes and

macroarthropods in precipitation studies (Freckman et al.

1987; Todd et al. 1999; Bakonyi and Nagy 2000; Lindberg

et al. 2002; Lindberg and Persson 2004). The dataset was

expanded to incorporate these means and errors for dif-

ferent trophic groups (Online resource 4; Online resource

5). When the feeding preference of a taxon was not defined

by the author(s), the measurement was either removed or

defined for the purpose of this meta-analysis based on

general patterns found in the literature. Bacteria, Fungi,

and microbial biomass were defined as detritivores,

Collembola were defined as primarily fungivores (Hunt

et al. 1987; Bardgett et al. 1993; Chen et al. 1996; Briones

et al. 1999), and Protozoa were defined as bacterivores

(Ingham et al. 1986; Hunt et al. 1987; Brussaard 1998).

Because of the more omnivorous feeding habits of Acari,

Enchytraeidae, Nematoda, and macroarthropods (Hunt

et al. 1987; Didden 1993; Yeates et al. 1993; Ponsard and

Arditi 2000), the authors must have defined a feeding group

for measurements of these taxa to be included in this

separate trophic meta-analysis. As a result, seven mea-

surements of Acari, Enchytraeidae, and Nematoda were

removed from the CO2 dataset, and 16 measurements of

Acari, Enchytraeidae, and Nematoda were removed from

the precipitation dataset.
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Effect size metric

We used the natural log of the response ratio (lnR) as a

metric of effect size (Treseder 2004; Jastrow et al. 2005; de

Graaff et al. 2006; Stiling and Cornelissen 2007; Wu et al.

2010), a metric that reflects a relative change in the

abundance of soil biota due to global change treatments:

lnR ¼ ln T=Cð Þ ð1Þ

where T is the treatment mean and C the control mean. If a

treatment increased the abundance of an organism (sig-

nificantly or not) then the effect size lnR was greater than

zero. If a treatment decreased the abundance of an organ-

ism, then lnR was less than zero. A reversal marker (-)

was used in the precipitation dataset to standardize for

effects of treatments that simulated a reduction in precip-

itation (i.e., control treatment became increased precipita-

tion treatment and reduced precipitation treatment became

control treatment). This effect size metric is not influenced

by differences in variance between studies (e.g., Hedges’ d)

and focuses on equilibrial responses based on state vari-

ables, rather than rate responses based on time (Osenberg

et al. 1997). However, Hedges’ d provided qualitatively

similar results (data not shown). The mean and variance of

lnR were calculated using MetaWin 2.1 software (Rosen-

berg et al. 2000) with sample size as the weighting

function.

Data analysis

Random-effect models were fitted for each treatment (CO2,

warming, and precipitation) by grouping variable combi-

nations. We tested a total of five categorical variables

(taxon, body size, trophic group, ecosystem type, and the

direction of precipitation change) and four continuous

variables (MAT, MAP, duration of treatment, and the

magnitude of CO2 and warming increase) using MetaWin

2.1 software. Because of the wide variation in manipula-

tions employed in precipitation treatments and their effi-

cacy (Weltzin et al. 2003), and thus the difficulty in

standardizing the magnitudes of different treatments, pre-

cipitation was tested as a categorical variable (i.e., increase

or decrease).

A random-effect model was chosen under the assump-

tion that there was no single true effect size for each

treatment and that there was random variation among

studies in a class, in addition to sampling variation

(Rosenberg et al. 2000). P(v2) was the probability value

from a Chi-square test and the reported P value was from

randomization tests with 999 iterations. The mean effect

sizes (±bootstrapped 95% confidence interval) of signifi-

cant grouping variables were compared to identify the

particular responses driving the overall treatment effects.

Results

Differences between global change factors

When averaged across all taxa and ecosystem types, soil

biota responded more strongly to altered precipitation

(lnR = 0.24 ± 0.17; 11–51% increase in abundances) than

to CO2 enrichment or warming (Fig. 1). Overall responses

to CO2 enrichment (lnR = 0.02 ± 0.07; 5% decrease to

9% increase in abundances) and warming (lnR =

-0.02 ± 0.12; 13% decrease to 11% increase in abun-

dances) were not significantly different from zero. There

was no correlation between sample size and effect size for

any of the global change factors, and the effect sizes for all

treatments followed a near-normal distribution (data not

shown).

Responses to elevated CO2

Responses of soil biota to elevated CO2 did not depend on

taxon or ecosystem type (Tables 1 and 2), and were not

significantly correlated with MAT, MAP, or the magnitude

of CO2 enrichment (Table 3). The effects of CO2 did

depend on body width size: microflora and microfauna

responded positively to elevated CO2 and the mesofauna

tended to respond negatively. The duration of CO2

enrichment was also a significant predictor of effect sizes.

The effects of elevated CO2 on soil biota were larger in

short-term experiments, with the switch from higher

Fig. 1 The mean effect size (±bootstrapped 95% CI) of CO2

enrichment (n = 68), warming (n = 54), and increasing precipitation

(n = 47) on the abundance of soil biota. Means and confidence

intervals include all taxa and ecosystem types; lnR = log of the

response ratio = ln (treatment mean/control mean); dotted line
indicates no response, lnR [ 0 indicates increased abundances, and

lnR \ 0 indicates decreased abundances; letters indicate significant

differences in Tukey’s HSD test; a reversal marker was used in

MetaWin 2.1 for precipitation studies (see explanation in ‘‘Materials

and methods’’)
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(lnR [ 0) to lower abundances (lnR \ 0) occurring after

3.7 years. Increased abundances across taxa were also

more likely to occur in greenhouse CO2 experiments

(n = 32; mean lnR and bootstrapped 95% CI = 0.11 and

-0.004 to 0.21, respectively) than in field CO2 experiments

(n = 36; mean lnR and bootstrapped 95% CI = -0.04 and

-0.11 to 0.02, respectively; P = 0.007 in random-effect

model). There was no correlation between CO2 effects and

treatment duration when field and greenhouse studies were

analyzed separately, indicating that experimental approach

was partly responsible for the overall correlation between

CO2 effects and treatment duration. Taxon, ecosystem

type, MAT, MAP, and treatment magnitude did not sig-

nificantly explain the effects of CO2 when field and

greenhouse studies were analyzed separately (data not

shown).

Responses to elevated CO2 also depended on trophic

group (Table 1). Elevated CO2 significantly increased the

abundance of detritivores but had no effect on the abun-

dances of herbivores, bacterivores, fungivores, or predators

(Table 2). When the trophic analysis of CO2 effects

included nematodes only (n = 34) and nematodes in field

studies only (n = 30), trophic group had no effect

(P = 0.63 and 0.69, respectively).

Responses to warming

Responses of soil biota to warming treatments did not

depend on taxon, body width class, or ecosystem type

(Table 1), and were best explained by MAT and MAP

(Table 3). Warming was more likely to decrease the

abundance of soil biota in soils collected from sites with a

lower MAT and lower MAP. The logarithmic regression

between MAP and responses to warming switched from

negative (lnR \ 0) to positive effect sizes (lnR [ 0) at

626 mm of precipitation year-1 (y = 0.41Ln(x) - 2.64;

r2 = 0.13; P = 0.002). There was a positive correlation

between MAT and MAP for the sites included in this

analysis (P = 0.008; r2 = 0.22). Responses of soil biota to

warming were not significantly explained by the magnitude

of temperature increase, but were negatively correlated

with treatment duration (Table 3). Negative effects of

warming were more likely to occur in longer-term

experiments.

Responses to altered precipitation

The positive effect of precipitation on the abundance of soil

biota was similar among taxa, body width classes, and

trophic groups, but differed between ecosystem types

(Table 1). Precipitation increased abundances of soil biota

across taxa in boreal forests, coniferous forests, and

deciduous forests, but had no effect in grassland, heathland,

Table 1 Results from random-effect models of the abundance of soil

biota in elevated CO2, warming, and altered precipitation studies with

the log of the response ratio (lnR) as the effect size and four cate-

gorical grouping variables: the taxon of soil biota, the body width

class of soil biota, the trophic group of soil biota, and the ecosystem

type

Model df Q QB/QT P (v2) P value

Elevated CO2

Taxon 7 16.05 0.08 0.021 0.49

Residual 60 195.65

Total 67 211.70

Body width class 1 15.14 0.05 0.0001 0.028*

Residual 66 263.62

Total 67 278.76

Trophic group 4 24.29 0.09 0.0004 0.041*

Residual 78 256.89

Total 82 281.18

Ecosystem type 4 1.03 0.004 0.90 0.98

Residual 63 235.02

Total 67 236.05

Warming

Taxon 6 7.36 0.06 0.29 0.71

Residual 47 107.68

Total 53 115.05

Body width class 1 0.0001 \0.01 0.99 0.99

Residual 52 137.78

Total 53 137.78

Ecosystem type 5 19.31 0.15 0.002 0.11

Residual 48 109.55

Total 53 128.86

Altered precipitation

Taxon 7 12.51 0.16 0.12 0.70

Residual 39 65.97

Total 46 78.48

Body width class 2 5.72 0.04 0.057 0.38

Residual 44 131.05

Total 46 136.78

Trophic group 3 8.70 0.11 0.032 0.22

Residual 31 72.86

Total 34 81.56

Ecosystem type 5 49.65 0.32 \0.001 0.008*

Residual 40 106.07

Total 45 155.72

The taxa were Acari, Arthropoda (macro), Bacteria, Collembola, En-
chytraeidae, Fungi, Nematoda, and Protozoa; the body width classes were
microflora/fauna (1–100 lm wide), mesofauna (100 lm–2 mm wide), and
macrofauna (2–20 mm wide); the trophic groups were detritivores, (root)
herbivores, bacterivores, fungivores, and predators; ecosystem types were
defined according to vegetation as boreal forest, (hot) desert, heathland,
grassland, shrubland, temperate coniferous forest, temperate deciduous
forest, tropical forest, or tundra; QBetween/QTotal (QB/QT) describes the
proportion of total variation explained by each variable; P(v2) is the
probability value for a v2 test and the P value is the probability value for
randomization tests with 999 iterations using MetaWin 2.1 and sample
size as the weighting function; see rationale in ‘‘Materials and methods’’
for not testing trophic group among warming studies

* Significant at an alpha level of 0.05
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or tundra ecosystems (Table 2). Effects of altered precip-

itation were invariant with MAP, but decreased with MAT

and increased with treatment duration (Table 3).

The direction of precipitation change was also an

important predictor of responses of soil biota to altered

precipitation. The largest effects of precipitation in forest

ecosystems occurred in drought treatments. In forest eco-

systems, effects of precipitation on the abundance of soil

biota were larger in drought studies (lnR bootstrapped 95%

CI = 0.67–1.43; mean = 1.06; n = 14) than in irrigation

studies (lnR = -0.03 to 0.31; mean = 0.15; n = 11;

P = 0.002 in random-effect model; QB/QT = 0.39). In

non-forest ecosystems, effects of precipitation were not

significantly different from zero, and were similar among

drought studies (lnR = -0.20 to 0.32; mean = 0.04;

n = 11) and irrigation studies (lnR = -0.23 to 0.12;

mean = -0.06; n = 11; P = 0.57 in random-effect

model).

Discussion

Biological and morphological differences among taxa

affect the spatial and temporal distribution of organisms in

the soil profile and within soil aggregates (Petersen and

Luxton 1982; Lavelle et al. 1997; Briones et al. 2007), but

Table 2 Mean responses (lnR) and bootstrapped 95% confidence intervals for the effects of elevated CO2, warming, and increasing precipi-

tation on the abundance of soil biota in different taxa, body width classes, trophic groups, and ecosystem types

Elevated CO2 Warming Altered precipitation

Variables n Mean Bootstrapped CI n Mean Bootstrapped CI n Mean Bootstrapped CI

Taxon

Acari 5 -0.20 -0.52 to 0.03 11 0.02 -0.49 to 0.48 10 0.22 -0.14 to 0.71

Arthropoda (macro) – – – – – – 3 0.41 -0.24 to 1.51

Bacteria 8 0.04 -0.06 to 0.15 5 -0.16 -0.38 to -0.02a 2 0.17 -0.05 to 0.40

Collembola 5 -0.15 -0.66 to 0.43 12 -0.16 -0.42 to 0.04 9 0.57 0.24 to 0.93a

Enchytraeidae 4 -0.14 -1.30 to 0.41 4 0.36 -0.40 to 1.15 4 0.90 0.06 to 1.74a

Fungi 18 0.05 -0.05 to 0.14 13 0.04 -0.16 to 0.25 4 0.25 0.08 to 0.47a

MB 14 0.11 0.03 to 0.20a 7 -0.03 -0.39 to 0.28 9 0.03 -0.31 to 0.41

Nematoda 12 0.01 -0.14 to 0.15 2 0.08 0.02 to 0.26a 6 0.37 -0.16 to 0.91

Protozoa 2 0.10 -0.07 to 0.22 – – – – – –

Body width class

Microflora/fauna 54 0.05 0.0008 to 0.11a 27 -0.02 -0.15 to 0.12 21 0.17 -0.02 to 0.41

Mesofauna 14 -0.14 -0.46 to 0.14 27 -0.02 -0.25 to 0.25 23 0.45 0.16 to 0.78a

Macrofauna – – – – – – 3 0.38 -0.24 to 1.51

Trophic group

Detritivore 40 0.06 0.01 to 0.11a – – – 15 0.12 -0.12 to 0.35

Herbivore 9 0.18 -0.13 to 0.40 – – – – – –

Bacterivore 12 0.06 -0.09 to 0.16 – – – 3 -0.07 -0.43 to 0.20

Fungivore 14 -0.10 -0.33 to 0.14 – – – 12 0.43 0.15 to 0.77a

Predator 8 0.27 -0.36 to 0.52 – – – 5 0.36 -0.09 to 0.97

Ecosystem type

Boreal forest – – – 9 -0.10 -0.40 to 0.23 11 0.48 0.13 to 0.94a

Coniferous forest 18 -0.01 -0.17 to 0.12 2 0.64 0.19 to 1.01a 9 1.04 0.60 to 1.46a

Deciduous forest 13 0.04 -0.16 to 0.19 4 -0.22 -0.62 to -0.03a 5 0.26 0.07 to 0.45a

Grassland 31 0.03 -0.05 to 0.12 13 0.15 -0.06 to 0.41 9 -0.01 -0.20 to 0.20

Heathland – – – 11 0.07 -0.14 to 0.27 8 -0.01 -0.37 to 0.43

Shrubland 4 0.05 -0.13 to 0.28 – – – – – –

Tropical forest 2 0.11 -0.41 to 0.47 – – – – – –

Tundra – – – 15 -0.20 -0.47 to 0.04 8 -0.01 -0.37 to 0.43

lnR = ln (treatment mean/control mean); n number of observations from studies; MB total microbial biomass; ‘-’ variable was untested because

fewer than two observations were available or there was insufficient information to assign a trophic group; a reversal marker was used in

MetaWin 2.1 for precipitation studies
a Bootstrapped 95% CI is significantly different from zero
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there was little evidence that these differences were related

to their responses to global environmental change.

Organisms of all taxa and body sizes were limited by

precipitation and showed no overall response to warming.

The exception, when body size did matter, was that the

microflora and microfauna responded positively to elevated

CO2, whereas the mesofauna tended to respond negatively.

A possible explanation for this pattern is that smaller

organisms were able to access smaller soil pores that

contained readily decomposable C (Strong et al. 2004) and

higher water content due to elevated CO2 (Field et al.

1995). Another explanation may be that increased soil

aggregation with elevated CO2 (Six et al. 2001) creates a

more stable microhabitat for bacteria and fungi, and ulti-

mately promotes greater spatial separation between pre-

dators and prey (Wright et al. 1995).

Effects of elevated CO2 on the abundance of soil biota

were related to trophic structure, as expected. The detriti-

vores responded positively to elevated CO2, whereas the

higher trophic levels showed no response. Therefore,

functional classification (i.e., trophic group and body size)

proved more useful than taxonomic classification in

explaining responses to elevated CO2 (Scheu and Falca

2000) and there was no evidence of a bottom-up multi-

trophic response that has been suggested to be important in

soil food webs with rising CO2 (Yeates et al. 2003).

Instead, predation and omnivory could generally limit the

abundance of soil fauna (Petersen and Luxton 1982; Vargas

and Hattori 1986; Scheu 2002). It is also possible that the

response of detritivores to elevated CO2 was related to

increased water availability because altered precipitation

induced a similar response among detritivores in our meta-

analysis. Fungi and fungivores responded positively to

precipitation, and predators tended to respond positively,

demonstrating a potential bottom–up trophic response to

increased water availability. Contrary to our expectations,

increasing precipitation generally favored the fungal

component of the soil food web, and CO2 enrichment

favored the bacterial component.

Vegetation played a role in determining the degree to

which soil biota responded to altered precipitation. In non-

forest ecosystems, soil biota were less limited by drought,

and probably more limited by C availability. However, in

forest ecosystems, abundances of soil biota were strongly

limited by low precipitation, particularly in drought treat-

ments. Thus, adding a resource elicits a qualitatively dif-

ferent response than reducing the resource in an already

constrained ecosystem. The reason for this pattern is

unknown, but may be related to a physical effect of pre-

cipitation on litter comminution (Lensing and Wise 2007),

the degree of water limitation in the litter layer versus

mineral horizons (Keith et al. 2010), or a competition for

water between trees and soil biota under low water avail-

ability (Odhiambo et al. 2001). Another possible explana-

tion for the difference between forest and non-forest

responses to precipitation is that we included measure-

ments of abundances from the soil horizon with the highest

population density (if abundances for more than one hori-

zon were reported), which tended to be the organic layer

for forest ecosystems, and the organic layer is more sus-

ceptible than mineral soil to desiccation (Keith et al. 2010).

Climate best explained the effects of experimental

warming on soil biota. According to the studies included in

our meta-analysis, warming is more likely to reduce the

Table 3 Relationships between the effects of elevated CO2, warming, and altered precipitation on the abundance of soil biota (lnR) and four

continuous experimental variables

Treatment Variables Range Mean Intercept Slope r2 P value

Elevated CO2 Mean annual temperature (�C) 1–22 10.3 0.08 -0.006 0.009 ns

Mean annual precipitation (mm year-1) 325–2,132 861 -0.02 0.0001 0.001 ns

Magnitude of treatment (ppm) 74–390 273 -0.003 0.0001 0.0007 ns

Duration of treatment (years) 0.2–8 2.6 0.11 -0.03 0.05 0.028*

Warming Mean annual temperature (�C) -7 to 16 3.2 -0.11 0.02 0.08 0.019*

Mean annual precipitation (mm year-1) 119–2,250 646 -0.26 0.0004 0.11 0.004*

Magnitude of treatment (�C) 0.4–5 2.2 0.09 -0.03 0.008 ns

Duration of treatment (years) 0.2–15 4.2 0.09 -0.02 0.04 0.007*

Altered Precip. Mean annual temperature (�C) -5 to 17 7.9 0.44 -0.02 0.01 0.004*

Mean annual precipitation (mm year-1) 211–2,197 965 0.15 0.0002 0.01 ns

Duration of treatment (years) 0.1–13 3.4 0.24 0.01 0.01 0.001*

Results are from 11 separate random-effect models using MetaWin 2.1 and include soil biota from all taxa, body width classes, and ecosystem

types; P value is from the regression v2 test; see rationale in ‘‘Materials and methods’’ for not testing the magnitude of precipitation treatments as

a continuous variable

ns Not significant

* Significant at an alpha level of 0.05
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abundances of soil biota in colder and drier climates.

Negative effects of warming may mean that the organisms

are avoiding the heat and living deeper in unsampled soils

(Briones et al. 2007), experiencing water stress (Hodkinson

et al. 1994; Kardol et al. 2011), or dying off due to heat

stress (Coulson et al. 1996; Bokhorst et al. 2008; Briones

et al. 2009). It is also possible that the community com-

position is altered by warming, with fewer cold-adapted

(Coulson et al. 1996) or wet-adapted species (Kardol et al.

2011). Negative effects of warming in drier climates sug-

gest an important interaction between future changes in

temperature and water availability, whereby warming-

induced drying will exacerbate water limitation on

belowground populations in arid and semiarid ecosystems.

In contrast to aboveground biota (Gerten et al. 2008),

positive effects of precipitation on soil biota were just as

likely to occur in wetter climates as in drier climates,

indicating that water availability generally limits the

abundance of soil organisms across climatic zones.

The effects of all three global change factors considered

in this meta-analysis varied with treatment duration. Posi-

tive effects of elevated CO2 were more likely to occur in

short-term experiments. The switch in responses after

3 years of CO2 enrichment (i.e., from positive to no

response) is similar to the temporal trend found with NPP

(Oren et al. 2001) and N fixation (Hungate et al. 2004), and

could reflect a recovery period after perturbation (Luo

2001) and a shift from C limitation to nutrient limitation

(Luo et al. 2004). Negative effects of warming were more

likely to occur in long-term experiments, which may reflect

an initial relief of cold limitation on certain species (Ruess

et al. 1999; Cole et al. 2002; Convey and Wynn-Williams

2002) followed by long-term water limitation associated

with warming-induced drying (Harte et al. 1996; Sinclair

2002; Aerts 2006). Soil respiration also exhibits a transient

response to warming (Luo et al. 2001) associated with a

reduction in microbial C use efficiency (Allison et al. 2010)

and a pulse of readily decomposable C that is eventually

exhausted (Kirschbaum 2004). Positive effects of increas-

ing precipitation on soil biota were larger in long-term

experiments, suggesting that permanent changes in water

availability cause permanent changes in population sizes.

We find it particularly striking that the effects of elevated

CO2 diminished with time, whereas the effects of warming

and altered precipitation intensified with time. The tran-

sient disequilibria caused by step responses of soil biota to

CO2 enrichment should be interpreted with caution in

experiments shorter than 3 years. On the other hand, the

long-term responses of soil biota to factors that show nat-

ural variation (i.e., temperature and precipitation) seem to

be more gradual and directional.

Greenhouse CO2 studies overestimated the responses of

soil biota observed in the field. This difference may reflect

an initial release of soil C by physical disturbance and

seedling establishment in mesocosms, which can have

ramifications up to 3 years later (Rygiewicz et al. 2010),

and environmental stress is generally lower in greenhouse

studies and can lead to the detection of effects not occur-

ring in the field (Peters 1993; Goverde et al. 2002). Also,

the greenhouse studies in our meta-analysis were con-

ducted for approximately 1 year, on average, and primarily

captured the short-term response to elevated CO2, whereas

field experiments (4 years, on average) captured the long-

term response. Therefore, more long-term CO2 studies are

needed. We found no evidence that higher magnitudes of

CO2 enrichment or warming caused larger effects on

belowground population sizes (Klironomos et al. 2005),

supporting the ecological relevance of both step and

gradual global change manipulations (Luo 2001).

The patterns found in our meta-analysis indicate that

elevated CO2, warming, and altered precipitation affect soil

biota to different degrees. Effects of elevated CO2 depen-

ded most on trophic structure and body size, whereas

effects of warming and altered precipitation depended on

local climate and ecosystem type. Two mechanistic con-

straints on soil biota emerged from this synthesis. First, the

abundance of soil biota is generally limited by water

availability; the mean effect of precipitation was positive

for all taxa included in this analysis and much larger than

the mean effects of elevated CO2 and warming. Second, the

abundance of biota in cold and dry soils is limited by

temperature.

These general patterns serve as hypotheses for the

mechanisms that drive the responses of soil biota to global

environmental change, and may help us predict when

particular changes in abundances of soil biota will impact

ecosystem functioning. We have also identified research

gaps. For example, measurements of macrofauna are nee-

ded in CO2 and warming studies, trophic measurements are

needed in warming studies, measurements of bacteria and

protozoans are needed in precipitation studies, and all

measurements are needed in tropical ecosystems. Mea-

surements of the abundance of soil biota in global change

experiments provide a useful context through which to

study the general mechanistic constraints on belowground

communities. Our meta-analysis suggests that simulta-

neous changes in atmospheric CO2 concentration and cli-

mate will influence multiple environmental constraints on

belowground communities. For example, detritivores are

predicted to respond most strongly to a simultaneous

increase in CO2 concentration, temperature, and precipi-

tation in relatively cold and dry forest ecosystems. Inter-

actions between different global change factors may create

responses not predicted by single-factor experiments (Shaw

et al. 2002; Norby and Luo 2004); therefore, more multi-

factor experiments are needed.
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Other remaining challenges include our ability to relate

quantitative changes in abundances of soil biota to

decomposition, soil C storage, nutrient mineralization,

plant production and diversity, and energy transfer to

aboveground food webs. These challenges exist for ecol-

ogists in relatively unmanaged ecosystems, as well as in

agricultural and rangeland ecosystems where abundances

of different taxa or trophic groups may be managed to

maximize fertilization efficiency and minimize root her-

bivory and parasitism. Furthermore, our meta-analysis was

focused on abundance measurements and did not consider

the effects of global change on the community composition

of individual taxa and trophic groups (Cragg and Bardgett

2001). Functional dissimilarity within a trophic group (e.g.,

a diverse set of enzymes among detritivores) can be just as

important as species richness and population size for eco-

system functioning (Heemsbergen et al. 2004).
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