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a b s t r a c t

Many northern forests are limited by nitrogen (N) availability, slight changes in which can have profound
effects on ecosystem function and the activity of ectomycorrhizal (EcM) fungi. Increasing N and phos-
phorus (P) availability, an analog to accelerated soil organic matter decomposition in a warming climate,
could decrease plant dependency on EcM fungi and increase plant productivity as a result of greater
carbon use efficiency. However, the impact of altered N and P availability on the growth and activity of
EcM fungi in boreal forests remains poorly understood despite recognition of their importance to host
plant nutrition and soil carbon sequestration. To address such uncertainty we examined above and
belowground ecosystem properties in a boreal black spruce forest following five years of factorial N and P
additions. By combining detailed soil, fungal, and plant d15N measurements with in situ metrics of fungal
biomass, growth, and activity, we found both expected and unexpected patterns. Soil nitrate isotope
values became 15N enriched in response to both N and P additions; fungal biomass was repressed by N
yet both biomass and growth were stimulated by P; and, black spruce dependency on EcM derived N
increased slightly when N and P were added alone yet significantly declined when added in combination.
These findings contradict predictions that N fertilization would increase plant P demands and P fertil-
ization would further exacerbate plant N demands. As a result, the prediction that EcM fungi predictably
respond to plant N limitation was not supported. These findings highlight P as an under appreciated
mediator of the activity of denitrifying bacteria, EcM fungi, and the dynamics of N cycles in boreal forests.
Further, use of d15N values from bulk soils, plants, and fungi to understand how EcM systems respond to
changing nutrient availabilities will often require additional ecological information.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Increased terrestrial N availability is a global issue with impacts
extending beyond industrialized regions (Matson et al., 2002;
Galloway et al., 2008). In most N-limited boreal forests anthropo-
genic deposition is less pronounced, but landscapemodification and
accelerated decomposition resulting from climatic warming can
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increase in situ N mineralization and profoundly alter above and
belowground ecosystem responses (Nadelhoffer et al., 1991;
Hyv€onen et al., 2007; Allison and Treseder, 2008; Aerts, 2010).
Boreal ecosystems subjected to increased N availabilitymay respond
with greater carbon (C) fixation (H€ogberg et al., 2003), altered C and
nutrient allocation patterns (Nadelhoffer, 2000; Mack et al., 2004;
Vogel et al., 2008), and shifts in plant and fungal diversity,
biomass, and elemental stoichiometry with uncertain functional
consequences (Shaver et al., 2001; Nordin et al., 2005; Clemmensen
et al., 2006; Treseder, 2008; Janssens et al., 2010; Wardle and
Lindahl, 2014). Understanding how impacts of altered N availabili-
ties will influence the function of boreal ecosystems requires
assessment of multiple N cycling processes integrated through time.
As such, stable isotope ratios of N (15N:14N represented as d15N), as
key integrative signals of the N cycle (Robinson, 2001), appear
promising.
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Measurements of soil and plant d15N have been used to detect
variations in N cycling due to climate (Amundson et al., 2003),
disturbance (Pardo et al., 2002), reforestation (Davidson et al.,
2007), deposition (Elliot et al., 2007), and the activity of ectomy-
corrhizal (EcM) fungi. This is due to key fractionation steps related
to N loss-to-production ratios or shifts in the source or demand for
N by host plants (Hobbie and H€ogberg, 2012; Mayor et al., 2015). A
major limitation to interpreting plant d15N values as an indicator of
altered N cycling arises from uncertainty in d15N values among
forms of available N because bulk soil d15N is commonly the only
pool measured (Craine et al., 2009; Pardo and Nadelhoffer, 2010).
Measuring d15N of individual soil N forms permits assignment of
plant d15N values as tracers of available N after accounting for
intermediate sources of biological fractionation (Pardo et al., 2006;
Templer et al., 2007; Kahmen et al., 2008; Mayor et al., 2012). For
instance, once baseline ecosystem d15N values are established, both
the source and proportional amount of EcM derived N can be better
constrained (Hobbie and Hobbie, 2008; Yano et al., 2010) and the
individual and interactive effects of N and P fertilization indepen-
dently assessed (Mayor et al., 2014).

In order to assess the alteration of d15N sources and the activity
of EcM fungi, we conducted a five year factorial N and P addition
experiment in a mature black spruce forest of central Alaska. By
combining detailed measurements of soil, plant, and fungal d15N
with estimates of fungal biomass, growth, and activity, we sought
to evaluate several hypothesized relationships governing plant and
fungal nutrient limitations. By explicitly targeting the response of
EcM fungi to altered soil fertility we aimed to better inform global
change predictions regarding plantesoil functional interactions
(Johnson et al., 2013; Deckmyn et al., 2014) and to elucidate
understudied interactions with P availability in a putatively
N-limited ecosystem.

Given that productivity of high latitude black spruce forests are
considered N-limited, and N limitation of host plants is closely tied
to belowground C allocation to EcM fungi (H€ogberg et al., 2010), we
constructed the following hypotheses regarding expected
responses of black spruce and associated EcM fungi to factorial N
and P fertilization: (H1) N fertilization would increase black spruce
[N] and 15N content due to relief of growth limitation and uptake of
15N enriched mineral N resulting from induced fractionation under
N saturated conditions (Pardo et al., 2006); and, this would lead to
(H2) a reduction in estimated plant dependency on EcM derived N.
As such, lowered delivery of fungal N would lead to (H3) reduced
relative d15N differences between EcM sporocarps and black spruce
(d15Nfungieplant) because of less 15N-retention by associated EcM
fungi and less transfer of 14N to host trees (Hobbie and Hobbie,
2008). Furthermore, we hypothesized that relief of tree N limita-
tion through N fertilization would (H4) reduce fungal biomass and
mycelial growth due to a reduction of belowground C allocation. In
contrast, we expected P addition would only influence ecosystem
properties when added with N due to an induced N/P co-limitation.
As such, þN þ P additions would: (H5) further decrease plant
dependency on EcM derived N resulting in (H6) even smaller
d15Nfungieplant magnitudes relative to the addition of N, and (H7) the
largest reduction in standing biomass and mycelial growth of EcM
fungi.

2. Methods

2.1. Site description and experimental design

Boreal forest is the second largest terrestrial biome in the world
and black spruce (Picea mariana [Mill.] BSP) dominated forest is the
most abundant forest type in boreal North America (Viereck and
Johnston, 1990). Its success in the landscape is attributed to
extreme freezing tolerance, the ability to grow in shallow perma-
frost soils with impeded drainage, as well as the ability to grow on
well-drained and more productive upland sites (Chapin et al.,
2006).

The experimental site is located approximately 15 km south of
Delta Junction AK, and consists of 16 plots arrayed in a factorial
N � P design consisting of four blocks of four 10 � 10 m2. Each
treatment plot was fertilized annually in the early spring for 5 years
prior to the 2007 growing seasonwhen sampling for this study was
conducted. In 2002, each plot received single broadcast doses of
pelletized NH4

þNO3
e (þN), ortho-PO4

e (þP), both together (þN þ P),
or none, at an initial level of 200 kg N and 100 kg P ha�1 in year 1
and 100 kg N and 50 kg P ha�1 yr�1 in subsequent years. Although
these amounts of added N and P are unlikely to occur under natural
conditions, they are of comparable magnitude to other boreal forest
fertilization experiments that seek to relieve nutrient limitations
(H€ogberg et al., 2006).

The forest is a mature (~80 years old) dry nonacidic black spruce
forest (Hollingsworth et al., 2006) formed under low rainfall
(~300 mm yr�1 MAP) and cold conditions (�2 �C MAT) with a
relatively shallow organic layer (6.3 cmO horizon). Soils are gelisols
dominated by silt loams as described elsewhere (Treseder et al.,
2004b). The forest canopy is dominated by black spruce with
minor components of Populus tremuloides in two of the blocks. The
understory vegetation consists of minor contributions from Betula
glandulosa, Salix spp., Vaccinium vitis-idaea, V. uliginosum, and
Rhododendron groendlandicum shrubs, with a 30e50% ground cover
comprised of feather moss (mainly Pleurozium schreberi or
Hylocomium splendens) and lichen (Cladina, Cladonia, and Cetraria
spp.) (Treseder et al., 2004b; Mack et al., 2008).

2.2. Plant and fungal sampling

Needles from five, terminal, full sun branches were collected
from the tops of five P. mariana trees in the canopy of each plot at
peak of needle expansion, August 29e30, 2007, dried at 60 �C, and
composited by plot. Fine roots (<2 mm) were carefully excavated
from three of these trees in each plot by tracing from trunk to
terminal roots within the upper 6 cm of soil, composited by plot,
and refrigerated until processing. The thin layer of secondary root
tissue was carefully removed to prevent potential inclusion of
fungal biomass in subsequent isotopic analyses although a minor
component of EcM hyphae could be present as a Hartig net in the
remaining root cortex (H€ogberg et al., 1996). Needle and root tissue
were dried at 60 �C for 24 h, ground to a fine powder, and analyzed
on a ThermoFinnigan continuous flow isotope ratio mass
spectrometer coupled to a Costech C/N elemental analyzer at the
University of Florida. Stable isotope abundances are reported as
d15N ¼ (Rsample/Rstandard e 1) � 1000, where R ¼ 15N/14N and refers
to the ratio of the sample and reference standard of atmospheric N2.
Run standard error rates were typically less than 0.2‰. Foliar P
concentration (mg g�1) was determined by combustion (1 h at
550 �C) and dissolution of the ash in 10 mL of 1 M H2SO4 shaken for
16 h, filtered, and analyzed by automated colorimetry. Tree cores
were obtained prior to and in year five of the experiment from all
mature trees in each plot and growth rings quantified using
WinDendro software. Growth responses were calculated as the
change in ring width prior to and in the fifth year of fertilization.

Sporocarps were opportunistically collected during the 2005-07
growing seasons and as a result individual sporocarps may have
experienced 3e5 years of nutrient enrichment. Sample sizes varied
from 12 to 29 across treatments (individual plots represented by
3e11 sporocarps) with the fewest collected from the þN þ P
and þN treatments (N ¼ 12 and 13, respectively), and the most in
the þP and control treatments (N ¼ 22 and 29, respectively).
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Determination of the EcM nutritional habit for each fungal species
was confirmed using a discriminant model of d15N and d13C values
trained from a global dataset containing>800 identified sporocarps
(Mayor et al., 2009). Phospholipid fatty acid analyses (PLFA) were
performed on three 1e5 g (wet weight) frozen soil subsamples and
standardized concentrations used as a metric of fungal biomass.
This process involved an initial: lipid extraction, fractionation, and
successive elution; followed by conversion of the methanol fraction
into freemethyl esters bymild alkaline methanolysis; and, analyses
on a gas chromatograph with a flame ionization detector and a
50 m HP5 capillary column (Frostegård et al., 1993). The content of
the specific PLFA 18:2u6,9, standardized against mol % of a standard
(PLFA 19:O), was regarded as a proxy of total fungal biomass
(Frostegård and Bååth, 1996); a biomarker largely comprised of
EcM-forming fungi in boreal spruce forest (Taylor et al., 2010).

In addition to standing fungal biomass, seven mycelial ingrowth
mesh bags (52 mm mesh containing 7 cm3 of acid washed quartz
sand) were deployed throughout the 2007 growing season in each
plot at the organic and mineral soil interface to measure actively
growing fungal mycelia (Wallander et al., 2001). Three additional
bags were inserted inside buried PVC collars to 15 cm depth in each
plot to account for any saprotrophic fungal biomass; because
negligible biomass was found corrective accounting was unnec-
essary. Ingrowth bags were removed from the field immediately
prior to the first frost, refrigerated, and transported to UF where
they were slowly dried, the sand suspended in water, and the
degree of mycelial colonization scored under a dissecting micro-
scope (1 ¼ none, 2 ¼ light and diffuse, 3 ¼ extensive, 4 ¼ extensive
with few rhizomorphs, 5 ¼ extensive with many rhizomorphs).

2.3. Soil nutrient sampling and d15N measurement

During the entire 2007 growing season, metrics of accumulated
bioavailable [NH4

þ], [NO3
e], and [PO4

e] were obtained from five field-
incubated ion exchange resins bags (220 mm mesh) containing
either 3 g of anion (Biorad®, AG 1-X8, #140-1421) or cation resins
(Biorad®, AG 50W-X8, #142-1421) inserted into the upper 5e7 cm
of soil in each plot. Resin bags were collected at the end of the
growing season, carefully cleaned with deionized water, and
refrigerated until extraction in an acidified salt solution (Giblin
et al., 1994).

Extractable soil N forms for isotopic analyses were obtained
either from the exchange resins (for mineral N) or 2 M KCl
extractions of total dissolved N (TDN) made at the height of the
growing season, early August 2007. In each plot, organic horizon
soils from three cores were sampled to 10 cm depth and compos-
ited from within three zones of each 10 � 10 m2 plot with a volu-
metric corer (4.2 cm diameter). Green moss or lichens were
removed from cores, depth recorded, and horizons separated. Each
composited soil sample was stored on ice in the field and under
refrigeration in the lab for approximately 24 h prior to salt
extraction, filtration, and freezing. Concentrations of ammonium
and nitrate from both KCl and resin extractions were analyzed
colorometrically as nitrate þ nitrite, ammonium, and phosphate on
a Lachat QuikChem 8500 (Hach Ltd., Loveland, CO, USA). Because
80% of black spruce roots are typically found in the organic horizons
(Ruess et al., 2003) only the organic soils were extracted for d15N
analyses. Total dissolved N and NH4

þ extracts were oxidized with
persulfate/thermodigestion and coupled to the highly sensitive
denitrifier method (Sigman et al., 2001; Knapp et al., 2005) for d15N
measurements as nitrate as detailed elsewhere (Mayor et al., 2012)
and in the Supplementary File. The d15N value of dissolved organic
N (DON) was calculated as the mass weighted difference between
TDN, NH4

þ þ NO3
e and resin accumulated mineral d15N values using

the following equation:
d15NDON ¼
�
d15NTDN � ½TDN� �

�
d15NNH4

�
h
NH4

þ
i

þ d15NNO3
�
h
NO3

�
i��.

½DON�
(1)

where KCl extracts provided concentrations for all N forms and
d15NTDN measurements and cation and anion exchange cation and
anion resins provided d15NNH4

and d15NNO3
values. Resin derived

d15N values represent time integrated d15N measurements of the
rapidly cycling low concentration ions of interest in sufficient
masses necessary for the denitrifier method with no indication of
isotope fractionation effects (Lehmann et al., 2001; Templer and
Weathers, 2011).
2.4. Statistical analyses

Fertilizer treatment effects were analyzed using an ANOVA
model testing N or P effects, their interaction, and block as main
effects in accordance with the factorial design of the experiment.
Parametric assumptions were assessed using Levene's test for
homogeneity of variance and ShapiroeWilk's test for normality
(a ¼ 0.05). Response values were log transformed when necessary
and fitted residuals visually assessed. Datawere analyzed using JMP
11.1.1 (2013 SAS Institute).
2.5. Mass balance 15N-based mixing models

The d15N value of black spruce represents the d15N value of N
sources and the fractionation effects during their assimilation and
transfer (Emmerton et al., 2001; Robinson, 2001). To estimate
proportional contribution and pathway of N flux to black spruce
across treatments we used the following d15N based mass balance
mixing models developed for EcM and ericoid arctic tundra plants
(Hobbie et al., 2009; Yano et al., 2010):

Three pool N source:

d15Navailable ¼ fDON � d15NDON þ fNH4
� d15NNH4

þ fNO3

� d15NNO3

(2)

d15Navailable ¼ (1 e Tr) � d15Nfungi þ Tr � d15Ntransfer (3)

Two pool plant mixture:

d15Nplant ¼ d15Navailable e DG � (1 e Tr) � G (4)

Two pool fungal mixture:

d15Nfungi ¼ d15Navailable þ DG � Tr (5)

where d15NDON in Eqn. (2) is derived from a mass weighted
equation based on the original 2M KCl concentration of N ions and
d15N values measured from resin extracted ammonium and nitrate
in Eqn. (1), as detailed elsewhere (Mayor et al., 2012, 2014).
Equation (2) solves for the d15N value (d15Navailable) effectively
available to plants and fungi based on proportionally weighted d15N
values of the three soil N sources. In the remaining equations, Tr
refers to the proportion of total fungal N that is transferred to host
plants, d15Ntransfer refers to the d15N value of the transfer
compounds produced by ECM fungi, G refers to the proportion of
plant N supplied by fungi, and DG refers to the fractionation
magnitude associated with transamination of soil N within ECM
fungi during production of N transfer compounds (Hobbie and
Hobbie, 2008).
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We placed quantitative constraints on the source mixtures
(DON, NH4

þ, NO3
e) and pathways (EcM vs. direct uptake) of N flux to

black spruce. First, soil N mixtures were iteratively adjusted with
10% source contributions for each plot, constrained to within
0e100% of total tree N uptake. Next, fractionation magnitudes
associated with the transformation of soil N to d15N-depleted
transfer compounds by EcM fungi (DG) were estimated at D9±1‰
based on laboratory and field analyses as described elsewhere
(Hobbie and Hobbie, 2008). Lastly, based on extremely low [NO3

e] in
Control and þP plots (e.g. <0.2% and <0.4% of TDN in C and þP
treatments, respectively) we omitted d15NNO3

values as a potential
source. Inclusion of NO3

e as up to 20% of source N did not change
statistical findings. Similarly, d15NDON was omitted as a potential N
source in the þN and þN þ P treatments owing to large propor-
tional declines in DON (e.g. <13% of TDN), and highly variable
d15NDON values following N additions. Given that models were
mathematically underdetermined by design, the results are
presented as ranges of all possible soil N source mixtures in
Supplementary Table S1.

3. Results

3.1. Response of soil properties

Soil organic horizon depth, bulk density, C/N, and pHwere largely
unaltered by nutrient additions. Only soil pH and C/N marginally
increased in response to N and P additions, respectively (Table 1). As
expected, soil extractable and resin accumulated mineral N
(ammoniumþ nitrate) increased in response to N additions whereas
resin accumulated phosphate increased in response to P additions
(Table 1). The relative proportions of extractable TDN (DON þ
mineral N) were also significantly altered by N additions as DON
comprised c. 96% of TDN in the eN treatments and mineral N
comprised c. 86% of TDN in the þN treatments. This shift was due to
both increases in mineral N and reductions of extractable [DON] in
theþN treatments (Table 1). As a result, DON contributions in theþN
treatments were inconsequential to mass balance mixing model
solutions and the high proportional mineral N concentrations in five
of the eight N addition plots prevented valid solutions and statistical
testing of fertilizer effects on d15NDON values (Tables 1 and S1).
Despite five years of N additions, the d15N values of bulk soil organic
matter (avg. ¼ 0.5 ± 0.1‰; data not shown) and resin accumulated
ammoniumdid not differ among treatments (Table S1). In contrast, N
and P additions caused the d15N values of resin accumulated nitrate
to be significantly 15N enriched (P ¼ 0.0045 and P < 0.0001,
respectively). The substantial (17.9‰ relative to control) 15N
enrichment of soil nitrate in the þP treatment led to a significant
Table 1
Response of soil abiotic properties to five years of N and P fertilization. Nitrogen additions
to significant increases in soil phosphate. Bold values represent significant overall N, P, or
P-values (a < 0.10) in parentheses.

Soil property C þN þN þ P

Organic soil depth (cm) 5.80 ± 0.52 6.31 ± 0.6 7.09 ± 1.1
Bulk density (g cm�3) 0.16 ± 0.03 0.12 ± 0.02 0.14 ± 0.03
C/N (organic soil) 25.0 ± 1.6 24.8 ± 0.94 25.4 ± 0.6
pH (H2O)a 4.75 ± 0.06 4.99 ± 0.06 4.87 ± 0.06
KCl extractable N concentrations (org. soil)
DON 314.0 ± 35.4 148.9 ± 10.0 135.9 ± 40.8
NH4

þ a 10.1 ± 0.9 660.0 ± 106.3 456.1 ± 67.5
NO3

e 0.79 ± 0.44 229.5 ± 78.1 169.6 ± 46.1
Resin accumulated nutrient concentrations (mg g�1 resin day�1)
NH4

þ 1.08 ± 0.5 382.3 ± 96.7 168.1 ± 68.2
NO3

e 0.08 ± 0.01 399.3 ± 130.2 463.7 ± 151.1
PO4

e a 3.86 ± 1.9 3.19 ± 1.3 839.1 ± 539.7

a Statistical test performed on log-transformed variable.
N � P interactive effect (P ¼ 0.0003; Table S1) but no significant
change in resin accumulated nitrate in the þP treatment (Table 1).

3.2. Response of black spruce foliar nutrients, foliar and root d15N,
and stem growth

Nitrogen additions significantly increased black spruce foliar [N]
and P additions significantly increased foliar [P] (P< 0.0001 and
P ¼ 0.0002, respectively; Table 2). Nitrogen additions resulted in
large increases in foliar N/P ratios (P < 0.0001), whereas P additions
decreased foliar N/P ratios (P ¼ 0.0003), and the intermediate
values in the þN þ P treatment led to an N � P interactive effect
(P¼ 0.018; Fig. 1a). Foliar d15N values significantly increased in
response to N additions (P¼ 0.0012; Fig. 1b; Table 2) but root d15N
values were not significantly altered (Fig. 1b; Table 2). Phosphorus
additions significantly decreased foliar [C] by c. 2% (P¼ 0.0043) and
foliar d13C values exhibited an N � P interactive effect (P ¼ 0.034)
because N and P co-addition eliminated the minor (1‰) and
marginally significant (P ¼ 0.087) 13C depletion seen in the þN
treatment (Table 2). Black spruce basal area growth, asmeasured by
tree ring increment change, was unaltered by N or P addition (data
not shown).

3.3. Response of fungal biomass, mycelial ingrowth, and N delivery
by EcM fungi

On average, EcM sporocarp d15N values were as low as 5.3‰ in
the þN treatment, as high as 10.5‰ in the þN þ P treatment, and
intermediate in the Control and þP treatments (9.5 and 8.9‰). As a
result of the þNþP enrichment there was a marginally significant
overall P effect (P ¼ 0.056) and an N � P interactive effect
(P¼ 0.021; Table 2). The difference in fungal and foliar d15N values
has been used as an indicator of fractionation associated with EcM
N acquisition. The magnitude of 15N differences between EcM fungi
and black spruce (d15Nfungiefoliage) was significantly reduced by N
(P ¼ 0.0008) and to a lesser extent P (P ¼ 0.044) additions. As
the þN þ P treatment exhibited intermediate values there was a
significant N � P interactive effect (P ¼ 0.015; Fig. 1c; Table 2).
Fungal biomass, as represented by the PLFA 18:2u6,9 biomarker,
was marginally lower in N treatments (P ¼ 0.052) yet marginally
greater in P treatments (P ¼ 0.071; Fig. 1d, Table 2). Similarly,
mycelial ingrowth was stimulated by P additions (P¼ 0.028; Fig. 1e,
Table 2).

Plot-specific mass balance mixing models were used to estimate
the proportion of black spruce N derived from EcM fungi (denoted
as f in Eqn. 3). As a result of multiple nutrient addition effects on
isotope end members (e.g. 15N enrichment of soil nitrate, alteration
led to significant increases in all pools of extractable soil N. Phosphorus additions led
combined N � P interactive effects. ANOVA derived F-values followed by significant

þP N effect P effect N � P effect

5.97 ± 0.35 n.s n.s n.s
0.15 ± 0.01 n.s n.s n.s
29.1 ± 1.28 n.s 4.1 (0.074) n.s
4.74 ± 0.08 3.9 (0.084) n.s n.s

279.9 ± 19.7 7.7 (0.028) n.s n.s
8.62 ± 2.1 827.6 (<0.0001) n.s n.s
1.2 ± 0.4 20.9 (0.001) n.s n.s

14.3 ± 8.0 32.5 (0.0003) 4.6 (0.061) 5.9 (0.038)
67.4 ± 29.2 14.4 (0.004) n.s n.s

1008.1 ± 378.6 n.s 130.9 (<0.001) n.s



Table 2
Response of black spruce foliage, EcM fungal biomass (PLFA) and hyphal ingrowth, their isotopic difference, and the modeled dependency (G) of black spruce proportional
uptake of N to five years of N and P fertilization. Bold values correspond to significant overall N, P, and combined N� P interactive effects. ANOVA derived F-values followed by
significant P-values (a < 0.10) in parentheses.

Biotic property C þN þN þ P þP N effect P effect N � P effect

Black spruce foliage
%C 48.0 ± 0.07 48.5 ± 0.14 47.7 ± 0.27 47.6 ± 0.16 n.s. 14.4 (0.0043) n.s.
%N 0.77 ± 0.06 1.62 ± 0.09 1.43 ± 0.09 0.86 ± 0.06 87.5 (<0.0001) n.s. n.s.
%P 0.11 ± 0.004 0.10 ± 0.01 0.15 ± 0.00 0.19 ± 0.02 n.s. 34.7 (0.0002) n.s.
d13C (‰) �28.5 ± 0.1 �29.3 ± 0.4 ¡28.4 ± 0.2 ¡28.6 ± 0.1 n.s. 3.7 (0.087) 6.3 (0.034)
d15N (‰) �4.4 ± 0.9 ¡1.7 ± 0.2 ¡1.1 ± 0.2 �4.5 ± 0.5 21.7 (0.0012) n.s. n.s.
EcM fungi
d15N (‰) 9.5 ± 1.1 5.3 ± 1.3 10.5 ± 1.3 8.9 ± 0.9 n.s. 4.8 (0.056) 7.8 (0.021)
PLFA 18:2u6,9 3.66 ± 0.38 3.11 ± 0.21 3.62 ± 0.47 4.08 ± 0.22 5.0 (0.052) 4.2 (0.071) n.s.
Hyphal ingrowth 2.14 ± 0.13 1.63 ± 0.17 2.91 ± 0.35 2.48 ± 0.44 n.s. 6.8 (0.028) n.s.
Plantefungal interaction
d15Nfungiefoliage 13.9 ± 0.2 6.98 ± 1.4 11.6 ± 1.3 13.4 ± 0.5 24.8 (0.0008) 5.5 (0.044) 8.9 (0.015)
EcM N in foliage a 0.29 ± 0.07 0.46 ± 0.13 0.14 ± 0.02 0.46 ± 0.14 n.s. n.s. 6.1 (0.039)

a Statistical test performed on log-transformed variable.

Fig. 1. Response of black spruce forest components to five years of N and P fertilization. Foliar N/P (a), foliar (black) and root (grey) d15N values (b), d15N differences between EcM
fungi and black spruce foliage (c), fungal biomass (d), EcM mycelial ingrowth (e), and the modeled proportional (% of total foliar N) dependency (G) of black spruce on EcM derived N
(f). Symbols represent significant N, P, or N � P interactive effects detailed in the text. * indicates a marginally significant effect (a < 0.10).
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of sporocarps d15N, and 15N enrichment of black spruce foliage), the
amount of N derived from EcM fungi was significantly reduced in
the þN þ P treatment (14 ± 2%; P ¼ 0.039 for N � P interaction)
relative to the average for the control (29 ± 7%; Figure 1f; Tables 2
and S1). There were also minor, yet statistically insignificant,
increases in f estimates in both the þN and þP treatments
(46 ± 13%). Mass balance mixing model solutions were not
achievable in one of the 16 plots as available end members
produced f estimates outside of valid solution space.

In order to explore controls over f estimates, regressions of this
metric with potentially informative foliar (d15N, N/P, and multiple
enrichment [ε] factors) and soil metrics (both the concentration
and d15N values of soil N and the biomarker and hyphal ingrowth
metric of fungal biomass) were performed. Only two significant
Pearson correlation coefficients were found; log-transformed f
estimates were negatively correlated with the ammonium-based
foliar enrichment factor (ε ¼ d15Nfoliar � d15NNH4; R2 ¼ 0.34,
P ¼ 0.023; Fig. 2a) and EcM mycelial ingrowth (R2 ¼ 0.51,
P ¼ 0.0027; Fig. 2b).

4. Discussion

4.1. Alteration of soil N cycles and interactions with P availability

Five years of N additions caused large increases in extractable
and resin accumulated mineral N. This N saturation led to a c. 50%
decline in extractable [DON]. The decline of [DON] under N addition
suggests sensitivity of enzyme activities to soil mineral [N] through
either decreased production or increased consumption of labile
DON. Added N has previously been shown to decrease lignolytic
activity and increase proteolytic enzyme activity of fungi (Neff et al.,
2002; Waldrop and Zak, 2006; Lucas and Casper, 2008; Allison
et al., 2009). Such increases in mineral N/DON ratios, while likely
beneficial to boreal forest tree productivity (Kranabetter et al.,
2007; Mayor et al., 2012) may impact fungal community compo-
sition through reductions in taxa specializing on more recalcitrant
N forms (Allison et al., 2007; Lucas and Casper, 2008).

The d15N values of total soil N and resin accumulated ammo-
niumwere unaffected by nutrient additions. This suggests that any
small isotopic changes to organic matter inputs (plant and
microbial residues) do not influence total soil d15N over such short
time periods (Hobbie and Ouimette, 2009). Also, the use of
ammonium-nitrate fertilizer rather than urea precluded potential
Fig. 2. Relationship between the modeled proportional dependencies of black spruce on Ec
foliar enrichment factor (ℇ) was negatively correlated with G (R2 ¼ 0.34, P ¼ 0.023; a) and
treatment: þP open triangles, þN filled squares, þN þ P filled circles, and control open squ
fractionation during ammonia volatilization (Bouwmeester et al.,
1985; Mizutani and Wada, 1988). In contrast to the isotopic
robustness of these two N pools, resin accumulated nitrate was
significantly 15N-enriched by both N and P additions. Such a
response to N additionwas expected based on field studies in lower
latitude ecosystems (Houlton et al., 2006; Mayor et al., 2014)
because stimulation of fractionating gaseous N (NOx, N2O, N2)
losses by nitrifying and denitrifying bacteria can lead to 15N
enrichment of remaining nitrate (Hobbie and Ouimette, 2009;
Schlesinger and Bernhardt, 2013). As soil nitrate d15N values
appear most sensitive to N saturation, studies that only measure
total soil d15N may erroneously conclude that loss pathways or N
sources were unaltered (e.g. H€ogberg et al., 2014).

Far less clear however, is the mechanism by which P addition,
independent of N, led to 15N enrichment of soil nitrate. Gaseous N
losses are thought to be quantitatively unimportant in boreal soils
owing to low soil anoxia and low mineral N abundance (Stehfest
and Bouwman, 2006; Hobbie and Ouimette, 2009). However, soil
nitrate in the þP treatment was markedly (17.9‰) more 15N
enriched than control soils, yet nitrate accumulation rates
remained statistically equivalent to the Control. Further, the
magnitude of 15N enrichment observed in the þP treatment was
reduced under N and P coaddition suggesting P specific stimulation
of gaseous losses that are ameliorated by N/P coaddition (likely due
to fertilizer dilution of residual nitrate). The mechanism by which P
disproportionally stimulates fractionating losses is unclear, partic-
ularly in arctic soils (Chapin, 1996; Siciliano et al., 2009), although
there is evidence from other ecosystems that elevated P availability
stimulates nitrifying bacteria both directly (Mahendrappa and
Salonius, 1982) and indirectly via pH influences on enzyme
activity (Sinsabaugh et al., 2008). Phosphorus addition, however,
did not alter soil pH in our experiment. Rather, several lines of
evidence suggest P fertilization directly stimulated the activity of
nitrifying and/or denitrifying bacteria. These lines of evidence
include: a strong positive correlation between the denitrifier gene
nirK and oxalate extractable P in a European spruce forest (B�arta
et al., 2010); reductions in relative 15N recovery in plant, microbi-
al, and soil N pools in P amended moist soil incubations attributed
to greater gaseous N losses (He and Dijkstra, 2015, and references
therein); and, repeatedly observed increases in N2O and NO
emissions following P additions to forest (Mori et al., 2010; Fisk
et al., 2014) and grassland ecosystems (Zhang et al., 2014). In
contrast, chronic P additions did not lead to 15N enrichment of soil
M derived N (G) following five years of N and P fertilization. (a) The ammonium-based
(b) a metric of EcM mycelial ingrowth (R2 ¼ 0.51, P ¼ 0.0027). Symbols correspond to
ares.
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nitrate in a mature tropical rain forest (Mayor et al., 2014). In
conclusion, there appears to be strong evidence from this and other
studies that nitrifying and/or denitrifying bacterial activity may be
stimulated by P additions in many, but not all, ecosystems.

4.2. Response of fungal biomass and ingrowth

In partial support of our hypotheses that N additions would
decrease fungal biomass and ingrowth due to relaxation of N
demands by host plants (H4), there were marginal declines in
fungal biomass in the þN treatment only. This was an expected
outcome of a reduced below ground C allocation to EcM fungi
following relief of N limitation to host plants e a pattern similar to
that observed along N availability gradients in other high latitude
ecosystems (Nilsson et al., 2005; Wallander et al., 2009; H€ogberg
et al., 2010; Wardle et al., 2013). In contrast, P additions signifi-
cantly increasedmycelial ingrowth andmarginally increased fungal
biomass and no N � P interactions were observed. Increased
mycelial ingrowth and fungal biomass suggests relief of P limitation
to EcM fungi and is surprising given presumed N limitation of
microbes in boreal soils (Hart and Stark, 1997; Li et al., 2014).
Mycelial ingrowth was also stimulated in a N and P coaddition
experiment in arctic tundra, a result attributed to both increased
shrub (i.e. carbon) abundance and direct nutrient stimulation of
mycelium (Clemmensen et al., 2006). Nutrient limitation to
microbes appear to vary among regions in part due to differential
nutrient limitation of above and belowground components
(Treseder, 2008; Harpole et al., 2011), carbon and nutrient based
interactions between them (Clemmensen et al., 2006), and the
possibility of direct nutrient toxicity in some nutrient addition
experiments (Wallenda and Kottke, 1998). These results further
suggest that P availability is an under evaluated yet important
driver of fungal growth and 15N fractionation in boreal forests.

4.3. Alteration of black spruce foliar N/P ratios and foliar and fungal
d15N values

Black spruce foliar [P] nearly doubled in response to P fertiliza-
tion and increased by 50% in response to N and P coaddition. Simi-
larly, and as hypothesized (H1), N fertilization also doubled foliar [N]
across both N addition treatments. The use of foliar N/P ratios are
often interpreted as a metric of relative N vs. P limitation (Ågren,
2008), although such ratios are typically more responsive to P
than N availability given a general inability for plants to store N in
excess of photosynthetic demands (Aerts and Chapin, 2000;
McGroddy et al., 2004). Black spruce foliar N/P ratios were affected
by all treatments e shifting from what can be considered non-
optimal (<10) to relatively more optimal conditions (sensu Ågren,
2008) in response to N additions and to less optimal levels in
response to P additions (c. 13 vs. 6 in the þN and eN treatments,
respectively). Despite black spruce foliage achieving more optimal
N/P ratios in response to N additions, growth rates based on tree ring
increment widths did not indicate stimulation of growth in any
treatment (M.C. Mack, unpublished data). Black spruce in these dry
and cold sites are very slow growing, achieving average stem basal
diameter of just 23 cm2 (totaling 8 m2 ha�1) in the 80 or so years
since the last stand replacing fire (Mack et al., 2008). The undetected
growth response to nutrient additions could be due to a very slow
stem response or to preferential investment of excess nutrients into
the production of other plant tissues (foliage, roots, etc.).

Beginning with some of the first d15N measurements in
agricultural systems it has been known that N fertilization causes
plant d15N values to approximate the isotopic values of the fertilizer
inputs, typically near the atmospheric standard of 0 ± 2‰ (H€ogberg
et al., 1996; Vitoria et al., 2004). Black spruce is one of the most
15N-depleted trees globally (Craine et al., 2009) and absorption
of 15N-enriched mineral N was therefore expected (H1) to cause 15N
enrichment (H€ogberg, 1991; Davis et al., 2004; Mayor et al., 2014).
The 15N enrichment of nitrate in the þP treatment, while large, did
not appear influential over foliar d15N values due to it's proportionally
small contribution to the available N pools (0.4% of TDN, 12% of
mineral N).

Unlike the increased [N] and d15N values in black spruce foliage,
N source and contents to fine roots were statistically unaffected by
nutrient additions. Although fine roots of Pinus and Vaccinium
species have been observed to trace total soil d15N values following
20 years of N saturation in a Swedish boreal forest (H€ogberg et al.,
1996), our study may have been of too short a duration for internal
N reallocation to impact root d15N values (Kolb and Evans, 2002).

In agreement with hypothesis H3, d15Nfungieplant values, a
measure of fractionation associated with the EcM habit, were
significantly lower (c. 50%) in the þN treatment, yet N and P
coaddition did not further reduce d15Nfungieplant values (H6).
Depleted sporocarp and enriched plant d15N values in response to N
additions theoretically represent reduced retention of 15N during
the transfer of 15N depleted transfer compounds from EcM fungi to
host plants. Such patterns were seen along successional chro-
nosequences (Hobbie et al., 2005) and in N fertilized boreal forests
(Hasselquist and H€ogberg, 2014). However, reliance upon EcM
fungi for N in the þN treatment was not supported based on mass
balance equations in our system. Only under N and P coaddition
(discussed in Section 4.4 below) was a reduced reliance on EcM
fungi for N indicated. Complicating our interpretation of these
factors is the possibility that nutrient additions may have altered
the fungal community (Lilleskov et al., 2001) and thereby the
functional traits of distinct EcM fungal genera corresponding to
exploration types, foraging depths, and preferred N forms which
could contribute to variance in sporocarp d15N values (Trudell et al.,
2004; Hobbie and Agerer, 2009).

The negative relationship between G and the d15NfoliageeNH4 in
Fig. 2a indicates how black spruce dependency on EcM derived N
diminishes as black spruce foliar d15N becomes more similar to or
more 15N enriched than the d15N value of soil NH4

þ. This is an
outcome of an increased modeled reliance upon soil NH4

þ where
both plant and NH4

þ values become 15N enriched.

4.4. Alteration of black spruce dependency on EcM derived N

There were non-significant increases in G in the þN and þP
treatments due in part to high variability among plot solutions. For
instance, G values for the þN and þP treatments ranged from 20 to
70 % of black spruce proportional N uptake compared to just 8e19%
in the þNþP treatment. The hypothesis that nutrient coaddition
would diminish black spruce reliance upon EcM fungi for N (H5)
was supported. This result ran counter to the observation that the
smallest d15Nfungaleplant values, a metric of N processing in the EcM
system, were observed in the þN treatment, followed next by
the þNþP and þP treatments.

The question of what could cause such discrepancies among
these metrics is an interesting one. Based on fertilization experi-
ment along a P availability chronosequence in Hawaii (Treseder and
Vitousek, 2001) N fertilization should have increased plant P
demand and P fertilization should have further exacerbated plant N
demand. If this predictionwere correct then the proportion of plant
N derived from EcM fungi would have ranked from high to low
among treatments as P > C > N > N þ P. Instead we found that the
general rankingwas P¼N > C >Nþ P. However, another possibility
is that increased P demands in the N treatment caused continued N
delivery by EcM fungi due to an inability of EcM fungi to selectively
deliver only the most limiting mineral nutrient at a time (e.g. a
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mycocentric interpretation of the EcM symbiosis whereby plants
can't choose to ‘pay’ photosynthate for only the most growth
limiting nutrient). This latter interpretation can account for the
observations that EcM-dependency declines when both N and P are
added in combination, that EcM sporocarp d15N values were the
most 15N-enriched (a putative sign of greater N processing) in
theþNþ P treatment (in agreement with H5 and H6), and that G in
the þP treatment was greater than the þN þ P and Control
treatments. This interpretation, however, cannot account for the
relatively greater G value obtained in the þN treatment.

The reduced proportional dependency of black spruce for EcM
derived N in the þN þ P treatment does not correspond with the
observation that fungal biomass and mycelial ingrowth were
stimulated by P addition. Rather, the lowered N demand of black
spruce in theþNþ P treatment should have resulted in a decline in
C supply, and hence EcM biomass and growth, as supported by the
marginally significant decline in fungal biomass in the þN treat-
ment. Instead both fungal biomass and ingrowth increased in
response to P additions. In contrast, theþNþ P treatment, with the
lowest G values, also contained the highest mycelial ingrowth as
shown in Fig. 2b. This suggests that high N and P availability may
actually stimulate mycelial exploration of soil independently of
host plant dependency on EcM derived N.

These responses indicate a partial decoupling between modeled
plant N demands (which declined in the þN þ P treatment but
increased in the þN and þP treatments), 15N-fractionation associ-
ated with the EcM symbioses (which declined in theþN treatment),
and growth responses by the fungi themselves (increased in þP
treatments). Such decoupled above and belowground responses
suggest predicting the response of fungal growth using only foliar or
sporocarp d15N values may not work in systems undergoing large
changes to nutrient availability. This finding has implications for
predicting input rates of recalcitrant carbon residues derived from
EcM biomass as they have been shown to strongly influence soil [C]
storage at local and global scales (Clemmensen et al., 2013; Averill
et al., 2014) and calls into question the utility of plant and fungal
d15N values to detect altered dependencies on EcM fungi in the
absence of detailed measurements of individual soil d15N values,
microbial responses to P availability, and possible changes to fungal
community composition.
4.5. Conclusion

There were both expected and unexpected outcomes of five
years of factorial N and P additions to an EcM black spruce forest.
Nitrogen additions led to expected increases in foliar N/P ratios,
reductions in d15Nfungieplant values, and 15N enrichment of soil
nitrate. In contrast, P additions were surprisingly influential over
the 15N enrichment of soil nitrate and the biomass and ingrowth of
EcM fungi. Further, N and P co-addition significantly decreased
modeled dependency on EcM derived N despite increased mycelial
ingrowth; findings seemingly in contrast to otherwise marginal
increases in the modeled dependency on EcM derived N in single
nutrient addition treatments, and intermediate increases in foliar
N/P ratios and d15Nfungieplant values in the þN þ P treatment.
Collectively, the unexpected responses of several ecosystem
properties to P fertilization in a N-limited boreal forest suggest that
even though most previous studies found N addition to suppress C
allocation to EcM fungi, predicting the outcome of altered N
availability in the EcM symbiosis, appears partially dependent upon
relative P availabilities (Treseder et al., 2004a; Blanes et al., 2012;
Deckmyn et al., 2014) thus complicating efforts to predict the
response of high-latitude forest ecosystems to global change
factors.
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