Summary

A decade of chronic exposure to elevated CO\textsubscript{2} altered the carbon cycle but did not significantly increase ecosystem carbon storage. The increase in plant carbon content was offset by soil carbon declines. Therefore, microbial responses to elevated CO\textsubscript{2} are just as important as responses of plants in modulating ecosystem carbon balance. Earth System Models that do not represent microbial responses to altered carbon inputs at elevated CO\textsubscript{2} are likely to overestimate future carbon uptake by the terrestrial biosphere.

The stimulation of net primary production by elevated CO\textsubscript{2} was most pronounced immediately after ecological disturbance, either by fire or by hurricane. The stimulation of productivity was apparent aboveground and belowground, but was strongest belowground. This stimulation declined with time after disturbance. The mechanisms causing this declining response could involve nutrient cycling feedbacks where disturbance creates a short-lived pulse of nutrient availability, and effects of plant life histories, where plants are programmed to grow after disturbance. Regardless of the mechanism, the result points to the need to incorporate ecological disturbance into Earth System Models.

Elevated CO\textsubscript{2} altered element cycles in this experiment, causing more rapid rates of element transfer from soils to plants. For nitrogen, elevated CO\textsubscript{2} increased N losses via leaching, a result inferred from the coupling of reduced tracer 15N recovery over time and increased 15N distribution at depth. If increased N losses are a general response to elevated CO\textsubscript{2}, N limitation will become exacerbated over time, reducing productivity responses of ecosystems to elevated CO\textsubscript{2}.

Elevated CO\textsubscript{2} reduced foliar nitrogen concentrations, in turn reducing herbivory on all plant species. Despite reducing herbivory, elevated CO\textsubscript{2} did not alter the abundance of the predators or parasitoids of insect herbivores, indicating that the trophic effects of elevated CO\textsubscript{2} did not propagate up the food web. After cessation of the CO\textsubscript{2} treatment, there were no apparent legacy effects of prior CO\textsubscript{2} exposure, whether for root biomass and root growth, or herbivory and insect abundance. At least for these responses, the effects of elevated CO\textsubscript{2} do not appear likely to accumulate over cycles of disturbance and recovery.

Data archival

Twelve datafiles have been permanently archived at the CDIAC ftp server as part of the “FACE collection”: \url{ftp://cdiac.ornl.gov/pub/FACE/kscdata/Hungate/}

General site information and the contents of each datafile are described in a summary file (SICO2_Datafiles_Overview), which is also posted at the site. Each datafile also contains metadata. The data files are listed below, and the titles capture the content:

SICO2_FL_Aboveground C, N, and 15N
Publications
The following six papers were published in the peer-reviewed literature as a result of this work. All of the data from these papers is archived at the CDIAC website.

Summary of Findings

Figure 1. Increased plant carbon and nitrogen content, but no effect on total ecosystem carbon or nitrogen content. (Ref 1)
Figure 2. The effect of elevated CO₂ on NPP declines with time since disturbance (Ref 2)

Figure 3. Root biomass responds more strongly to elevated CO₂ immediately after disturbance by fire and hurricane. (Ref 3)
Figure 4. Typical patterns of reduced insect herbivory observed in response to elevated CO$_2$ for the two most abundant oak species. Elevated CO$_2$ treatment is shown in black bars, ambient CO$_2$ in white bars. (Ref 4)

Figure 5. Recover of added tracer 15N as a function of its depth distribution. Higher β values indicate relatively more 15N in deeper soil layers, whereas low β values indicate concentration of 15N at the soil surface. β describes the depth distribution of 15N where $\rho = 1-\beta^d$, and ρ is the cumulative proportion of 15N encountered from the surface to depth d (in cm). (Ref 6)
Figure 6. Response of nitrogen fixation to 11 years of exposure to elevated CO$_2$. Top panel shows rates of nitrogen fixation in the elevated and ambient CO$_2$ treatments. Bottom panel shows the response to elevated CO$_2$ as a function of time since disturbance.